
LIP-STUDENTS-20-07

Study of jet quenching phenomenon using deep neural networks

Filipe Cunha1,a

1Instituto Superior Técnico, Lisboa, Portugal

Project supervisor: N. Castro, M. Romão October 2020

Abstract. In this work several convolutional neural network architectures were trained on simulated calorimeter
images to discriminate between quenched and non-quenched jets. Despite not achieving the best performance
previously realized, the trained models still managed to work quite well, and prove that machine learning
applications on high-energy physics are quite interesting and should be more carefully studied in the near
future.

Keywords: Jet Quenching, CNNs, Monte Carlo

1 Introduction to Machine Learning in the
study of jets

Quarks and gluons are colour-charged, a fundamental
property related to their strong interactions in quantum
chromodynamics (the term color is loosely related to
the primary colours, with a particle with colour red, for
instance, having an antiparticle with the anticolour of
red). The colour confinement principle states that colour-
charged particles cannot be isolated - meaning that quarks
and gluons must form hadrons, and therefore only colour-
less states are allowed naturally.

As such, whenever a colour-charged object fragments,
each resulting piece will also be colour-charged. Due to
the previously mentioned colour confinement, these frag-
ments must create other colour-charged pieces in order to
form colourless objects. The formed objects tend to cre-
ate a narrow cone, or jet, since they will all move in the
same direction. So, jets are essentially collimated bunches
of hadrons derived from the fragmentation of energetic
quarks and gluons.

In heavy ion collisions, a dense medium, called the
quark-gluon plasma (QGP) is created. Jets can inter-
act with this medium, reducing their energy - called a
jet quenching phenomenon. As such, it is possible to
study the properties of quark-gluon plasma comparing jet
quenching phenomenon with the unquenched case. This
is due to the fact that the magnitude of the lost energy de-
pends on the properties of the QGP, amongst others.

Several groups around the world have highlighted the
power of machine learning approaches to study jet-related
phenomenon, taking as inputs mainly images recovered
from calorimeters.

The aim of this study was to analyse how convolutional
neural networks could distinguish between quenched and
not-quenched jets.

2 Deep Neural Networks
2.1 Basic Architecture of Neural Networks

The simplest possible neural network is known as the per-
ceptron, a basic network that just contains a single input

ae-mail: filipe.miranda.cunha@tecnico.ulisboa.pt

layer and an output node - each training instance is of the
form (X̄,y), where each X̄ = [x1, . . . , xn] contains n feature
variables and each y ∈ {-1, +1} represents the class of the
variable.

The input layer contains n nodes that transmits the n
features weighted by a weight vector W̄ = [w1, . . . , wn] to
the output node, with the predicted value ŷ given by:

ŷ = sgn{X̄ ∗ W̄} = sgn{
d∑

i=1

xi ∗ wi}

Multilayer neural networks contain more than one
computational layer - besides the input and output layers
they also have additional intermediate layers referred to as
hidden layers, since their outputs are not visible. The ar-
chitecture of multilayer networks assumes that all nodes in
one layer are connected to those in the next layer.

Therefore, when forward propagating inputs in a mul-
tilayer perceptrons, there are three main computations
(network with a total of d layers):

h̄1 = σ(WT
1 x̄)

[Input to first hidden layer]

h̄k+1 = σ(WT
k+1h̄p) ∀p ∈ {1, . . . , d − 1}

[Hidden to hidden layer]

ō = σ(WT
k+1h̄d)

[Hidden to Output layer]
where the σ function, called the activation function is

a function that is applied element-wise to its’ vector ar-
guments, with its most common example being the tanh,
relu, elu or selu functions. The relu function will be ex-
plained later on, with the elu and selu functions being al-
terations of these.

In order to train a neural network, the main objective
would be to minimize the error (also called loss) function
at the output layer. This is done using the backpropaga-
tion [2] algorithm, which uses the chain rule of differential
calculus to compute the error gradients in terms of sums
of local (in the nodes) gradient products over the various
paths from a node to the output. Despite sounding inef-
ficient, this algorithm can be computed easily using dy-
namic programming.



LIP-STUDENTS-20-07 2

2.2 Overfitting

Despite being universal function approximators, some
challenges are still present in neural network training, the
most important of them being overfitting. This occurs
when a network performs well on training data - meaning
that it accurately predicts the output classes - but makes a
large amount of mispredictions on unseen data.

