
LIP-STUDENTS-20-09

Deep neural network uncertainties in VLQ search at LHC

Gilberto Cunha1,a

1Universidade do Minho, Braga, Portugal

Project supervisors: N. Castro, M. Romão October 2020

Abstract. A study of a developed Deep Learning model’s uncertainties in Vector Like Quarks signal vs back-
ground classifications using Monte Carlo Dropout. The model was developed and trained using generated data
in accordance with LHC data and theoretical predictions and tuned using Bayesian inference. The developed
model showed good results in background to signal ratio reduction, which is promising for Machine Learn-
ing applications in HEP. The Monte Carlo Dropout distributions hint to the model having learned more from
background data than signal, but further analysis is required

Keywords: Vector Like Quarks, Deep Neural Networks, Monte Carlo Dropout

1 Introduction

The Standard Model (SM) is a Particle Physics model that
has proven to be a very good description of the behaviour
of fundamental particles and the Electromagnetic, Weak
and Strong Nuclear forces. Despite its undeniable success,
it’s now understood that the SM is still incomplete. Exper-
iments have been and are still being conducted to explore
the depths and limitations of the model, one famous case
- and the focus of this report - being the LHC particle col-
lider.

In this collider, particles are accelerated to extremely
high speeds, and sent to particle detectors where these
particles collide and interact with each other, originating
particle showers that are measured. The measurements of
these interactions - which are also denoted as events - are
later analysed to verify their agreement with SM theoreti-
cal predictions.

Most of the events agree with the SM - these are called
the background - while other rarer and not yet experimen-
tally observed ones don’t - the signal or BSM (Beyond
the Standard Model) events. Signal events are, therefore,
events that describe new Physics.

Being able to distinguish the two using measurement
data is key to finding what the SM can and cannot describe
and in turn to finding new Physics, an example being the
discovery of the Higgs Boson back in 2012, confirming
theoretical predictions.

A big difficulty in distinguishing signal from back-
ground is that signal events are extremely rare - otherwise
they would have already been detected - meaning that the
vast majority of the measurements are populated by back-
ground events, which are not of much interest. The hard
task is then to find these very few signal events amidst an
overwhelming majority of background.

For this effect, a Neural Network was developed using
Keras in order to learn both background and VLQ [3] - see
Fig. 1 - signal distributions and classify events accordingly
from their simulated data.

Even Neural Networks, however, have errors associ-
ated with their classifications. This project aims to study

ae-mail: gcacademic@outlook.pt

Figure 1. Vector Like Quarks Feynmann diagram. [3]

these uncertainties in Neural Network predictions by ap-
plying Monte Carlo Dropout.

2 Deep neural network concepts

2.1 The benefits of Machine Learning for this
classification

Disregarding Machine Learning, the most common way to
classify signal from background is using cuts. This is how
the Higgs Boson was experimentally discovered.

However, in a scenario where it isn’t known what sig-
nal to expect, or that theoretical predictions don’t hold al-
together, cuts are most likely to be insufficient. Instead, a
Neural Network could be trained to learn the background
distribution and classify anything that doesn’t follow it as
signal. This isn’t what this project is about - the signal
data is generated from theoretical predictions after all -
but serves as a motivation for the possible applications of
Deep Learning in this task.

2.2 How DNNs work

Deep Neural Networks are basically complex linear re-
gressors. They are composed of neurons - see Fig. 2 -

LIP-STUDENTS-20-09 2

that apply an affine map - a weight vector w and a bias b
- to their input vector x and a non-linear activation func-
tion f on top, since non-linearity allows for a much wider
range of applications. Its scalar output y is given by:

y = f (w · x + b) (1)

Figure 2. Representation of a Neuron. [4]

When you structure neurons in layers, which hold a
variable size of neurons, you get a Neural Network - see
Fig. 3. In NNs, each neuron of each layer is connected
to every neuron of the next layer. Every connection has a
weight and every neuron has a bias.

There are three types of layers in NNs:

• Input Layer: receives the data features.

• Output Layer: represents the classification classes.

• Hidden Layer: increases the Network’s complexity.

When a NN has multiple hidden layers, it is called a
Deep Neural Network.

Figure 3. Representation of a Deep Neural Network. [5]

In a way, DNNs can be thought of as a box that re-
ceives data features as input and outputs numbers that con-
vey important information for the task at hand. In classi-
fication tasks, these outputs generally represent the class
probabilities of the data.

The vector output x(n) of the n-th layer of a DNN can
be mathematically described as follows:

x(n) = f (W(n)x(n−1) + b(n)) (2)

Where the i-th component of x(n) is the output of the
i-th neuron of the layer, W(n) is a matrix of weights where
the i-th row and j-th column entry represents the weight
from the i-th neuron of the previous layer to the j-th neu-
ron of the current one, x(n−1) are the outputs of the neurons
of the previous layer and b(n) the bias vector where the i-th
component is the bias of the i-th neuron.

