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Abstract. The quark propagator (S ) is a useful quantity in hadron physics as it gives us, for example, the
momentum dependence of the quark mass function. S is a function of p, and for low momenta a nonperturbative
treatment is required to obtain it, e.g., solving the quark’s Dyson-Schwinger equation (as done in this project).
It is at this low-momentum / strong interaction regime that the quark gains a significant mass, due to the gluonic
interactions. Evaluating S (p2) in the complex plane leads to singularities, which are useful in further hadron
physics calculations and can be interpreted as signatures of confinement.
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1 Introduction

A hadron is a composite particle made of two or more
quarks and/or antiquarks bonded by the strong force. QCD
(Quantum Chromodynamics) is the theory that describes
the strong interaction. While we can treat QCD pertur-
batively when the momenta is large, using just a reduced
number of terms in a perturbative series; in hadrons, the
quark momenta are small, because they are interacting
a lot, and, because the coupling becomes strong at low
momenta, we cannot do the perturbative approximation.
Hence, Hadron Structure from Nonperturbative QCD.

1.1 Quark Propagator - Components

The quark propagator S (p) is a fundamental quantity in
QCD which is also used in hadron physics calculations.
We can define S (p) in terms of its dressing functions, that
is, we can define its components. Not surprisingly, there
are infinitely many di↵erent possible sets of two dressing
functions / components. For example, Eqs. (3.1) or (A.1)
in [1]:

S (p2) = �i/p�v(p2)+�s(p2) =
Zf (p2)

p2 + [M(p2)]2 (�i/p+M(p2)).

(1)
Above, the first set of two dressing functions (�v and

�s) is the simplest; but the second one (Zf and M) gives us
the quark mass function M(p2) which encodes the quark’s
mass. Di↵erent dressing functions can have di↵erent prop-
erties and meanings, as we will see later. It is important to
notice that S is a function of p (the four-vector pµ), and
so are its dressing functions (e.g., M(p2), with p2 being
a Lorentz invariant one can do with pµ). Thus, we have
a mass that is a function of the quark’s momentum. The
quark mass gets larger for low momenta as a result from
the strong interaction. The results in Fig.1 show us this
dependency explicitly.
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Figure 1: Quark propagator dressing functions vs. mo-
mentum (for a light quark - input point: µ = 19 GeV,
M(µ) = 4 MeV)

These results were part of this project’s goals. We
can see how things change a lot for the low-momentum /
nonperturbative regime. In perturbation theory, we would
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only capture the large-momentum tails of these quantities,
hence the importance of a nonperturbative treatment.

In a way, we can make an analogy between the quark’s
mass vs. its momentum and a ferromagnet’s magnetization
vs. its temperature. Below a critical temperature it gains
permanent magnetization, as a quark gains mass below a
critical momentum. To make the analogy better, we see
that above that turning point in momentum, we still have
a mass (the current quark mass) - which in this analogy
would be a background magnetic field. (Nevertheless, this
is no more than an analogy.)

Figure 2: Analogy - ferromagnet’s magnetization vs. tem-
perature (Ref.[2])

1.2 Quark Propagator - DSE

We already know the decomposition of S in terms of its
components, which contain the information it has. Now
we need a way to determine them through a dynamical
equation.

We will use the quark’s Dyson-Schwinger equation
(DSE), (A.6) in [1]:

S �1 = Z2(i/p + M⇤) + ⌃. (2)

In a pictorial way, where the l.h.s represents S (p)�1, it
reads:

Figure 3: Dyson-Schwinger equation (Ref.[1])

It is worth mentioning that the quantity we are look-
ing for, the quark propagator, reappears on the r.h.s. This
suggests to solve the equation iteratively.

The new symbols in Eq. (2) are given by:

Z2 = Z�1
f |p2=⇤2 , M⇤ = M|p2=⇤2 , (3)

where ⇤ is the ultra-violet regularization scale. Basically
they are just the values of the dressing functions at a cer-
tain momentum.

⌃ is the quark self-energy. In its pictorial representa-
tion (last term), one can see the quark propagator on the
bottom (the circle with a straight line) and a new propaga-
tor on top (the circle with a spring-like line). This is the
gluon propagator. There is also a gluon DSE, but in this
project we used a model for the gluon instead of solving
a coupled equation. Finally, the blue circle is the quark-
gluon vertex, which is also modeled.

In a nutshell, the DSE describes all the ways how a
quark can emit and absorb gluons.