In order to stop a model from overfiiting, several strate-
gies can be applied, the most common being regulariza-
tion, dropout and early stopping.

2.2.1 Lp Regularization

In layman terms, regularization constrains a model to use
fewer non-zero parameters. This is usually done by adding
a penalty λ‖W̄‖p (λ being a new hyperparameter) to the
loss function. The most common regularization technique
used sets p = 2, called the Tikhonov regularization

2.2.2 Early Stopping

The early stopping technique makes the gradient descent
end after a few iterations. In order to decide the stoppage
point, it is common to set aside a part of the training data
and test the error on this set (called the validation set), and
stops the algorithm if the error of the validation set stops
decreasing, thus preventing the model from overfitting.

2.2.3 Dropout

The last commonly used techinique to prevent overfit-
ting, dropout makes the model ignore stochastically cho-
sen units (nodes) during the training phase. As such, dur-
ing each epoch, nodes in the network are dropped out with
a certain probability p or frozen (not considered during
forward or backpropagation) with probability 1-p. This
prevents the units from becoming co-dependent in one an-
other, thus preventing overfitting.

2.3 Gradient Descent Optimization

Gradient descent is still the preferred way to optimize neu-
ral networks. This objective of this algorithm is to mini-
mize the loss function (J(θ), θ ∈ Rd), by updating the pa-
rameters in the direction opposing its gradient (∇θJ(θ)),
with a parameter called the learning rate (η) determining
the size of the steps.

2.3.1 Momentum

The gradient descent algorithm usually has trouble navi-
gating areas where the surface curves more steeply in one
dimension than another (called ravines). Momentum [4]
accelerates the algorithm by ’directioning’ it to the rele-
vant direction, doing this by adding a fraction (γ) of the
update vector of the past time step to the current update
vector:

υt = γυt−1 + η∇θJ(θ)

θ = θ − υt

2.3.2 Nesterov accelerated gradient (NAG)

Momentum alone does not satisfy gradient descent’s prob-
lems around ravines, since it keeps accelerating the algo-
rithm even when it is nearing a minimum, often getting
stuck at local minimum. NAG [5] solves this by adding
the momentum term (−γυt−1) to the parameters:

υt = γυt−1 + η∇θJ(θ − γυt−1)

θ = θ − υt

2.3.3 Adagrad

Adagrad [6] is an an algorithm for gradient-descent based
optimization that performs smaller updates (with lower
leerning rates) for features that occur frequently across
classes, and larger updates for infrequent features, making
it well-suited for dealing with sparse data.

Let gt be the gradient at time step t, with gti = ∆θJ(θti).
The adagrad learning rate at step t will be given by:

ηt =
η√

Gt,ii + ε
,

With Gt ∈ R
d∗d being a diagonal matrix where each non-

zero element (i, i) is the sum of the gradients with respect
to θi up to time t. As such, the general learning rule will
be given by:

θt+1,i = θt +
η√

Gt,ii + ε
◦ gt

The main issue with this algorithm is that it can make
the learning rate shrink until it becomes infinitesimally
small, making the network unable to acquire any new
knowledge.

2.3.4 Nadam

Nadam [8] combines the Adam algorithm [7] with the
NAG. The Adam algorithm is centered on the momemtum
update rule, given by:

gt = ∇θt J(θt)

mt = γt−1 + ηgt

θt+1 = θt − mt

Where mt is a new term, called the first moment - cor-
responding to the mean. Nadam changes these equations
by combining the momentum term with NAG, obtaining:

gt = ∇θt J(θt)

mt = γt−1 + ηgt

θt+1 = θt − (γmt−1 + ηgt)

The plain Adam update rule is given by:

mt = β1mt−1 + (1 − β1)gt



LIP-STUDENTS-20-07 3

m̂t =
mt

1 − βt
1

θt+1 = θt −
η

√
v̂t + ε

Expanding the second equation:

θt+1 = θt −
η

√
v̂t + ε

(
β1mt−1

1 − βt
1

+
(1 − β1)gt

1 − βt
1

)

And replacing mt−1
1−βt

1
with m̂t, one obtains the final

Nadam update rule:

θt+1 = θt −
η

√
v̂t + ε

(β1m̂t +
(1 − β1)gt

1 − βt
1

)

2.4 Introduction to CNNs

Convolutional neural networks excel in the analysis of
grid-structured inputs with strong spatial dependencies in
local regions. As such, they are the best kinds of neural
networks to perform image analysis, since adjacent spatial
locations in an image are often related to one another.

