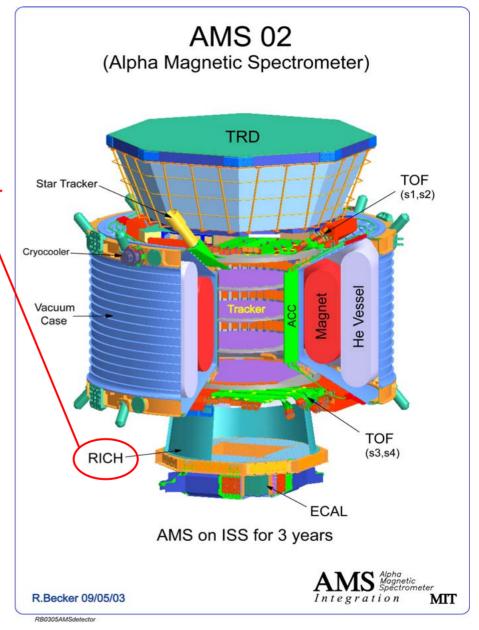


Estudo de radiadores aerogel em feixe e reconstrução de carga em cintiladores com um protótipo do detector RICH de AMS

Rui Pereira


e-mail: pereira@lip.pt

Resumo

- O detector AMS-02
- Testes em feixe
- Estudo de radiadores aerogel
- Reconstrução de carga em cintiladores
- Conclusões

O detector AMS-02

- Constituído pelos subdetectores:
 - ◆ Transition Radiation Detector
 - ◆ <u>Time-Of-Flight detector</u>
 - Silicon <u>Tracker</u>
 - <u>Ring Imaging CH</u>erenkov detector
 - ◆ <u>E</u>lectromagnetic <u>CAL</u>orimeter
 - ◆ Anti-Coincidence Counter
- Capacidades do detector:
 - Deflexão das partículas
 - Magneto supercondutor (0.9 T)
 - Medidas das propriedades da partícula:
 - Rigidez (Tracker)
 - ⋆ Direcção (TOF, Tracker, RICH)
 - ⋆ Velocidade (RICH, TOF, TRD)
 - ★ Carga (RICH, Tracker, TOF)
 - ◆ Trigger
 - ⋆ TOF, ECAL, ACC
- Estatística total: > 10¹⁰ eventos

Testes em feixe

RICH

Cintiladores orgânicos e contador Cherenkov

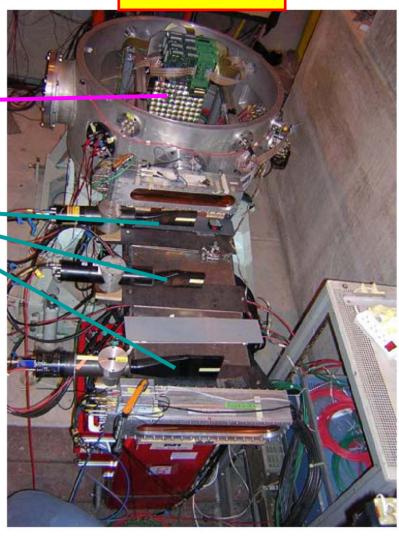
 Testes realizados no CERN (SPS) com um protótipo do detector utilizando um feixe secundário de iões

2002:

• Feixe primário: Pb

Alvo: Be

Energia: 20 GeV/nucleão


2003:

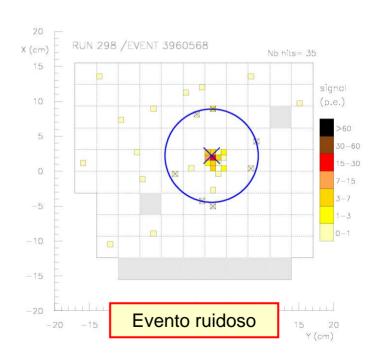
Feixe primário: In

Alvo: Pb

Energia: 158 GeV/nucleão

Teste de 2003




Estudo de radiadores aerogel

- Aerogel: espuma de sílica (SiO₂) com bolsas de ar
- Utilizado em AMS devido ao seu índice de refracção, o mais baixo de todos os materiais sólidos (n > 1.015)
- Objectivo: comparar amostras com vários índices de refracção (1.03 a 1.05) e de diferentes fabricantes para determinar qual tem propriedades ópticas mais adequadas para o RICH de AMS (máximo de luz de Cherenkov detectada)
 - Emissão de luz: dependente do índice de refracção
 - Perda de luz: dependente da claridade do aerogel
- Dados utilizados:
 - Teste 2002: protões a diferentes momentos (5-13 GeV/c/nucleão)
 - Teste 2003: núcleos de hélio a 158 GeV/c/nucleão

