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From light-front wave functions to parton distribution functions
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Abstract. In this work the possibility of obtaining Parton Distribution Functions (PDFs) from the calculation
of Light-Front Wave Functions is explored. Firstly, a brief theoretical explanation is given, followed by a re-
view of the method for calculating Light-Front Wave Functions (LFWFs) using the Nakanishi Weight Function
(presented by Federico et al.), which will be used as a baseline to compare future results. The numerical meth-
ods and challenges are also discussd. A different method for the calculation of LFWFs based on the direct
calculation from the Bethe-Salpeter Equation (BSE) is proposed.
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1 Introduction

Quantum Chromodynamics is the SU(3) gauge theory
concerned with the description of the strong interaction
force. QCD adds quarks and gluons (similar to the elec-
trons and photons of quantum electrodynamics) to the mix
of known elementary physical particles.

Quarks are spin- 1
2 fermions that carry what is called

a color (hence Chromodynamics) charge, commonly re-
ferred to as red, green or blue. There are six flavours of
them. Gluons are the spin-1 bosonic force carriers, that
also have color charge, which can be thought of as a com-
bination of the previous three (8 possibilities).

Compared with othe interactions, like QED, QCD has
a special distinguishing feature: asymptotic freedom. As
such, at close distances (that is, high momenta), particles
behave as they were free, with the attraction between par-
ticles increasing with the distance of separation - the so
called confinement.

Figure 1. Experimental measures of the coupling constant
αS (Q2), as a function of the energy scale Q, taken from P. A.
Zyla et al., Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

This confinement reveals another important constraint:
all physical detectable particles are color-neutral, that is,
one can only find quarks in bound color-neutral states.
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Therefore it is impossible to detect free quarks (or any
other color-charged combination).

This characteristic imposes a severe restriction when
doing perturbative calculations in QCD: at low momenta
(short distances), perturbative methods are not valid, and
as such, one needs to find alternative methods to make pre-
dictions [1].

1.1 Baryons

Baryons are compound objects made of a colorless com-
bination of three quarks and of their interactions via glu-
ons. These are among the most important particles in the
known universe, as they include neutrons and protons - the
building blocks of visible matter.

While it is tempting to look at them as composed of
three separate quarks, interacting in a mean-field type po-
tential (think about the coulomb potential, for example),
this picture could not be farther from the truth.

QCD is a complex theory, and the idea of three lonely
quarks with simple interactions is challenged by the con-
tinuous creation and annihilation of quark-antiquark pairs
(qq̄) and very strong gluon-gluon effects.

In reality, a much more suited image is thinking about
a bag filled with quarks and qq̄ pairs (also called partons),
which happens to have three valence particles responsible
for its properties. The proton, for example, has uud va-
lence quarks.

These objects are non-perturbative, and as such, one
needs to work with the full QCD theory in order to be able
to make predictions about their behaviour. [2] [3].

1.2 Parton Distribution Functions (PDFs)

One of the objectives of studying baryons is to determine
their structure. As such, there is interest in finding out
how the baryon’s total momentum is distrubuted among
the components (partons).

That is the definition of the Parton Distribution Func-
tion. These functions fi(x,Q2) give the probability that the
species i has a fraction x of the total momentum Q2.

https://pdg.lbl.gov/2020/reviews/rpp2020-rev-qcd.pdf
https://pdg.lbl.gov/2020/reviews/rpp2020-rev-qcd.pdf
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Figure 2. Proton Parton Distribution Functions at two different
energy scales Q2 = 10GeV2 (a) and Q2 = 104GeV2. Taken from
[4]

These functions are very interesting as they are univer-
sal (e.g every proton shares the same PDF) and used in the
calculation of several other experimental and theoretical
quantities such as cross-sections (eg. Drell-Yan, Deep In-
elastic Scattering), experimental background among oth-
ers.

Since PDFs are non perturbative, there is no straight-
foward way to calculate them from the theory. As a result,
our current understanding of PDFs comes from the fitting
of experimental results. Figure 2 shows a plot of the pro-
ton PDFS, at different energy scales. Note the presence
of some species like c and s quarks not predicted by the
simple quark model.

2 Calculating PDFs

This work is focused in the calculations of the PDFs di-
rectly from the theory, rather than relying on experimental
results.

As a starting point, a simple model will be studied.
This model includes a scalar particle φ (of mass m), and a
scalar interaction χ (of mass µ), with a simple interacting
Lagrangian L = gφφχ.

The plan is as follows:

1. Calculate the solutions of the Bethe-Salpeter equa-
tion, directly and via the Nakanishi representation
[5].

2. Calculate the Light-Front Wave functions, directly
and via the Nakanishi representation [5].

3. Calculate PDFs via the obtained LFWFs. (See [6]
for different methods).

2.1 Bethe-Salpeter Equation

In non-relativistic Quantum Mechanics, there is a fairly
straightfoward way to get bound states from a theory. We
just need to solve the Schrödinger Equation for that spe-
cific system: Hψ = Eψ.