Each layer in a convolutional network is, as such,
a three-dimensional grid structure composed of width,
height and depth, referring to the number of channels in
the layer (in this particular case, the depth would be two,
representing the order of magnitude of the energy).

The main important characteristic of a CNN is the con-
volution operation, a dot product operation between a grid-
structured set of weights and similar grid-structured inputs
drawn from different spatial localities in the input volume
[1]. In order to explain this operation, consider the input
of the qth layer is of size Lq × Bq × dq (in the current case,
for the input layer, Lq = 33, Bq = 33, dq = 2).

The parameters to be considered for the convolution
operation are three-dimensional square sets known as fil-
ters, with an arbitrary width but with the property that the
depth of the filter is always the same as the depth of the
layer on which it is applied.

The convolution operation will then place the filter at
each possible position in the image, performing a dot prod-
uct operation between the Fq × Fq × dq parameters of the
filter and the corresponding grid on the input. As such, the
number of filters in the model will control the capacity of
the model, since they directly control the number of model
parameters. The operation itself is represented in Fig 1:

Figure 1. Convolution Operation [9]

For a more rigorous definition, suppose that the pth
filter in the qth layer has parameters W p,q = [w(p,q)

i jk ] and
that the feature maps in this same layer are represented by
the tensor Hq = [w(q)

i jk]. The convolution operation to the
(q+1)th layer will be defined as:

w
(q)
i jk =

Fq∑
r=1

Fq∑
s=1

dq∑
k=1

w
(p,q)
rsk h(q)

i+r−1, j+s−1,k

∀i ∈ {1, . . . , Lq − Fq + 1}

∀ j ∈ {1, . . . , Bq − Fq + 1}

∀k ∈ {1, . . . , dq + 1}

It can be observed that the convolution operation re-
duces the size of the (q+1)th layer when comparing with
the size of the qth layer, which can lead to information
loss. In order to avoid this, padding can be used - adding
(Fq − 1)/2 pixels around the borders of the image. It is rel-
evant that these pixels don’t add information that may lead
to an incorrect diagnosis, and as such the most commonly
used type of padding is the ’same-padding’: just adding
zeros.

Another commonly used operation in CNNs is the
pooling layer, which works on small grid regions and out-
puts another layer with the same depth but different height
and width. This layer essencialy applies an arbitrary op-
eration to the previously mentioned grid region, increas-
ing the size of the receptive field while reducing the spa-
tial footprint of the layer (assuming that use strides used
are greater than one). The most commonly used types of
pooling are max and average pooling, and the latter is rep-
resented in Fig 2:

Figure 2. Average Pooling Operation [10]

The final commonly used layer is the ReLU layer. The
rectified linear activation function or ReLU for short is a
piecewise linear function that will output the input directly
if it is positive, otherwise, it will output zero. This layer
usually follows a convolutional layer in CNNs.

2.5 CNN Architectures

2.5.1 VGG

In 2014, the Visual Geometry Group (VGG) [11] research
lab at Oxford University further emphasized a develop-
ing trend in that time: increased depth in networks = bet-
ter results. As such, several networks with 11 to 19 lay-
ers were developed, and the top-performers were the ones
with more than 16 layers.



LIP-STUDENTS-20-07 4

The main important innovation VGG gave was that
reduced filters required increased depth, meaning that a
smaller filters with an bigger number of layers generally
outperformed networks with larger filters per layer but
with smaller depth. This is due to the fact that more depth
allows for more non-linearity (due to the presence of more
ReLU layers), and, as such, allows the network to ’dis-
cover’ more common patterns amongst the images.

Bearing this in mind, the VGG network was designed
with a repeated pattern of 2/3 convolutional layers with
stride 1, 3×3 filters and a pooling-size of 2×2. In essence,
allowed the network to reduce its spacial footprint by a
factor of 2 whenever its depth was increased by a factor of
2.

The main issue with this architecture is that increased
depth led to more instability in the network.

2.5.2 GoogLeNet

In spite of the good performance of the VGG, the best
architecture developed in 2014 was the GoogLeNet [12],
that proposed the novel concept of an inception network
(a network inside a network). The initial part of this archi-
tecture is a regular CNN (known as the stem), with the
original part being the intermediate layer (the inception
module).