Aerogel: selecção de eventos

- Nos runs de protões foi efectuada uma selecção para excluir vários tipos de eventos indesejáveis:
 - Eventos com velocidades distantes da média
 - ★ Permite excluir eventos de muões ($\beta \approx 1$ em runs com $\beta < 1$)
 - Eventos ruidosos

Aerogel: estudo do sinal

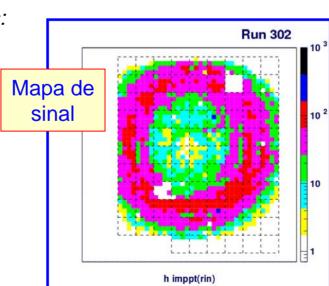
Distribuição do sinal total nos anéis Cherenkov:

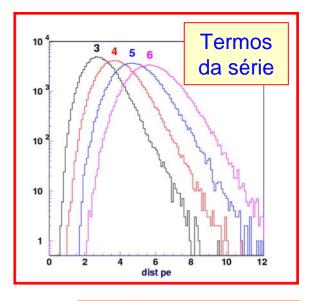
$$f(x) = \sum_{i} p(\varepsilon_{i}) \sum_{n \geq 3} \frac{e^{-\mu_{0}\varepsilon_{i}} (\mu_{0}\varepsilon_{i})^{n}}{n!} g(x; n, \sigma_{p.e.})$$

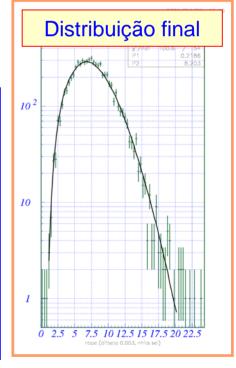
 $\boldsymbol{\mu}_0\!\!:$ sinal médio para um anel totalmente contido

 ϵ_{i} : aceitâncias geométricas

 $p(\epsilon_{\mbox{\tiny i}})$: probabilidade associada a cada valor de aceitância


 $g(x;n, \sigma_{p.e.})$: distribuição do sinal total de n fotoelectrões




Sinal dos fotomultiplicadores:

 Variação do ganho médio (run a run)

- * Efeito de limiar
- Aceitância geométrica
 - Troços do anel fora da matriz de detecção
 - * Espessura do anel
 - Zonas mortas na matriz
- Exclusão dos eventos com baixo número de hits (n<3)

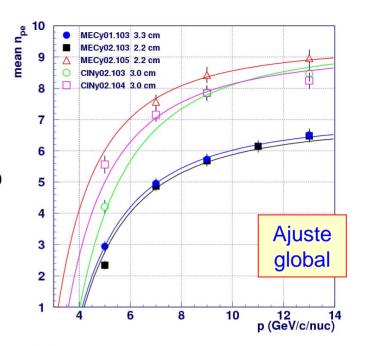
Estudo de radiadores aerogel

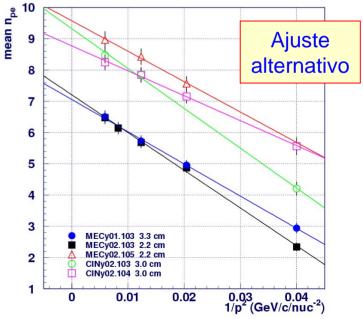
- Amostras de dois fabricantes
 - Matsushita (Japão) [MEC]
 - Instituto Boreskov (Novosibirsk, Rússia) [CIN]

Teste 2002: 5 amostras

Teste 2003: 3 amostras

Amostra	n	Espessura	2002	2003
MECy01.103	1.03	3x11 mm	X	
MECy02.103	1.03	2x11 mm	X	
MECy02.105	1.05	2x11 mm	X	
CINy02.103	1.03	30 mm	X	X
CINy02.104	1.04	30 mm	X	
MECy03.103	1.03	3x11 mm		Х
CINy03.105	1.05	25 mm		X


