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Expanding the ATLAS Physics Reach with Anomaly Detection at Trigger Level
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Abstract. Anomaly detetction methods are an increasingly important strategy to detect beyond the Standard
Model physics and are characterized by selecting events because of their incompatibility with a learned back-
ground model. In this work, we apply anomaly detection at the ATLAS trigger level to assess if it can be used
to select anomalous and possibly signal-like events. A machine-learning reconstruction model, an autoencoder,
is developed to reconstruct an enhanced bias background dataset, and its performance is evaluated using a rare
Standard Model simulated signal.
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1 Introduction

1.1 Anomaly Detection and Autoencoders

The Standard Model (SM) provides a framework for un-
derstanding fundamental particles and interactions that has
been remarkably predictive of experimental results over
several decades. However, it remains an incomplete the-
ory, since there are also several experimental results it can-
not explain. This has motivated the search for new physics
beyond the Standard Model (BSM physics). Since the dis-
covery of the Higgs boson in 2012, one of the main ob-
jectives at the Large Hadron Collider (LHC) has been the
search for new particles or interactions, but, so far, nothing
has been detected yet.

Traditionally, event selection is optimized to target
specific signatures of signals, performing a series of hy-
pothesis tests based on the corresponding BSM physics
models. One of the main disadvantages of this approach is
that it may not be sensitive to deviations different from
those expected by the class of hypothetical models that
is being tested [1]. So, even if new physics is present in
data, it may not be detected. Furthermore, these signals
may be present in an enormous scope of cross-sections,
decay channels and final states, some of which have not
been covered yet, and the limited knowledge of how BSM
physics should behave means that we are not able to deter-
mine a priori which phase-spaces to cover.

In order to overcome current biases and blindspots
in our search coverage, a model independent approach,
anomaly detection, can be adopted. These methods are
optimized to detect events that differ from the majority
(background) instead of selecting those which meet cer-
tain kinematic criteria.

Machine learning methods, namely autoencoders
(AE), are widely used in anomaly detection. An AE is
a neural-network architecture commonly used in unsuper-
vised learning as a reconstruction model. It consists of
two modules: an encoder, that compresses the dimension
of the inputs to its latent space (or bottleneck) representa-
tion, and a decoder, that reconstructs the data as accurately
as possible from that representation. The AE is trained to
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minimize the loss, or reconstruction error, that measures
the difference between the input and the output. This re-
construction error can also be used as an anomaly score:
anomalous events are expected to have a higher recon-
struction error than normal events used during training [2].
One of the main advantages of this method is that, as an
unsupervised method, it is data driven, so by training an
AE using a sample dominated by SM background events,
it can be used to identity events which do not meet these
SM properties, since the AE will not be able to reconstruct
them.

1.2 ATLAS Trigger System

The ATLAS detector at the LHC consists of an inner
tracking detector surrounded by a thin superconducting
solenoid, electromagnetic and hadronic calorimeters, and
a muon spectrometer [3]. It covers nearly the entire solid
angle around the collision point and uses a right-handed
coordinate system, where the x-axis points from the colli-
sion point to the center of the LHC, the y-axis points up-
ward and the z-axis points in the direction of the beam.
In the transverse plane, cylindrical coordinates are used,
where ϕ is measured around the z-axis (the x-axis corre-
sponds to ϕ = 0). The polar angle θ is measured from the
beam axis and is usually transformed to a pseudorapidity
η = − ln tan( θ2 ).

During data taking, the LHC provides a bunch cross-
ing every 25 ns, which corresponds to a collision rate of
40 MHz. Besides being impossible to read, store and pro-
cess such an enormous volume of data, only a small subset
of these events contain interesting information for physics
analysis. Thus, it is crucial to select those events that are
relevant for permanent storage and offline analysis.

The ATLAS Trigger and Data Acquisition System is
responsible for the online processing and the selection of
these events with distinguishing characteristics (energetic
leptons, photons, hadronic jets, large missing energy...)
[4]. It is based on a two-level event selection (trigger)
system: the Level-1 Trigger (L1), which is hardware-
based, and consists of custom-built electronics, and the
High-Level Trigger (HLT) that uses a dedicated comput-
ing farm to run reconstruction algorithms similar to those
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implemented during offline analysis. The Data Acquisi-
tion (DAQ) system transports the triggered data from cus-
tom subdetector electronics through to offline processing
[3].

