Observação de muões cósmicos

Joana Mota^{1,a}, Matilde Simões^{1,b}, and Francisco Casalinho^{1,c}

¹Universidade de Coimbra, Portugal

Orientadores: A. Lindote, F. Veloso, F. Neves

November 2020

Abstract. O objetivo da experiência é estudar algumas propriedades dos muões: a diminuição do fluxo à medida que atravessam os vários pisos do Departamento de Física da Universidade de Coimbra e também a dependência angular deste fluxo. Para a sua concretização, mediu-se o fluxo vertical de muões em diferentes pisos do departamento, e para diferentes ângulos de inclinação do detector com a vertical medidos sempre no piso superior. Para além disso, pretende-se lançar para o espaço um balão a 30 km de altitude de forma a estudarmos a variação do fluxo com a altitude.

1 Introdução

1.1 Muões Cósmicos

Os raios cósmicos são um tipo de radiação de alta energia. Ao colidirem com a atmosfera terrestre, vão produzir um conjunto de partículas secundárias, entre os quais, muões, como se pode ver na Figura 1.

O muão é uma particula elementar, semelhante ao eletrão mas com uma massa duzentas vezes maior. Estas particulas são instáveis, tendo um tempo de vida de aproximadamente 2μ s, mas como viajam quase à velocidade da luz a maior parte destas partículas, graças à dilatação do tempo no referencial do centro de massa, conseguem percorrer longas distâncias antes de decair num eletrão, num neutrino e num anti-neutrino.

1.2 Detector

Neste trabalho usaram-se dois Cosmic Watch alinhados verticalmente para observar muões cósmicos.

O Cosmic Watch [2] (Figura 2, em cima) consiste numa placa de cintilador de plástico sólido acoplado opticamente a um fotomultiplicador de silício (SiPM) para detectar a luz emitida por partículas carregadas à medida que passam pelo cintilador. O sinal do SiPM é enviado para um placa elétrónica que mede o tempo e a amplitude do sinal.

Adicionalmente, outra placa de eletrónica (figura 2, em baixo) é usada para registar as amplitudes dos pulsos dos dois detectores, bem como as coincidências entre os dois, o tempo do evento e o número de contagens, e também a temperatura e a pressão.

O ecrã na frente de cada detector é atualizado em tempo real com o número de contagens individuais, a amplitude máxima do sinal e o tempo total de aquisição. Um LED pisca sempre que um evento é registado. Cada Comic Watch vai detetar valores máximos de amplitude do sinal diferentes para cada partícula que o atravessou. Por isso, para os distinguir, categorizamos al e a2 como a amplitude

Figure 1. Exemplo de chuveiro de partículas criado por um raio cósmico de alta energia ao interagir com a atmosfera terrestre. Entre as partículas geradas estão os muões, que podem chegar até à superfície da Terra. (Imagem retirade de [1])

máxima registada nos Cosmic Watch de cima e de baixo, respetivamente.

A montagem do detector e o código da placa de eletrónica usada foram feitos no âmbito das atividades dos estágios de verão do ano passado, tendo este último sido alterado por nós.

2 Setup para a aquisição de dados

A recolha de dados tinha normalmente a duração de aproximadamente um dia à exceção dos fins de semana que foram aproveitados para realizar medidas em situações de fluxo mais reduzido (nos andares inferiores do departamento ou ângulos mais horizontais).

Os dados são registados num cartão de memória "flash" que é posteriormente lido num computador externo. Para facilitar a deslocação do aparelho de um piso para o outro e também para o posicionar em orientações

^ae-mail: joanaduartemota@gmail.com

^be-mail: mati.sims14@gmail.com

^ce-mail: francasalinho@gmail.com

Figure 2. Cima: Exemplos de detectores Cosmic Watch [2]. Baixo: placa adicional que usa um Arduino para registar os sinais de ambos os detectores, as coincidências entre ambos, o tempo de aquisição, e a temperatura e pressão ambiente.

Figure 3. Configuração usada para a aquisição dos dados

diferentes, garantindo sempre a mesma posição relativa entre os dois detectores, decidiu-se colocar o detetor dentro de uma caixa de esferovite, destinada a ser lançada para o espaço com o balão (figura 3).

Para o estudo dos muões com diversas orientações, usámos apoios feitos de esferovite (figura 5) e com um transferidor mediram-se os ângulos da inclinação.

Figure 4. Exemplo de um ficheiro de dados adquirido durante este estágio. As diferentes colunas indicam grandezas como o tempo da aquisição, os números de coincidências e de sinais em cada um dos detetores, a amplitude destes sinais, a temperatura e a pressão atmosférica.

Figure 5. Detectores orientados a 60° com a vertical.

3 Análise de dados

Para fazer a análise de dados, recorremos a vários programas, como o ROOT [3], o Excel [4], o Matlab [5] e o GNUPlot [6].

A Figura 4 mostra um exemplo da estrutura dos dados registados. Representa um ficheiro de texto que compila todas as variáveis recolhidas, como indicado no cabeçalho.