Aerogel: resultados

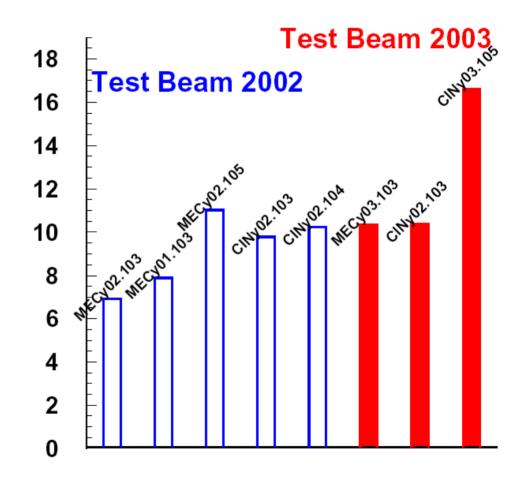

Dados de protões:

 Sinal de Cherenkov avaliado e corrigido para cada valor de momento

$$n_{pe} = n_{pe_0} \left[1 - \frac{(mc/p)^2}{n^2 - 1} \right]$$
em que $n_{pe_0} \equiv n_{pe}(\beta = 1)$

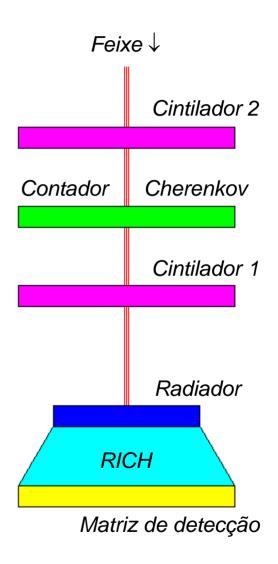
- Ajuste global aos resultados dos vários runs do mesmo radiador a diferentes momentos
- Evolução do sinal com o momento das partículas é bem descrita pela expressão teórica para n_{pe}
- Ajuste alternativo, considerando o índice de refracção de cada amostra como parâmetro a determinar, dá boas estimativas para os seus valores

Aerogel: resultados


- Dados de hélio:
 - Sinal de Cherenkov avaliado para cada um único run
 - Resultado final é obtido a partir de um só run, pois $\beta \approx 1$
- Fiabilidade dos resultados
 - Os resultados obtidos neste estudo concordam em geral com os obtidos pela equipa do CIEMAT (Madrid) utilizando métodos diferentes de avaliação da emissão de luz
- Comparação da qualidade das amostras de aerogel
 - Valores normalizados à mesma espessura (30 mm) utilizando factores de correcção obtidos a partir de simulações Monte Carlo

Aerogel: comparação final

Melhor resultado:
aerogel de Novosibirsk
com n = 1.05


↓

radiador escolhido
para o detector
definitivo

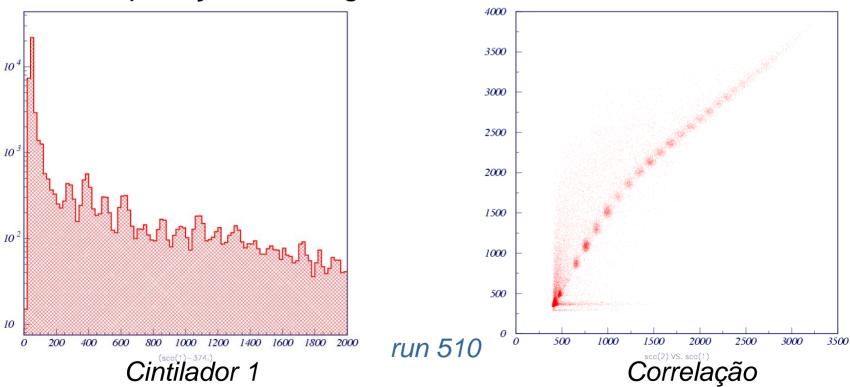
Reconstrução da carga em cintiladores

- Cintiladores orgânicos foram utilizados como elementos adicionais de controlo da qualidade dos testes em feixe
- Objectivo desta reconstrução: obter uma medida independente da carga eléctrica das partículas do feixe utilizando apenas a informação dos cintiladores
- Sinal medido nos cintiladores aumenta com a carga
 - Em cada cintilador, medidos sinais no ânodo e no último dínodo para evitar perda de informação por saturação da electrónica
- Aspectos a considerar na busca de uma calibração:
 - ◆ 2 cintiladores ⇒ possibilidade de verificação de consistência
 - Discretização da carga permite visualizar picos nas distribuições de sinal em cada cintilador