The L1 Trigger is based on two independent systems,
L1Calo and L1Muon, that use reduced-granularity (less
detailed) information from the calorimeters and muon sys-
tem, respectively. The L1Calo trigger identifies signatures
from high-pT (transverse momentum) objects such as elec-
trons, photons, jets, and τ-leptons and selects events with
large missing ET , while the L1Muon trigger selects high-
pT muons. The events that satisfy the trigger menu re-
quirements are accepted at a rate up to 100 kHz at a fixed
latency below 2.5 µs [4].

Then, these events are sent to the HLT, whose soft-
ware reconstructs the events at higher levels of detail than
L1: information from the calorimeters, and the muon and
tracking systems is used to provide better energy and mo-
mentum resolution, as well as particle identification for the
reconstructed objects. This analysis can be restricted to
certain regions of interest (RoIs), detector regions (η × ϕ)
identified by the L1 trigger [4]. The trigger menu com-
prises a list of chains, where a chain corresponds to a set of
L1 physics objects and a series of HLT online algorithms
that reconstruct them and apply kinematic selections to
them, reflecting the physics priorities of the experiment.
The physics output rate of the HLT is expected to be 3
kHz on average, and the decisions are made within a few
milliseconds, with the accepted events being then sent to
offline storage.

The goal of this work was to develop an anomaly de-
tection model that could be used at trigger level, namely
at the HLT, to select anomalous events. For that, we opti-
mized an AE that was trained using a background dataset
of real data, as is described in the following sections.

2 Dataset

Two datasets were considered: a background dataset, with
658537 events, and a simulated SM signal corresponding
to di-Higgs production with each Higgs boson decaying to
a pair of b-quarks, HH→bbbb, with 99720 events. The AE
was trained with the background dataset and could then be
used to distinguish the signal from the background. De-
spite using a specific signal to test the AE, our goal was
to create a model that could be applied to select generic
signals. Training the AE using real data prevents relying
on simulation models, which are not completely accurate.

This work follows from a previous project, where a
similar model was developed using the same background
dataset and a good performance was achieved. How-
ever, this model relied on track-based variables with con-
siderable CPU cost [5]. Thus, adapting the model so
that it would not depend on these variables, using low-
level variables instead (such as data from the calorime-
ters), would significantly reduce its CPU usage and present
more favourable use-case for adoption in the trigger menu,
which was the focus of this project.

Thus, for each event, the data from the first and second
leading jets (in transverse momentum, pT ) was used, and

the variables considered were the jets pT and the difference
between the pseudorapidity of the jets (|η1 − η2|). Only the
events where both jets had pT > 20 GeV and |η| < 2.5
were considered.

Each jet comprised several constituents, which corre-
spond to clusters of cells in the calorimeter where the par-
ticles deposit their energy [6]. Therefore, for each jet, the
two leading pT constituents were considered and, for each
constituent, the variables used were: pT , the number of
cells (nCells) and time where the particles deposit their
energy and the location of the constituent relatively to the
axis of the jet, given by three variables dη, dϕ and dr. In
order to identify each of these variables, a double index
was assigned, where the first number identifies the jet and
the second the constituent. In both cases, the index 1 is
assigned to the leading pT object and 2 to the subleading
one. This notation is employed throughout the following
sections.

The plot of each of these variables for both the back-
ground and signal is presented in Figure 1. As an example,
only the three variables of the jets and the variables from
the leading constituents of the leading jets are presented.

Figure 1: Distributions of input variables for background
and signal datasets. All distributions are normalised to
unit.

Calorimeter signals are sensitive to out-of-time pile-
up, which correspond to signals from particles produced
in previous or next bunch-crossings that pile up on top of
those that triggered the data recording [7]. The time and
energy correlation of each cluster, presented in Figure 2
shows the effect of these contributions, with two secondary
peaks appearing at ± 25 ns, which are clearer at higher
energies.
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Figure 2: Cell time as a function of the cell energy.

2.1 Enhanced Bias Mechanism

In order to measure the anticipated rate of events passed
by a given HLT algorithm, in principle, an unbiased sam-
ple of events is needed to obtain the selection rate for that
chain. However, by definition, the purpose of most trig-
ger algorithms is to select rare events of particular inter-
est, whose cross sections are much smaller than the total
inelastic cross section. This means that an enormous sam-
ple of zero bias events would be needed to perform these
calculations. To avoid this problem, enhanced-bias (EB)
datasets can be used instead [5].