It is easy to use eq. 2 to calculate the outputs of the
network from its inputs. This is what is called the for-
ward propagation. To get the correct outputs, however,
backpropagation is needed.

2.3 Backpropagation

An NN is really just a multivariable function - usually with
a lot of variables - and the objective is to give the best
values to those variables/parameters - weights and biases
- such that the NN performs the best possible at whatever
task it is given. To do this the NN is initially given some
random parameters which are continuously adjusted using
backpropagation so as to improve itself.

In order to improve the network, an objective and dif-
ferentiable way to evaluate its performance is needed.
This is done using a loss function, a function that defines
the error between the predicted outputs ŷ of a batch - a col-
lection of input data points - and that batch’s desired out-
puts (or labels) y. The output of a loss function is a scalar
and the smaller it is the better the performance. Then the
task of finding the best model is the task of minimizing
the loss function.

The loss is usually calculated for a batch and not each
data point because this is faster and results in less loss fluc-
tuation per prediction, therefore a better chance of finding
loss minima.

Multivariable calculus says that the direction opposite
to a function’s gradient is the direction of highest de-
crease in the function’s output. Applying the chain rule
to eq. 2, it is possible to calculate the derivative of the loss
function J with respect to each network parameter, thus
finding the gradient vector - this is why J must be differ-
entiable. All that is left is to take a step η - the learning
rate - in the opposite direction of the gradient to update all
parameters θ - this update is the gradient descent:

θt = θt−1 − η∇θJ (3)

Where t just means it is the t-th iteration of gradient
descent. In truth eq. 3 is just one way to update network
parameters. There are many more sophisticated ways to do
this implemented using different optimizers - algorithms
that update the network parameters - such as Adam.

3 Data description and analysis

3.1 Data structure

The data used for this classifier is tabular, meaning there
are some fixed variables/features that describe each event.
Some examples are the number of measured electrons,
jets or muons, the η and φ orientations of the measured

LIP-STUDENTS-20-09 3

jets or the missing transverse momentum [1]. After pre-
processing - which will be discussed later - there are a
total of 72 features for every event - including a label, a
cross-section and a sample.

Figure 4. Representation of the structure and some features of
the data.

3.2 Samples and cross-sections

Every event comes from a sample. Different particles can
arise from the same interactions, and these different prod-
ucts of an interaction constitute different samples. Each
sample has a cross-section, a physical quantity that is a
proxy for the event’s probability of occurrence.

It has been said before that the data utilized is gener-
ated from physical simulations. In this data generation, the
cross-section of each event is added as a feature of each
data point. To get the physical distributions of the data,
each data point must therefore be weighted according to its
sample cross-section, since some samples are more likely
to occur than others.

However, the cross-section corresponds to the weight
of the sample, not of each individual event. To get the
weight of each event, one must then divide the cross-
section of each sample by the number of events of that
same sample. This "event weight" is denoted by gen
weight. For each sample s with Ns events and cross-
section σs, the gen weight ω of each event of that sample
is given by:

ω =
σs

Ns
(4)

An important note is that the gen weight is a generated
feature, which means that it cannot be passed into the de-
veloped model when predicting data points as either back-
ground or signal, since the cross-section of an event cannot
be obtained by particle collider measurements. Only mea-
surable features can be used by the model to make predic-
tions.

3.3 Excessive memory usage and cuts

One problem with the data is that it is quite large, which
is impractical for most personal computers. This is solved

with cuts - a way of filtering out data fairly for both back-
ground and signal, usually carefully chosen to filter more
background due to its overwhelming predominance.

The data describes a physical distribution across all
features, cuts simply remove parts of the distribution. Say
it is known that most of the time the signal should have
2 electrons, then one cut example would be to remove all
events that have less than 2 electrons. For the VLQ signal,
the applied cuts - based on Fig. 1 - were:

• At least 2 leptons

• At least 1 fat-jet

Figure 5. Cut and uncut VLQ and background weighted total
missing momentum distributions.

3.4 Data pre-processing

Almost all data needs some clean-up and this case is no
exception. Firstly, some columns with information rela-
tive to data generation - which cannot be obtained from
measurements - have to be dropped and columns relative
to the labels and samples have to be added. Secondly,
the already described cuts have to be applied and the gen
weights calculated for each sample. Finally, as the data
comes in multiple files relative to each sample, they have
to be concatenated. In short:

1. Add and remove necessary columns per sample

2. Apply cuts per sample

3. Calculate gen weights per sample

4. Concatenate all samples

After applying this pre-processing to the data, its struc-
ture is as described in Sec. 3.1.