Cintiladores: sinal e erro

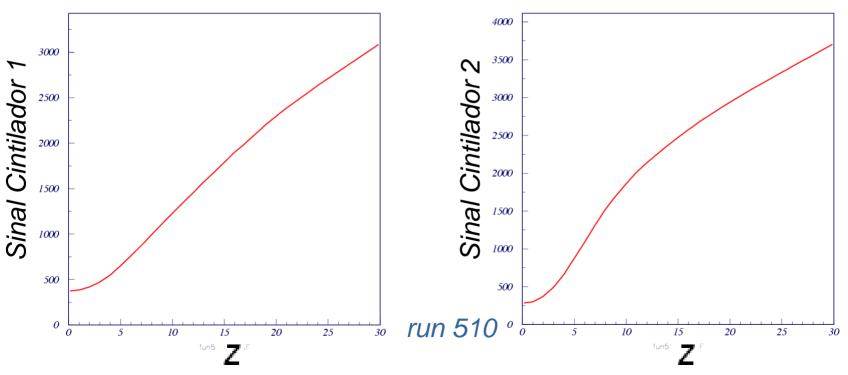
O sinal num cintilador é dado por:

$$N = \eta N_0 Z^2 \varepsilon(Z)$$


- η: coeficiente de variação da energia depositada
 - * η = 1 em média, com desvio padrão σ_{η}
- N₀: energia média depositada por uma partícula com Z = 1
 - \star Flutuação: σ_{No} devida à estatística de fotoelectrões
- ε(Z): factor de saturação do resposta do cintilador
 - ★ $\varepsilon \approx 1$ para Z baixo, $\varepsilon < 1$ para Z elevado
- Nestas condições o erro na carga é dado por:

$$\Delta Z = \frac{1}{2N_0} \sqrt{\frac{\sigma_{N_0}^2}{\varepsilon(Z)} + Z^2 N_0^2 \sigma_{\eta}^2}$$

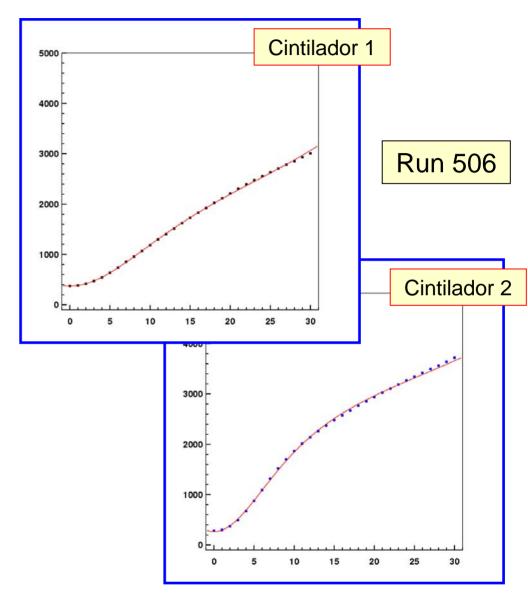
 Para baixo Z o erro é aproximadamente constante, aumentando para Z elevado devido aos efeitos de saturação (diminuição de ε) e ao aumento do termo associado a σ_n


Cintiladores: dados de partida

- Dados: espectro de leituras do sinal dos cintiladores
- São geralmente visíveis vários picos no espectro correspondente a cada um dos cintiladores
- Boa correlação (mas não linear) entre os dois cintiladores com separação de carga visível até Z~15-20

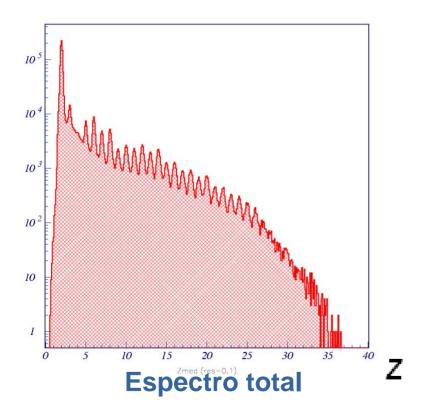
Cintiladores: resultados da calibração

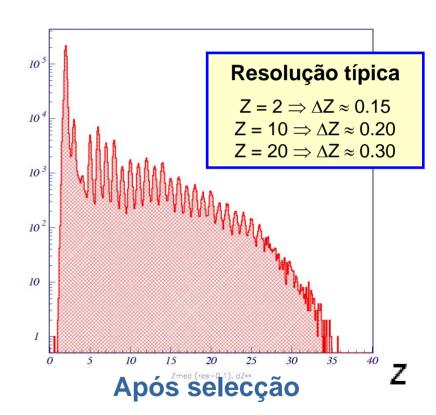
- A localização dos picos e o cruzamento de dados dos dois cintiladores permitem obter uma calibração fiável até Z~26 (para Z>26 a precisão é limitada pela estatística reduzida)
- Exemplo de funções finais de calibração para cada um dos cintiladores:


