

Stable Structures for Particle Detectors

- Alignment Wheel -

Material Requirements

Alignment wheel

Prototype purpose & test campaign

Shape Control of Structures Concept Experimental & Simulation Results

Future Work

Suzana da Mota Silva - LIP 16/11/2000

Requirements are more strict at the level of inner detectors. Track reconstruction of the particle's path demand a very high dimensional stability of the supporting structures.

Minimize multiple scattering high X₀, low density Minimize susceptibility to vibrations high stiff/mass Stable with time insensitive temp./humidity gradients Radiation resistant avoid plastics Non magnetic components (4 Tesla) Availability, technological limitations, cost, safety

Alignment Wheel Prototype (June 00)

* 2mm carbon fibre skins + 16mm nomex honeycomb

- * Fixations for optical components
- * Fixed at 3 points to TK support tube

Design Verification

- * Check accuracy of FEM results
- * Validate analysis method
- * Set required tolerances
- * Check integration with Tracker/Muon alignment system
- * Identify the assembly and maintenance procedures
- * Unveil unknowns in the behavior of the structure

Qualification

- * Establish manufacturing procedure
- * Assure manufacturing quality
- * Define distribution/support services
- * Demonstrate fulfillment of all requirements

Material characterization tests
(intrinsic response; elastic/strength prop.)

Structural detail testing (validate methodology used to represent fixations)

Static tests (stiffness/strength testing)

Modal testing (modal parameters)

Sensibility testing Suzana da Mota Silva - LIP 16/11/2000

- Signal Analyzer provides excitation spectrum (random)
- After suitable power amplification excitation signal is applied to the structure through the shaker
- Response signals are measured by accelerometers
- Frequency Response Functions (FRF) built by Signal Analyzer
- Modal Analysis Software extract modal parameters

Modal Testing: Results

Measurements done in 36 - 128 points mesh

Each FRF is a result of 25 measurements

Frequency bandwidth < 100 Hertz

Mini Alignment Disk (MAD)

Common Points:

Æ the MAD is divided into two parts (installation of the Pi)
Æ same inner shape
Æ same material/engineering design

Differences:

Æ support only the components of the Link System
Æ smaller diameter (1.2m)
Æ the MAD is mechanically connected to the TEC in 6 points
Æ 3 different short periscopes

Shape Control - Concept

Suzana da Mota Silva - LIP 16/11/2000

Shape Control - Case I

Beam:	Plate:			
Clamped-clamped aluminium beam	Plate:Clamped-free aluminium plate			
270x48x0.5 mm	270x48x0.5 mm			
3 Piezo. (24x12x0.3 mm) [-100,200] V	4 Piezo. (24x12x0.3 mm) [-100,200] V			
GA Parameters: Population _{size} =50,000; P_c =0.75; P_m =0.15				

Shape Control - Case I (cont.)

	Displacement Field [mm]	Piezo1 [V]	Piezo2 [V]	Piezo3 [V]	Piezo4 [V]
Beam	$f(x) = 0.075 \ 1 - \cos \frac{2\pi x}{L} - \frac{x}{L}$	17	74	-121	
Piate	$f(x, y) = 8x^2 + 4xy + 0.8x$	-68	-100	196	200

Suzana da Mota Silva - LIP 16/11/2000

 $F(x,y)=0.0012x+0.003x^2$

 $F(x,y)=0.0015x+0.01x^2+0.002xy$

- * Clamped-free aluminium plate (144x48x0.5 mm)
- * [-100,200] Volt
- * Maximum 4 niezoelectric elements

Objective: Determine optimal placement and optimal voltage

Shape Control - Case II (cont.)

No penalization due to weight of the actuators 4 actuators

<u>Case 1:</u> bending independent of y co-ordinate all actuators near clamped edge where strain energy/effect of the actuators is maximum.

<u>Case 2</u>: bending + torsion torsion only achieved if actuators are displaced in non symmetric manner/tilted relative to the x axis.

- Finish tests on the "old" alignment wheel prototype
 - Static tests
 - Update of finite element model
 - Quantify vibration risk (modal testing)
- Start simulation on the "new" alignment wheel
- Define the new prototype tests campaign
- Use GA and the FEM to optimal placement of actuators for vibration control. Simulation & Experimental verification.