2 Quark DSE on the Real Axis
In this project, we used Fortran90 for computation and
ROOT for graphics. The computation was constructed
around an iterative method until convergence, where in
each iteration there were 2 steps:

1. Calculate the integrals for ⌃
! Update the M and Zf functions.

2. A�rm the input point (p = µ,M|µ = m,Zf |µ = 1)
! Update the Z2 and M⇤ numbers.

This results in Fig.1 and similar ones.
For more information on the DSE and how it was

solved, see appendix A.

2.1 Renormalization-Group Invariance

One of the things one can test right away at this point is
the following:

1. Give a certain input point (p = µ,M|µ = m,Zf |µ =
1) and let the routines calculate the dressing func-
tions.

2. From the obtained mass function get the value of M
at a µ0, calling it m0.

3. Using this new input point (p = µ0,M|µ = m0,Zf |µ =
1), run the routines again and compare the obtained
dressing functions with the original ones.
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Figure 4: Renormalization-group invariance for M(p2),
but not for Zf (p2, µ2)

What we see in the results above is that for the mass
dressing function the lines are coincident, but for the Zf

dressing function they are not. So one can say that Zf is a
function also of µ2, not only of p2. This is one of the prop-
erties we mentioned that well chosen dressing functions
can have. For example, for the pair �v and �s, neither of
those have this kind of invariance since both depend on µ2.

2.2 Chiral Limit - Quark Condensate

Working in the chiral limit can be implemented by set-
ting our renormalization-point dependent mass (as long
as µ is large) to 0. This allows for the calculation of
the quark condensate, the expectation of the vacuum state
< 0| ̄ |0 >, which breaks chiral symmetry. (For details,
see appendix B.)

Table 1: Quark condensate values for di↵erent values of ⌘,
a parameter used in the gluon model

⌘ � < q̄q >
1.60 (219.996 MeV)3

1.80 (220.078 MeV)3

2.00 (219.406 MeV)3

3 Quark DSE in the Complex Plane

Until now, we have been calculating the quark propagator
dressing functions for a real momentum, more precisely,
for a real momentum squared. But what happens if we cal-
culate those quantities for a complex momentum squared?

We obtain this in two steps:

1. Let the DSE converge for p2 2 R, just like we have
done before.

2. Calculate M and Zf through the DSE, now with
p2 2 C. (Without iterating, the system has already
converged; and only using (5), not (6).)

Figure 5: Quark propagator for p2 2 C - direct calculation
through the DSE

Fig.5 shows the real part of the �v dressing function
for di↵erent values of ⌘ (a parameter used in our quark
self-energy model). One can see that there are poles, and
that those poles move around for di↵erent values of ⌘. In
this way, one can study the properties of the model inputs
through this method of seeing the quark propagator in the
complex momentum plane. Another thing one can do is
get the precise position of the poles and their residues1;

1In this project, we have done so successfully and we are planing to
do it with other methods to find out the best one, but we do not include
the results in this report.
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both quantities are useful in further hadron physics calcu-
lations.

One really interesting subject is that of confinement.
A free particle implies a pole for R� (euclidean momenta
p2 < 0). Here we do not find this, so we do not have a
free particle. The definition of confinement and its study
through the analytic structure of a particle’s propagator is
an open problem.

4 Get f(p2 2 C) from f(p2 2 R)

In the last section we calculated M and Zf through the DSE
for p2 2 C, assuming this can be done in a straight forward
way. Our DSE used relatively simple model inputs for
which this is indeed possible. But for other models this is
not the case, since we cannot do a direct substitution with
a complex momentum.2 However, we can always solve
the DSE for p2 2 R. Can we then extrapolate a function
with known values on the positive real axis to the complex
plane?

Of course, there are mathematical techniques to do so.
For example, the Schlessinger Point Method [3] uses n in-
put points (zi, Fi), which can all be in R+, Eq. (30) in [4]:

f (z) =
c1

1 + c2(z�z1)
1+ c3(z�z2)

...

. (4)

We just have to determine n parameters ci and then we
can reconstruct an analytic continuation f of the original
function. Both can be done with iterative methods (see
appendix C).

2For other gluon models, the expression for ↵(k2) (for our model we
used Eq. (8)) the direct complex p2 substitution is impossible, because
there appears a pole in the integrand of (7). Since it is a double inte-
gration, after the first integration the pole will produce to a branch cut,
which complicates the second integration. This issue is related with the
dependency of ↵(k2) on certain powers of k.