4 Deep neural network model

4.1 Train, validation and test data

Not all data can be used to train the model, it has to be split
equally into three datasets (so as to ensure all datasets have
the same statistical significance):

LIP-STUDENTS-20-09 4

• Training set: used in backpropagation to train the
model

• Validation set: used to evaluate the model while train-
ing and tuning hyperparameters - number of hidden lay-
ers, number of features per hidden layer, etc.

• Test set: used only for the final evaluation of the model,
after it is completely trained and all hyperparameter
studies have been conducted

4.2 The model

With the goal of classifying events as signal or back-
ground, a deep learning model was developed using
Keras. The model architecture follows the presented
scheme:

1. 69 neurons in the input layer

2. Batch Normalization layer on top of the input layer
to mimic data standardization

3. Hidden layers with relu activations

4. Dropout layer on top of every hidden layer except
for the last

5. 1 neuron in the output layer with sigmoid activation

The input layer has 69 neurons because the label, cross
section and sample features are not experimentally mea-
surable.

The Batch Normalization layer, which changes the
data’s mean and standard deviation, using them as learn-
able parameters, is used to mimic standardization. This is
useful because most features have very distinct ranges of
values - number of electrons is usually very low, but miss-
ing momentum can reach extremely high values - which
might result in higher range features producing higher ac-
tivations, creating a bias in the model.

Dropout layers, which randomly sets to zero some neu-
ron’s weights of the respective layer, are also present since
the main objective is to study the uncertainties of the NN
using Monte Carlo Dropout.

There is also only one neuron with a sigmoid activa-
tion function in the output layer to force the output of the
network to be within the [0, 1] range, where 0 represents
background and 1 represents signal - just as in the labels.

The chosen loss function for this model, since it is a
binary classifier, is binary cross-entropy. It also uses the
Adam optimizer.

4.3 Loss function, gen weights and class weights

With i being each event from a batch, yi is the one-hot label
encoding of the event and ŷi the predicted probability of
the event i being of class n, the binary cross-entropy loss
for that batch is generally computed as follows:

L = −
1
N

N∑
i=1

1∑
n=0

yi,n log(ˆyi,n) (5)

There are two problems, however, with this equation
for this particular dataset:

• It assumes all data points i have the same importance -
it isn’t a weighted average. This isn’t true because every
data point has its gen weight ωi

• It also assumes both classes are equally represented,
which also isn’t true, since there are more background
events than signal ones

Therefore, eq. 5 has to take into account the normal-
ized gen weights ω̃i and class weights cn. The gen weights
have to be normalized due to their small magnitude, spe-
cially for BSM events, which would lead to a very small
parameter correction during backpropagation. Consider-
ing Nn the total number of elements of class n in the train-
ing set:

ω̃i =
ωi∑N

i=1 ωi
, cn =

Nbkgd

Nn
(6)

Then eq. 5 can be altered as follows:

L = −

N∑
i=1

1∑
n=0

cn ω̃i yi,n log(ˆyi,n) (7)

4.4 Hyperparameter search

Despite the guideline restrictions of the model presented
in Sec. 4.2, the following hyperparameters can be tuned in
order to optimize the model’s performance - by minimiz-
ing the validation loss:

• The batch size

• The number of hidden layers

• The number of neurons per hidden layer

• Whether or not Batch Normalization is applied to each
hidden layer except for the last

• The dropout rate

There are a number of methods to achieve this, the
most popular ones being Grid search, Random search
and Bayesian inference search.

Grid search implies setting up a grid of possible pa-
rameter values - a list of batch sizes, another one of hid-
den layers, etc - and testing each one of those. Random
search implies searching randomly in a defined space for
those parameters - consider the same lists but sampled ran-
domly. Bayesian inference, on the other hand, relies on
predicting a distribution of model performance for each
parameter and updating it with each performed run while
choosing the next run parameters based on the most likely
parameters to get a good performance in the predicted dis-
tributions [2].

For this purpose, Bayesian inference search was used
with the optuna python package.

4.5 Monte Carlo Dropout

After having found the best model with the best hyper-
parameters, Monte Carlo Dropout can be applied. Monte
Carlo Dropout consists in applying Dropout in the model
not just during training, but also during prediction. This

LIP-STUDENTS-20-09 5

Figure 6. Standard deviation distributions by sample.

means that one single data point is classified more than
once - say a hundred times - and since these predic-
tions won’t be the same due to Dropout, one can find the
standard deviation of the predictions as a measure of the
model’s uncertainty (and the mean as the final prediction).

5 Results
The optimal model found with the Bayesian inference has
a batch size of 256, 2 hidden layers with 84 and 49 neu-
rons, respectively, no batch normalization besides the stan-
dardization layer and a dropout rate of 5%.