Cintiladores: fórmula de Birks-Chou

- Aos resultados da calibração foram feitos ajustes com expressões fenomenológicas utilizadas para descrever o comportamento de cintiladores orgânicos
- Utilizando a fórmula de Birks-Chou verifica-se um ajuste razoável:

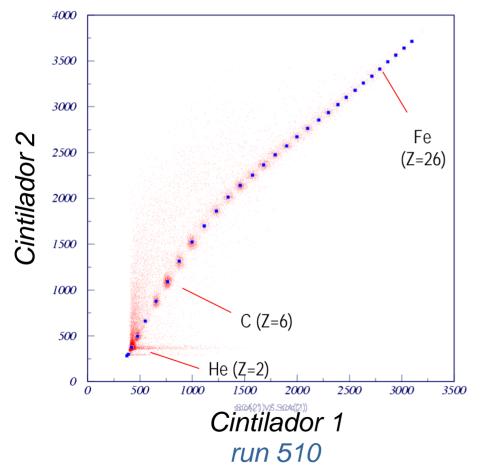
$$f(Z) = A + \frac{BZ^2}{1 + CZ^2 + DZ^4}$$

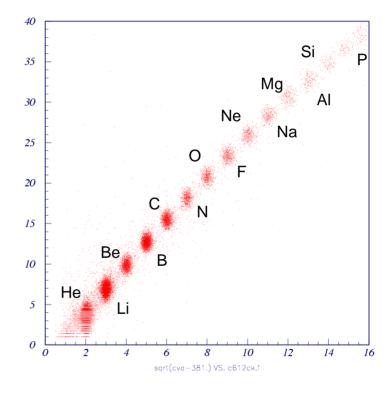

$$\downarrow \downarrow$$


 $\varepsilon(Z) = \frac{1 + CZ^2 + DZ^4}{1 + CZ^2 + DZ^4}$

Cintiladores: resultados finais

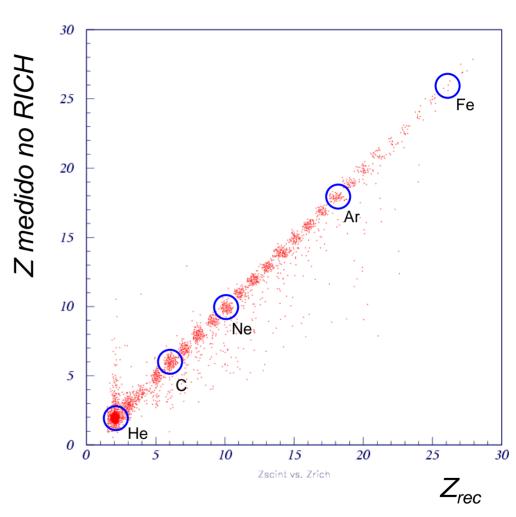
- Espectro total para $Z_{rec} = (Z_1 + Z_2)/2$: picos claros até Z = 26
- Espectro após selecção de eventos (compatibilidade entre Z_1 e Z_2 , i. e., $|Z_1-Z_2| < 0.5$): seleccionados 78% dos eventos




27 runs – 1.70 x 10⁶ eventos

Cintiladores: qualidade dos resultados

 Excelente acordo entre os valores da calibração e os dados originais


Boa correlação (lei em Z²) observada entre as leituras do contador Cherenkov (CVA) e Z_{rec}

 Z_{rec} vs. (CVA - ped)^{1/2}

Cintiladores: correlação com o RICH

- Boa correlação observada também entre
 Z_{rec} e a carga determinada pelo detector RICH
- Separação de cargas visível até Z ~ 25

run 575

Conclusões

 No âmbito da experiência AMS foram realizados vários testes em feixe

- O grupo do LIP participou na tomada de dados e na sua análise
- O estudo da emissão de luz dos radiadores constituiu um contributo importante para a escolha do aerogel a utilizar no detector final
- A análise da resposta dos cintiladores permitiu obter uma medida independente da carga e comprovar o bom funcionamento do protótipo do RICH de AMS