In Quantum Field Theory, however, the fundamental
quantities are n-point correlation functions, that is, objects
with the following structure, built from the theory’s vac-
uum |0〉 and its fields φ(xi):

G(x1, x2, x3, ...) = 〈0|Tφ(x1)φ(x2)φ(x3)... |0〉 (1)

Bound states are extracted from these correlation func-
tions via the fact that bound states |λ〉 with on-shell mo-
mentum p2 = m2

λ, produce a pole in the correlation func-
tion (Fourier transformed to momentum space).

The Bethe-Salpeter wave function Ψ({xi}) is then de-
fined as the residue of these poles (see [7] for more de-
tailed calculations). For example, a two-quark BSWF is
given by

Ψ(x, P) = 〈0|Tφ(0)φ(x) |λ(P)〉 , (2)

Ψ(k, P) =

∫
d4xe−ik·xΨ(x, P). (3)

Figure 3. Schematical view of a Bethe-Salpeter Wave Function

These Ψ are calculated via the Bethe-Salpeter Equa-
tion, which takes the form Ψ = G0KΨ, where K is built
from all irreducible diagrams in the theory and G0 is the
propagator of the particles. [2]. In the following figure 4,
a schematic view is shown.

Figure 4. Schematical view of the Bethe-Salpeter Equation

One can write the Ψ = G0ψ, where small ψ is the
Bethe-Salpeter Amplitude. The Bethe-Salpeter Equation
can be transformed to an equation for the amplitude by
[8].

ψ(k, P) =

∫
d4k

(2π)4 K(k, q)G0(q, P)ψ(q, P). (4)



LIP-STUDENTS-20-15 3

2.2 Nakanishi Representation

It is possible to define a new function - the Nakanishi
weight function - that depends on two real variables and
is non-0singular, so that our BSWF can be written as an
integral in momentum space of this weight function and a
factor that contains the analytical structure [5]

Going to a Euclidian metric (instead of the Minkowski
variables in [5]), where x is the radial component and z is
the angular dependency of the momentum, one can write
the definition of the Nakanishi weight function h(x, z) for
the simple scalar model with t = P2

4m2 :

ψ(x, z) =
1

m4

∫ ∞

0
dx′

∫ 1

−1
dz′

(1 − z′2)h(x′, z′)[
x + x′ + 1 + t +

√
xtzz′

]3 .

(5)
In the same way, by substitution, one can reach the

Bethe-Salpeter Equation, but this time written for the
Nakanishi Function h(x, z), as shown in eqs. 16, 17, 18,
19 below.

This is an integral equation, with the added difficulty
of having integrals on both sides. To try and solve this
equations numerically, a basis for z is adopted, as defined
in [5], using the Cα

i - the Gegenbauer polynomials:

(1 − z2)h(x, z) = g(x, z) =
∑

m

hm(x)Ym(z), (6)

Ym(z) = 4(1 − z2)Γ
(

5
2

) √√√√(
2l + 5

2

)
(2l)!

πΓ
(

5
2

) C
5
2
2m(z), (7)

∫ 1

−1
dzYm(z)Ym′ (z) = δmm′ . (8)

After discretizing in z, a more condensed version of
the BSE for the Nakanishi weight can be found:

∫
dx′Bmn(x, x′)gn(x′) =

∫
dx′Kmn(x, x′)gn(x′). (9)

Discretizing the x direction as well, the equations can
now be written as a simple eigenvalue equation, provided
that the B operator is invertible. To help with that, a
small diagonal parameter εδi j was added for regulariza-
tion. Without this parameter, the numerics are only stable
for very small matrix sizes. The equation to solve is:

λBh = Kh =⇒ B−1Kh = λh. (10)

2.3 Light-Front Wave Functions

The next step is now to transform the results for the BSWF
to the Light Front Dynamics. In this case, we are dealing
with all distances where x2 = 0, that is, light-like.

For that, a light-like vector n is defined as n =

(0, 0, 1,−i)T , such that x can be written as x = λn. It is
immediate that n2 = x2 = 0.

For the momentum 4-vector, a quantity k+ = k · n is
defined that accounts for the momentum along the x direc-
tion.

A variable ξ can then be defined that gives the frac-
tion of the total momentum P = k1 + k2 which is carried
by the particle with momentum k+

1 . Naturally, ξ ∈ (0, 1).
Applying to the rest of the momentum variables:

k+
1 = ξP+, (11)

k+
2 = (1 − ξ)P+, (12)

k =
k1 − k2

2
=⇒ k+ =

(
ξ −

1
2

)
P+ = −

α

2
P+. (13)

The variable α ∈ (−1, 1), defined in eq. 13 will be the
argument of the Light-Front Wave Function ψ(α), which
can be directly defined via the BSWF. For details on how
to do this with the Nakanishi Representation, see [5] and
[9]. Beginning with the Fourier transform of the BSWF, it
is possible to write ψ(α) as:

ψ(α) =

∫
dλ
4π

ei α2 P·nλψ(λn, P) (14)

ψ(α) =

∫
d4k

(2π)4

∫
dλ
4π

eiλ(k·n+ α
2 P·n)ψ(k, P) (15)

The integral over λ will give a Dirac Delta function,
with a condition on momentum: 1

2δ(k · n + α
2 P · n). Com-

bined with the integration on k (d4k = 1
2 d2k⊥dk+dk−),

this defines ψ(α) as an averaging on k⊥ (perpendicular to
the x direction), on k− and evaluating the BSWF when
k+ = −α2 P+.