A Tabela 1 sumaria as diferentes condições em que foram adquiridos os dados, com a configuração descrita, durante este trabalho.

3.1 Determinação do fluxo de muões

Temos abaixo dois exemplos de gráficos (Figuras 6 e 7) com dados obtidos em diferentes dias onde é possível observar a ordenada na origem (p0), e o declive (p1), obtidos de um ajuste linear efectuado com o ROOT, representando este, o fluxo de muões do dia, cada um com as incertezas associadas.

3.2 Coincidências totais e falsas

Nesta parte, nós estudámos dois observáveis diferentes, as amplitudes a1 e a2 que relacionam a densidade de energia depositada no cintilador com a distância percorrida pelos muões, e também o ângulo da trajetória do muão.

 Table 1. Tabela com as diferentes configurações utilizadas, referindo se a orientação ao ângulo feito com a vertical e a separação, à separação entre cintiladores.

Die	Duração	Dico	Oriontação	Samaração	Nº da agingidângias	Taxa da contagona
Dia	Duração	FISO	Onentação	Separação	IN de conicidencias	Taxa de contagens
22/07/2020	23h30	4	0°	0 cm	13704	0.1621 muões/s
23/07/2020	22h00	4	0°	10 cm	3960	0.0496 muões/s
24/07/2020	119h30	-1	0°	10 cm	9250	0.0359 muões/s
27/07/2020	23h27	2	0°	10 cm	3589	0.0425 muões/s
28/07/2020	23h50	4	90°	10 cm	330	0.0038 muões/s
29/07/2020	23h30	4	60°	10 cm	1166	0.0138 muões/s
30/07/2020	24h00	4	30°	10 cm	3232	0.0374 muões/s
31/07/2020	76h56	-2	0°	10 cm	9335	0.0337 muões/s
08/10/2020	22h49	4	45°	10 cm	1941	0.0234 muões/s
12/10/2020	72h48	4	12°	10 cm	1223	0.0470 muões/s
13/10/2020	23h12	4	75°	10 cm	3874	0.0047 muões/s

Figure 6. Coincidências registadas em função do tempo de observação (segundos) (22/07/2020).

Figure 7. Coincidências registadas em função do tempo a observar (segundos) (28/07/2020).

Nos gráficos seguintes, pode-se observar vários valores registados de a1 e a2, e o comportamento destes para diferentes variações angulares do detetor.

Nestes primeiros gráficos (Figuras 8 e 9) não se excluiram os acontecimentos em que apenas um dos detectores observou um sinal (devido a muões com orientações diferentes da dos dois CosmicWatch ou interações de outros tipos de radiação).

Figure 8. Amplitude do 2º detetor (a2) em função da amplitude do 1º detetor (a1). Cima: dia 28/07/2020, detetores a 90º com a vertical; Baixo: dia 23/07/2020, detetores a 0º com a vertical.

Aqui, observamos que os acontecimentos têm uma maior tendência de apresentarem certas medidas, nas àreas dos gráficos mais concentradas.

Também se observam acontecimentos com valores de a1 e a2 inferiores a 40 unidades de área, o que poderá estar relacionado com o ruído.

Se, agora, eliminarmos todos os acontecimentos que foram detectados por apenas um dos detectores e aqueles que não foram contados como um evento, teremos os seguintes gráficos (Figuras 10 e 11), que mostram as coincidências.

Apesar da concentração dos pontos diminuir drasticamente, em comparação com os outros gráficos, agora

Figure 9. Amplitude do 2° detetor (a2) em função da amplitude do 1° detetor (a1). Cima: dia 30/07/2020, detetores a 30° com a vertical; Baixo: dia 29/07/2020, detetores a 60° com a vertical.

Figure 10. Amplitude do 2º detetor (a2) em função da amplitude do 1º detetor (a1). Cima: dia 28/07/2020, detectores orientados a 90º com a vertical; Baixo: dia 23/07/2020, detectores orientados a 0º com a vertical.

Figure 11. Amplitude do 2º detetor (a2) em função da amplitude do 1º detetor (a1). Cima: dia 30/07/2020, detectores orientados a 30º com a vertical; Baixo: dia 29/07/2020, detectores orientados a 60º com a vertical.

podemos verificar que de fato a concentração de pontos mais próximos dos eixos dos gráficos remetem a ruído.

Para além disso, podemos observar com mais clareza que, em aproximadamente 24 horas, para uma orientação angular de 0° com a vertical registaram-se mais coincidências do que para uma orientação de 90° com a vertical, como seria de esperar.

A partir destes gráficos, seria possivel determinar a probabilidade de uma coincidência registada não ser devida à passagem de um muão mas ser uma falsa coincidência com ruído num dos detetores.

3.3 Temperatura e Pressão

Para além da medida do fluxo de muões, também é possível verificar o correto funcionamento das medições da temperatura e da pressão em função do tempo. Estes parâmetros também serão cruciais para testar o desempenho do detector antes de ser lançado para o espaço. Em ambos os gráficos da Figura 12, a contagem do tempo inicia-se às 11h21 do dia 23/07/2020.