Figure 6: Quark propagator on p2 2 C - Schlessinger Point
Method

Again, one can get the position and residue of each
pole and compare with those of the direct calculation3 (for
models where such a calculation is possible) to check the
reliability of this extrapolation method.

5 Conclusions and Future Work

Using analytic continuation methods, we have achieved a
practical way of solving the quark DSE for any gluonic in-
put. Having the quark propagator, in principle we can use
the dressing functions of interest in hadron physics calcu-
lations for experimentally testable observables, test math-
ematical properties, obtain other quantities of interest, etc.
Also, we established both a method to directly obtain S in
the complex plane and a purely extrapolative one. With
this we obtained the pole positions and residues. These
poles move for di↵erent gluon input models; analysing
those movements is a way of testing the models.

There is a list of things we plan to do next:

• Schlessinger method: test the number and distribution
of input points and their implications for the method’s
reliability (using the direct method as a comparison).
3We did this and found that the results from the di↵erent methods

matched within the error margin. The values are not shown, since they
are of limited relevance.
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• Use other models for the gluonic ingredients.

• Explore machine learning as an alternative to the Sch-
lessinger method, using the results from the direct
method to learn how to extrapolate.
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A Solving the Quark DSE

Here we explain in more depth the DSE, the employed
models and the computation. Throughout this appendix,
we refer to the equivalent equation numbers in Ref.[1].

The quark DSE was presented in (2). It can be rewrit-
ten in terms of two coupled integral equations for two
dressing functions. We did not use either of the sets pre-
sented in (1) for actual computations; instead we used M
and A (A is simply 1/Zf ). Eqs. (A.7) in [1] read:

A(p2) = Z2 + ⌃A(p2),

M(p2)A(p2) = M⇤Z2 + ⌃M(p2),
(5)

where ⌃ = i/p⌃A + ⌃M .
As mentioned in section 2, in each iteration we first

calculate the integrals for ⌃, update the dressing functions,
and then a�rm our input point. So we calculate those in-
tegrals (Eqs. (7)) and then put them in the equations above
to update the dressing functions. To a�rm our input point
(p2 = µ2,M|µ = m,Zf |µ = 1), that is, our renormalization
condition with m as an input parameter, we write:

A(µ2) = 1, M(µ2) = m.

We use (A.9) in [1], which follows straight out of Eqs.
(5):

Z2 = 1 � ⌃A(µ2),

M⇤ =
M(µ2) � ⌃M(µ2)

Z2
=

m � ⌃M(µ2)
1 � ⌃A(µ2)

.
(6)

⇤ ⇤ ⇤

Finally, we collect the integrals associated with the
quark self-energy. With ⇤ being the cuto↵ in the system
(p2

max = ⇤
2), we have (A.11) in [1]:

⌃A(p2) =
Z ⇤

q
�v(q2)g(k2)F(p2, q2, z),

⌃M(p2) = 3
Z ⇤

q
�s(q2)g(k2).

(7)

We use the set of dressing functions {�v,�s} in these
integrals. To write them in terms of M and A, we have
Zf (q2) = 1/A(q2) and from (1) it follows that:

�v(q2) =
Zf (q2)

q2 + [M(q2)]2 , �s(q2) =
Zf (q2)M(q2)
q2 + [M(q2)]2 .

The dimensionless quantity F is given by (A.12) in [1]:

F(p2, q2, z) =
�k2 +

p2+q2

2 +
(p2�q2)2

2k2

p2 ,

where k is the gluon momentum with

k2 = p2 + q2 � 2
q

p2
q

q2z.

The quantity g(k2) stands for the e↵ective coupling,
(A.10) in [1]:

g(k2) = Z2
2

16⇡
3
↵(k2)

k2 .

⇤ ⇤ ⇤

Because we are not solving the DSEs for the gluon
propagator and quark-gluon vertex, we employ a model
for these quantities, that is, a model parametrization for
↵(k2). We use the Maris-Tandy interaction [5], as in Eq.
(3.96) of Ref.[6]:

↵(k2) = ⇡⌘7x2e�⌘
2 x +

2⇡�m(1 � e�k2/⇤2
t )

ln[e2 � 1 + (1 + k2/⇤2
QCD)2]

, (8)

with:

• ⇤t = 1 GeV,

• ⇤QCD = 0.234 GeV,

• �m = 12/25,

• x = k2/⇤2,

• ⇤ = 0.72 GeV is an infrared scale (i.e., not the cuto↵ in
the system),

• ⌘ = 1.6...1.8...2.0 is a dimensionless parameter to which
many observables are insensitive in the range presented.