This idea was based on the fact that key information in
images is available at different levels of detail, so different
networks should capture this information better than a sin-
gle one. This flexibility allows for different images to be
represented at different levels of granularity, leading to a
much better network than the previous state of the art (win-
ner of the 2014 ILSVRC competition). A simple inception
module in Fig 3:

Figure 3. Simple Inception Module [12]

The main issue with this architecture is that it results in
some computational inefficiency, due to the large number
of convolutions with different sizes. This can be solved by
adding 1 × 1 convolutions to first reduce the depth of the
feature map (eg: 128 1 × 1 convolutions can be used to
reduce a depth of 256 to 128). This approach is known as
a bottleneck operation.

The initial GoogLeNet was made of 9 such inception
modules.

2.5.3 ResNet

In 2015, the ResNet [13] model was introduced with 152
layers, almost an order of magnitude more than the previ-
ous architectures. This large number of layers was possi-
ble due to the development of skip connections (or resid-
ual layers), allowing the input of a certain layer q to be
’copied’ directly to a layer q+r, without suffering any
transformation in the r layers. In Fig 4, a simple resid-
ual layer is shown, where the input (x) is allowed to skip
two weight layers.

Figure 4. Basic Skip Connection [13]

These residual layers provide paths of unimpeded gra-
dient flow and so allow the learning algorithm to choose
the appropriate level of non-linearity required for the given
particular classification task. As such, skip connections
permit the development of very deep networks that are
computationally efficient to train and that do not neces-
sarily cause problems during backpropagation.

3 Results

Bearing the above concepts in mind, the conducted study
focused on the deployment of deep CNNs architectures to
distinguish between quenched and non-quenched jets in
simulated calorimeter images. The diagrams where gen-
erated using stochastic Monte-Carlo techniques, and were
the inputs of the developed networks: corresponding to
(33 ∗ 33 ∗ 2) sparse arrays.

The sparsity of the arrays makes this a difficult prob-
lem, since it is extremely hard to distinguish an array rep-
resenting a quenched jet from an array representing a non-
quenched one.

Figure 5. Image example

The studied architectures were implemented using the
Keras package [14] on top of a Tensorflow backend [15]
and were optimized using Optuna [16]. The required data



LIP-STUDENTS-20-07 5

preprocessing was made using the sparse functionalities of
Scipy [16] and the postprocessing required the Pandas [17]
and Scikit-Learn [18] libraries.

To continuously improve the models, the area under
the ROC (receiver operation characteristics) curve was
chosen as the performance metric. In order to make a
fair comparison between the chosen architectures, a max-
imum number of 100 epochs was fixed, making use of
EarlyStopping after 10 consecutive with no improvements
in the area under the ROC curve. The same loss function
was also chosen for all models - binary cross-entropy -
since the problem at hand is a binary classification prob-
lem. Normalized physical weights were also chosen as
training, validation and test sample weigths.

This section will be divided in two subsections: in the
first, small convolutional networks were designed, follow-
ing basic architectures, and afterwards the complex con-
temporary architectures explained in Section 2 were used.

3.1 Results of basic CNNs

The first constructed networks were basic, having a depth
of 3 layers with a variable number of filters in each (32 and
64) and kernel size (3 and 5). The Nadam optimizer was
used.

Train AUC Val Loss Val AUC
filters: 32
kernel_size: 3
lr: 0.155407

0.5010 84.3672 0.5001

filters: 64
kernel_size: 3
lr: 0.0612185

0.5007 42.8984 0.500

filters: 64
kernel_size: 5
lr: 0.064864

0.4988 4625.5 0.4993

filters: 64
kernel_size: 3
lr: 0.0112074

0.5500 3.2453 0.6112

filters: 64
kernel_size: 3
lr: 0.029714

0.5012 14.0709 0.5003

Table 1. Base Network Results

It is possible to observe that the obtained results were
far from optimal - the simple networks created did not
learn the dataset well, with the best option being using
more filters with a smaller kernel size, as one should ex-
pect.