3 Results

3.1 Bethe-Salpeter Wave Function

The Bethe-Salpeter Wave Function was obtained with both
methods: using the Nakanishi Representation, as shown
in [5] and in section 2.2; and directly solving the Bethe-
Salpeter Amplitude, as in eq. 4.

Both are integral equations that can be reduced to
the form of an eigenvalue problem. For both the power
method was used, that is (ψi+1 = 1

λi
Mψi), which converges

to the ground state. In principle, with more advanced nu-
merical solvers, one could retrieve more eigenvalues and
eigenvectors from the equations.

The results presented were calculated using
√

t =

0.75i, and a β =
µ
m = 4, and can be seen in figure 5. See

[8] for details.
One particular result that is immediate is that the BS

amplitude is pratically independent of the angular coordi-
nate (z). The only dependance is in the radial coordinate
x. Note that the x coordinate is in logarithmic scale. As
a simple model, one could approximate the amplitude e.g.
by 1

1+γ
, where γ is a real parameter.
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∫ ∞

0
dx′

h(x′, z)
[x′ +N(x, z)]2 =

∫ ∞

0
dx′

∫ 1

−1
dz′V(x, z, z′, z′)

1 − z′2

1 − z2 h(x′, z′) (16)

V(x, x′, z, z′) =
g2

(4πm)2

1
N(x, z)

∫ 1

0
dv

[
K(v, x, x′, z, z′) + K(v, x, x′,−z,−z′)

]
(17)

K(v, x, x′, z, z′) =
θ(z′ − z)(1 + z)2v2[

v(1 − v)(1 + z′)N(x, z) + v2(1 + z)N(x′, z′) + (1 − v)(1 + z)( µm + vx′)
]2 (18)

N(x, z) = x + 1 + t(1 − z2) (19)

Figure 5. Bethe-Salpeter Amplitude obtained via directly solv-
ing eq. 4

As a comparison, a plot combining the Nakanishi re-
sult and the direct result for the BSWF is presented. The
BSWF for the direct case was obtained by mutliplying
the calculated amplitude with the propagators 1

(x+t+1)2−4xtz2

(see [8]).

Figure 6. A comparison between the BSWF results for the
Nakanishi Representation and the direct integration of the BSE
for the Amplitude

The results obtained with both methods are in agree-
ment. There is one thing to note however: the Nakanishi
curve has less sampling points. This is resulting from the

fact that this method is more computationally expensive as
each entry of the operators defined in eq. 10 requires the
solution of at least two integrals and a futher expansion in
the z basis.

3.2 Light-Front Wave Functions

The results for the Light-Front Wave Functions are now
presented.

Figure 7. Light-Front Wave Functions results obtained with β =

0.50, for various values of
√

t. Note that the variable ξ is used
instead of the α defined in eq. 14. This is in line with the notation
on [5]

The results show that the distribution on ξ have a very
smooth shape, peaked at the ξ = 0.5 point. This means that
in this simple model, the most likely configuration is both
particles sharing the same fraction of total momentum.

The curves are symmetric around the ξ = 0.5 axis,
which was expected: both particles are identical and in-
distinguishible.

4 Further Work

The next step is the direct integration of the BSWF as ex-
plained in section 2.3.

There are still details about how to proceed numeri-
cally with the δ-function that are yet not fully understood
and solved. This will be the focus of future work.

So far, a simple approximation has been used for the
BSWF, based on the results obtained previously on section
3.
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Ψ(x, z) ≈
1

(x + t + 1)2 − 4xtz2

1
x + γ

(20)

Intermediate attempts have resulted in curves that are
non symmetric and others more similar to figure 7, that,
however, fail to vanish at the |α| = 1 endpoints.

There is also one added difficulty: for
√

t approach-
ing the imaginary axis, the singularities in the propagator
form branch cuts after integrating on z that create forbid-
den zones. The integration on x must be through a de-
formed contour that allows the avoidance of these cuts.
It appears that using the non-singular Nakanishi Weight
Function trades more numerical cost for a much simpler
analytical structure.

There has already been an application of these contour
deformations on the BSE, as seen in [8].

Future plans for this work are to explore the structure
of the singularities so that one suitable formulation and
path can be found, that results in curves with the desired
characteristics and in accordance to the calculations done
via the Nakanishi Representation. Afterwards, there re-
mains the actual calculation of the PDFs and perhaps pos-
sible application to more complex Lagrangians.
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