The model’s performance was tested using both
Dropout and Monte Carlo Dropout using the AUC met-
ric. The model got an AUC of 0.99673 with Dropout and
0.99692 with Monte Carlo Dropout, a minute difference.

Model ROC AUC
Regular 0.99673
MC Dropout 0.99692

Table 1. Area under the ROC curve for both models

Both the Monte Carlo and the regular Dropout models
recover the physical distributions of the background and
VLQ signal quite well qualitatively, although the back-
ground distributions are more accurate than the signal ones
- see Fig. 7. This might suggest that the model didn’t learn
as well from VLQ data as with background.

Another important evaluation of the model is the back-
ground to signal ratio reduction. The developed model re-
duced this ratio by roughly 713% in both Dropout regimes
while wrongly classifying 1.72% of signal and 13.73% of
background - see Fig. 8. This was done by selecting an
operating point of 2.78 × 10−4, which maximized the dif-
ference between the true positive rate and the false posi-
tive rate in the ROC curve. Using this operating point, the

Figure 7. MC Dropout Fat Jet 1 η distributions with a threshold
of 0.5.

model’s prediction of the signal physical distribution also
loses accuracy compared to the 0.5 threshold due to the
increase in false positives.

Figure 8. Background/Signal ratio reduction after predictions.

LIP-STUDENTS-20-09 6

Evaluating only the Monte Carlo Dropout model, the
standard deviation distributions - a proxy for the model’s
uncertainty - in classifications were plotted by class and
by sample. Analyzing by class - see Fig. 9 - it can be no-
ticed that VLQ is dominant in high prediction uncertain-
ties. By taking a closer look - see Fig. 6 -, it can also be
noticed that all VLQ samples have approximately the same
shape, meaning they might all be contributing about the
same to this unbalance in class uncertainty. Furthermore,
only some background sample distributions have high un-
certainty tails, which might indicate that the model is mix-
ing these few background samples with the VLQ samples,
but further analysis is required to state these claims as sci-
entific facts.

Figure 9. Standard deviation distributions by class.

6 Conclusions

This work shows that Deep Learning might have very use-
ful applications in High Energy Physics, particularly in
finding new physics in particle collider experiments.

For the signal of study, the developed Neural Network
is able to reduce the background to signal ratio more than
seven-fold while only losing a mere 1.73% of signal data.
Considering how unbalanced the data measured in particle
colliders can be, this can prove quite useful in tipping the
scale in a more favorable direction.

Moreover, although Monte Carlo Dropout doesn’t
seem to improve the model in any meaningful way, it does

guide to a new path of data analysis in the form of model
prediction uncertainty which can show potential weak-
nesses either in the model or in the method used to perform
the task at hand.

For future work, a deeper analysis of the Monte Carlo
Dropout distributions would reveal more about the full po-
tential of the technique. It would also be interesting to ex-
plore unsupervised Deep Learning methods, which would
greatly simplify the use of direct measurement data in the
model.

Acknowledgements

I would like to thank my supervisors Nuno Castro and
Miguel Romão for the kind help they provided through-
out the whole internship. It was a truly memorable and
enlightening experience to work with and learn from them.

References

[1] Schwartz, M. D. (2017). TASI Lectures on Collider
Physics. arXiv preprint arXiv:1709.04533, 75.

[2] Géron, A. (2019). Hands-on machine learning with
Scikit-Learn, Keras, and TensorFlow: Concepts,
tools, and techniques to build intelligent systems.
O’Reilly Media, ISBN 978-1-492-03261-8.

[3] Aaboud, M., Aad, G., Abbott, B., Abeloos, B., Ab-
hayasinghe, D. K., Abidi, S. H., ... Abulaiti, Y.
(2018). Search for pair and single production of vec-
torlike quarks in final states with at least one Z boson
decaying into a pair of electrons or muons in p p col-
lision data collected with the ATLAS detector at s=
13 TeV. Physical Review D, 98(11), 112010.

[4] Arthur Arnx, "First neural network
for beginners explained (with code)",
https://towardsdatascience.com/first-neural-
network-for-beginners-explained-with-code-
4cfd37e06eaf

[5] Arden Dertat, "Applied Deep Learning
- Part 1: Artificial Neural Networks",
https://towardsdatascience.com/applied-deep-
learning-part-1-artificial-neural-networks-
d7834f67a4f6

	Introduction
	Deep neural network concepts
	The benefits of Machine Learning for this classification
	How DNNs work
	Backpropagation

	Data description and analysis
	Data structure
	Samples and cross-sections
	Excessive memory usage and cuts
	Data pre-processing

	Deep neural network model
	Train, validation and test data
	The model
	Loss function, gen weights and class weights
	Hyperparameter search
	Monte Carlo Dropout

	Results
	Conclusions