In order to study the effect of pooling, the next de-
signed network was essentially the same as before, with
added Batch Normalization layers between the convolu-
tional layers and with an extra MaxPooling layer behind
the classifier:

Train AUC Val Loss Val AUC
filters: 32
kernel_size: 3
lr: 0.155407

0.5010 84.3672 0.5001

filters: 64
kernel_size: 3
lr: 0.0612185

0.5007 42.8984 0.500

filters: 64
kernel_size: 5
lr: 0.064864

0.4988 4625.5 0.4993

filters: 64
kernel_size: 3
lr: 0.0112074

0.5500 3.2453 0.6112

filters: 64
kernel_size: 3
lr: 0.029714

0.5012 14.0709 0.5003

Table 2. Base Network Results with Pooling

As a final ’small’ model, a network known as the
AlexNet (best model designed in 2012) was trained on the
dataset. This network consists of four consecutive con-
volutional layers with an increasing number of filters fol-
lowed by a pooling layer and a classifier at the end. The
’pure’ network was not used, with a tweaked model being
preferred.

Train AUC Val Loss Val AUC
activation: relu
strides: 2
lr: 0.264609

0.4986 22.2533 0.5000

activation: selu
strides: 2
lr: 0.077206

0.5014 4.6076 0.5000

activation: relu
strides: 2
lr: 3.31145

0.8249 0.8246 0.6331

activation: selu
strides: 2
lr: 0.010146

0.5011 1.3742 0.5000

Table 3. Tweaked AlexNet

It is possible to see that the best instance of the model
overfit massively, despite being equipped with regulariza-
tion and having dropout layers, mainly due to its large
number of parameters. Nonetheless, it managed to outper-
form the previously designed netwotks by quite a margin.
As such, a more thorough analysis of this architecture was
conducted.

If it were possible to prevent these models from over-
fitting as much, an area under the ROC curve of approxi-
mately 0.9 could be achieved. Unfortunately, in this partic-
ular study all instances of this architecture overfitted mas-
sively, and, as such, new architectures needed to be exper-
imented with, being the focus of the next sections.



LIP-STUDENTS-20-07 6

4 Contemporary models

With these results in mind, the next section will focus
on the optimization of the contemporary architectures ex-
plained in section 2 and their applications to the problem
at hand.

The first experimented model was the VGG, and no
noticeable rise in accuracy was observed. As the table
below demonstrates, several depths were studied, with a
notorious following increase in the number of parameters
(for instance, a depth of 21 corresponded to a total number
of 53261057 trainable parameters.

Using padding did not improve the results and, as such,
in the following networks padding will be replaced mainly
by batch normalization layers.

Depth Train AUC Val Loss Val AUC
10 0.6531 0.7563 0.6321
16 0.7125 0.6875 0.6799
21 0.7041 0.6385 0.6888

Table 4. VGG Models

Despite not overfitting, the VGG model performed
worse than the previously analysed AlexNet model on the
training set, a suprising result considering that the VGG is
a much more complex architecture, with many more pa-
rameters than the previous one.

Using skip layers proved to be a good strategy, leading
to a noticeable increase in the auc score. As before, several
depths were experimented with, working with the resnetv1
and resnetv2 models.

Depth Train AUC Val Loss Val AUC
32 (v1) 0.7147 0.6356 0.6984
38 (v1) 0.7051 0.6414 0.6986
70 (v1) 0.7456 0.6128 0.7123
56 (v2) 0.7796 0.71656 0.6820
110 (v2) 0.8346 0.7056 0.6983

Table 5. ResNet Models

Unlike the previous ones, tweaking the ResNet archi-
tectures lead to an AUC of over 0.7, with only certain
instances overfitting. It is also possible to conclude that
the usage of regularization did not make any considerable
changes in performance, while massively increasing the
temporal complexion of the model.

Like using skip layers, using tweaked inception mod-
ules with a variable number of modules as well as towers
per module also proved to be an inspired idea. The net-
work did not overfit, with some instances achieving more
than 0.7 in the AUC metric.

Bearing this in mind, the last experimented architec-
ture used a combination of skip layers and inception mod-
ules - the XCeption architecture. Surprisingly, the mod-
els designed using this architecture performed more poorly
than their previous counterparts.

Train AUC Val Loss Val AUC
1 module 3 cols 0.7518 0.6891 0.6544
1 module 4 cols 0.6692 0.6587 0.6742
2 modules 3 cols 0.7231 0.6252 0.7156
2 modules 4 cols 0.7274 0.6035 0.6952

Table 6. Inception Models

Figure 6. Xception results

It is clear that the model overfitted, despite being
equipped with lr regularization and dropout.