Podemos observar que as maiores temperaturas se verificam, aproximadamente, 10000 segundos (quase 3 horas) depois do início da contagem do tempo, ou seja por volta das 14h, o que seria de esperar, pelo que se pode supor que o detetor demonstra um bom funcionamento.

Figure 12. Gráficos da temperatura (à esquerda, em °C) e pressão (à direita, em hPa) em função do tempo de aquisição (em s) para os dados adquiridos a 23/07/2020.

Figure 13. Gráfico do fluxo de muões em função da espessura do betão atravessado.

3.4 Profundidade

Como esperado (Tabela 2), à medida que nos vamos aproximando da cave do Departamento, aumentando, assim, o número de pisos e, consequentemente, a espessura de betão que os muões atravessaram, o fluxo de muões vai diminuindo progressivamente, comportando-se como uma função exponencial.

Ao ajustar uma função exponencial aos pontos obtidos (ver Figura 13), obtivemos a seguinte expressão:

$$y = 0.0505e^{-0.001x} \tag{1}$$

em que y é o fluxo de muões e x é a espessura do betão atravessado, que vem adicionada dos pisos superiores.

Nesta representação gráfica, verificamos que a curva ajustada se aproxima dos pontos, apresentando ainda as-

Figure 14. Gráfico do fluxo de muões em função da orientação dos detetores com a vertical.

sim algum desvio. Uma possível justificação para esses desvios será o facto dos valores da espessura e densidade do betão apresentarem variações nas várias lajes do departamento, não consideradas neste estudo.

3.5 Variação do ângulo com a vertical

Para o estudo desses muões, decidimos orientar o detetor em diferentes ângulos: 0°, 12°, 30°, 45°, 60°, 75° e 90° com a vertical. Visto os muões cósmicos se deslocarem maioritariamente na vertical, já que vêm da atmosfera, deduzimos que, com o aumento da inclinação, teríamos uma diminuição do fluxo de muões, algo que se pode verificar pelo gráfico.

A variação esperada para o fluxo é da seguinte forma:

$$y = a.cos \left(\pi \frac{bx+c}{360^o}\right)^2 + d,$$
(2)

em que o x representa o ângulo em graus e y o fluxo de muões (muões/s), b e c são constantes sem unidades associadas, com o propósito de ajustar a largura e a fase da função, respetivamente, a representa o valor do fluxo integral de muões quando os detetores estão na vertical e do fundo (eventos de fundo). Calculando o fluxo de muões nas diferentes inclinações, foi possível ajustar a função aos dados obtidos no programa *GNUPlot*, obtendo a seguinte representação grafica e os seguintes parâmetros a,b,c,d:

Podemos também verificar que a curva traçada não se desvia muito de nenhum dos pontos, sendo este um indicador do bom funcionamento do detetor.

Piso	Espessura do betão (cm)	Fluxo de muões (muões/s)
4° andar	36	0.0496±0.0008
2° andar	108	0.0425 ± 0.0007
Cave (-1)	254	0.0359 ± 0.0004
Subcave (-2)	328	0.0337 ± 0.0003

Table 2. Valores do fluxo de muões para diferentes pisos do departamento

a	0.046 muões/s
b	2.151

-2.375

c

0.0033 muões/s d

Table 3. Valores dos parâmetros obtidos após fazer o ajuste aos dados

4 Conclusão

O objectivo deste trabalho era medir o fluxo de muões em diferentes pisos do Departamento de Física da Universidade de Coimbra, variar o ângulo de inclinação do detector com a vertical, de forma a testar a configuração que seria depois lançado para o espaço num balão (até 30 km de altitude) para medir a variação do fluxo de muões com a altitude.

Devido à restrinções impostas no âmbito do controlo da pandemia de 2020, as medidas só ficaram prontas em finais de julho tendo atrasado o lançamento do balão, faltando só modificar o código do GPS para o seu funcionamento. As nossas medições teste funcionaram como esperado. No entanto, as nossas medidas foram todas retiradas dentro do edifício do Departamento de Física, em locais fechados e ambientes calmos. Seria importante também testar o detetor em ambientes menos controlados, ou

seja, no exterior, onde existem outros fatores que podem influenciar a experiência.

Agradecimentos

Agradecemos aos nossos orientadores: Alexandre Lindote, Filipe Veloso e Francisco Neves.

References

- [1] Cosmic rays: particles from outer space, https://home.cern/science/physics/cosmic-rays-particles-outer-space
- [2] Cosmic watch: catch yourself а muon, http://cosmicwatch.lns.mit.edu/
- [3] CERN, Root: analyzing petabytes of data, scientifically., https://root.cern/
- [4] Microsoft, Microsoft excel, https://www.microsoft.com/pt-pt/microsoft-365/excel
- [5] Matlab: Math. graphics. programming., https://www.mathworks.com/products/matlab.html
- [6] http://www.gnuplot.info/