The first term in Eq. (8) is ↵IR and the second
↵UV . For the momentum regime we are interested (low-
momentum): ↵IR >> ↵UV ; but we keep both terms in the
calculations anyway.

⇤ ⇤ ⇤

To perform the integrals in Eqs. (7), in Ref.[1], see Eq.
below (A.12) and Eq. (B.6):

Z ⇤

q
�vgF =

2⇡
(2⇡)4

Z ⇤2

0
dq2q2�v(q2)

Z 1

�1
dz
p

1 � z2g(k2)F(p2, q2, z).

Making the variable change d(q2)
dq = 2q, we obtain the

final expression that we used in the code:
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Z ⇤

q
�vgF =

4⇡
(2⇡)4

Z ⇤

0
dqq3�v(q2)

Z 1

�1
dz
p

1 � z2g(k2)F(p2, q2, z).

⇤ ⇤ ⇤
In each iteration, we first updated our dressing func-

tions and then updated the numbers Z2 and M⇤. Using the
start guess for those numbers:

Z2 = 1, M⇤ = 1, (9)

and for the dressing functions:

A(p2) = Z2, M(p2) = M⇤Z2/A(p2). (10)

With this, we have everything needed to iterate and
solve the quark DSE.

B Chiral Limit - Quark Condensate:
Details

The chiral limit is defined by setting the renormalization-
point independent current mass to zero (m̂ = 0). Since we
use a cuto↵ ⇤2 for p2, we can implement this by m0(⇤2) =
0 (m0: cuto↵-dependent bare current-quark mass).

With Zm the mass renormalization constant and mµ the
renormalized mass:

m0(⇤2) = Zm(µ2,⇤2)mµ =
M(⇤2)
M(µ2)

mµ.

For a large renormalization point, µ >> ⇤QCD (e.g.,
µ = 19 GeV), this implies M(µ2) = mµ. Using this in the
equation above entails m0(⇤2) = M(⇤2).

This means that, for µ >> ⇤QCD, the chiral limit cor-
responds to M(⇤2) = 0, or, using the notation in Eq. (3),
M⇤ = 0.

⇤ ⇤ ⇤
The quark mass function M obtained with the DSE

asymptotically behaves as predicted in perturbation theory
(valid for large momenta), (A.3) in [1]:

M(p2)
p2!1�����! m̂

F (p2)�m
+

2⇡2�m

NC

� < q̄q >
F (p2)1��m p2 ,

where:
• F (p2) = 1

2 ln(p2/⇤2
QCD),

• NC = 3 is the color trace,
• � < q̄q > is the quark condensate.

For a non-zero m̂, the second term is suppressed by
1/p2. For m̂ = 0, only the second term remains; so the
quark condensate can be obtained, using a large value for
p2 (e.g., p2 = (103 GeV)2 = ⇤2), from the following equa-
tion:

� < q̄q >⇡ NC

2⇡2�m
F (p2)1��m p2M(p2). (11)

⇤ ⇤ ⇤

Summing up, to obtain the quark condensate through
the chiral limit, we just have to set M⇤ = 0 in (6) when
solving the DSE; and in the end calculate (11).

Notice that if one sets M⇤ = 0 in the start guess (Eqs.
(9)), the start guess for M will be zero (Eqs. (10)), making
it stuck there. So our start guess for M⇤ is still 1, but then
we a�rm M⇤ = 0 in every iteration.

Note: The chiral limit can also be used as an approxi-
mation for light quarks, which have a small current-quark
mass (e.g., M(µ = 19 GeV) = 4 MeV).

C Schlessinger Method - Iterative
Algorithms

The parameters ci in the Schlessinger Point Method, Eq.
(4), are determined by:

c1 = F1, c2 =
(c1/F2) � 1

z2 � z1
,

ci =

h c j(zi�z j�1)
c1
Fi
�1
� 1
i

zi � zi�1
, i > 2,

with the blue "operator" repeated i � 2 times over itself
( j = 2...i � 1).

⇤ ⇤ ⇤

For the f reconstruction at z 2 C, we write

f (z) =
c1h

1 + c j(z�z j�1)
1+cn(z�zn�1)

i ,

with the blue "operator" repeated n � 2 times over itself
( j = n � 1...2).
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