5 Conclusions

This study once again proves the advantages of using ma-
chine learning techniques in high-energy physics, partic-
ularly in the field of image analysis. Despite not reach-
ing state of the art, the designed architectures achieved a
relatively low false negative rate, highlighting their use-
fulness in this study area. It should also be noted that,
due to the low capacity of the GPU used in the study as
well as the limited usage of the same, more complex ver-
sion of the explained contemporary architectures as well
as current state of the art models, such as squeeze-and-
excitation networks [19] could not be tested in the given
time frame. For future studies, it should be interesting
to not only test even more advanced contemporary archi-
tectures, as well as adding more depth to classical ones.
Using GANs [20] instead of Monte Carlo techniques to
simulate the data should also decrease the computational
complexity and could add more physical relevance to the
data.

References

[1] C. Aggarwall, “Neural Networks and Deep Learn-
ing,” Springer, 2018, ISBN 978-3-319-94463-0

[2] Maximilian Alber, Irwan Bello, Barret Zoph, Pieter-
Jan Kindermans, Prajit Ramachandran, ”Backprop
Evolution,” ICML 2018 AutoML Workshop

[3] Geoffrey Hinton et all. “ Dropout: A Simple Way to
Prevent Neural Networks from Overfitting,”Journal
of Machine Learning Research 15 2014,pp. 1929-
1958

[4] Ilya Sutskever, James Martens, George Dahl, Ge-
offrey Hinton, "On the importance of initialization
and momentum in deep learning," Proceedings of the



LIP-STUDENTS-20-07 7

30th International Conference on Machine Learning,
PMLR 28(3):1139-1147, 2013

[5] Alesandar Botev, Guy Lever, David Barber, "Nes-
terov’s Accelerated Gradient and Momentum as ap-
proximations to Regularised Update Descent," An-
chorage, AK, USA, International Joint Conference
on Neural Networks, 2017

[6] John Duchi, Elad Hazan, Yoram Singer, "Adap-
tive Subgradient Methods for Online Learning and
Stochastic Optimization," 2011 Journal of Machine
Learning Research, 2011, pp. 2121-2159

[7] Diederik Kingma, Jimmy Ba, "Adam: A Method for
Stochastic Optimization", 3rd International Confer-
ence for Learning Representations, San Diego, 2015

[8] Timothy Dozat, "Incorporating Nesterov Momentum
Into Adam,", ICLR, 2016

[9] Ihab S. Mohamed, "Detection and Tracking of Pal-
lets using a Laser Rangefinder and Machine Learning
Techniques," 2017

[10] Albert Liu et al, "Embarc - A machine learning in-
ference library", 2019

[11] Karen Simonyan, Andrew Zisserman, "Very Deep
Convolutional Networks for Large-Scale Image
Recognition," 2014

[12] C. Szegedy et al., "Going deeper with convolutions,"
2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), Boston, MA, 2015, pp. 1-
9.

[13] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual
Learning for Image Recognition," 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, 2016, pp. 770-778.

[14] F. Chollet, "Keras," https://keras.io, 2015
[15] M. Abadi, "TensorFlow: Large-scale machine learn-

ing on heterogeneous systems," tensorflow.org, 2015
[16] T. Oliphant, P. Peterson, E. Jones, "Scipy, " ,2001–.
[17] W. McKinney, "Data structures for statistical com-

puting in python," Python inScience Conference,
volume 445, pages 51–56. Austin, 2010

[18] F. Pedregosa, "Scikit-learn: Machine learning in-
Python, " Journal of Machine Learning Research,
volume 12, pages 2825–2830, 2011.

[19] J. Hu, L. Shen, S. Albanie, G. Sun, E. Wu, "Squeeze-
and-Excitation Networks, " CVPR, 2018

[20] Ian J. Goodfellow et all, "Generative Adversar-
ial Networks, " International Conference on Neural
Information Processing Systems (NIPS 2014), pp.
2672–2680


	Introduction to Machine Learning in the study of jets
	Deep Neural Networks
	Basic Architecture of Neural Networks
	Overfitting
	Lp Regularization
	Early Stopping
	Dropout

	Gradient Descent Optimization
	Momentum
	Nesterov accelerated gradient (NAG)
	Adagrad
	Nadam

	Introduction to CNNs
	CNN Architectures
	VGG
	GoogLeNet
	ResNet


	Results
	Results of basic CNNs

	Contemporary models
	Conclusions