EB datasets correspond to a collection of events se-
lected by the L1 trigger system constructed such that
higher energy and object multiplicity bias is removable
with event weights. This dataset is collected using a se-
lection of representative L1 triggers of all physics-objects
types and pT ranges capable of producing a compact
dataset with enough statistical power to assess the trig-
ger rate on the data typically performed by the HLT. Each
chain that is used to take EB datasets introduces a specific
prescale to these events, that corresponds to the number of
rejected events for every accepted one [8].

The recorded events are only biased by the L1 system,
and the EB dataset reflects its configuration and the beam
parameters of the LHC at the time it is taken, so that a
new dataset is required when any of these changes signifi-
cantly [5]. Thus, EB datasets can be used to test updates to
the software release and trigger menu before they are de-
ployed on the live system and evaluate the trigger perfor-
mance, calculating rates of individual chains, or the entire
menu.

As was mentioned, EB data is taken with an invertible
trigger menu, which means that a single weight per event
can be calculable to correct for the prescales used to collect
the dataset, restoring the zero-bias equivalent [8]. The EB
weight of the event e, wEB(e), can be obtained from the
equation:

1
wEB
= 1 −

EB chains∏
j=1

(
1 −

r je

p j

)
(1)

The product runs over the EB chains used to take the
dataset, with r je the decision before the application of any
prescale (r je assumes a binary value) and total prescale

p j (considering both L1 and HLT prescales and assuming
constant prescales during the data taking period) [5].

In this case, the background dataset corresponded to an
EB dataset from 2022. Hence, there was an EB weight as-
sociated to each event. These weights assume discrete val-
ues since each chain introduces a specific prescale. How-
ever, since the value of the prescales is highly variable for
different trigger components, the weights are distributed
over a wide range of values. In Figure 3, the weights are
represented as a function of the pT of the leading jet. As
was expected, the higher weights correspond to the events
with lower pT jets, since these are less represented in the
EB dataset, so a higher correction is needed.

Figure 3: EB weights as a function of the leading jet pT

Figure 4 represents the normalised leading pT distribu-
tion with and without the weights applied. Including the
weights in the pT distribution shows that the EB weights,
besides changing the scale of the distribution, reintroduce
its physical meaning, by removing the influence of the trig-
ger selection on the data. Hence, the weighted pT distribu-
tion corresponds to a typical smoothly falling leading jet
distribution, where, once again, it is visible that the high
pT jets lose representation when the weights are applied.
The distribution is shown for a range of up to 850 GeV in
leading jet pT , where there are enough statistics for a use-
ful visualisation, but the events extend to values of 1000
GeV.

Figure 4: Distributions of the leading jet pT with and with-
out considering EB weights normalised to unit.

These weights can also be considered during the AE
training process, as is shown in the next section.
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3 Autoencoder

The AE was implemented using TensorFlow/Keras. Sev-
eral aspects influence the AE performance, namely the
choice of input features, the standardization of input data
and the AE architecture (number of hidden layers, latent
space dimension and training hyperparameters), which
were optimized to reconstruct the background as closely
as possible. The main conclusions about the AE imple-
mentation, and the influence of each of these factors, are
presented in the following sections. Before implement-
ing the model, the background dataset was split into three
sets: training and validation (which are used during train-
ing) and the test set (used after training to assess the AE
performance).

3.1 Standardization

Standardization of the input data is an important step be-
fore the training process. The training and validation sets
contain different features, with different units and ranges
of values, which can affect the model’s performance, as
features with larger ranges may dominate the training.
Therefore, standardizing the input features balances the
inputs, keeping the weights and activations within a rea-
sonable range and reduces the impact of any outliers in
the data, reducing the network’s sensitivity to changes in
inputs or weights [9].

In this case, all the sets were standardized using scikit-
learn’s StandardScaler, which transforms each of the sets
using the equation x→ x−xtrain

σtrain
.

3.2 Variable Transformations

The first iterations of the AE training showed that the AE
struggled to reconstruct some variables with sharp fea-
tures, such as the pT distribution for both jets and con-
stituents, as commonly seen in literature [10]. Figure 5
presents an example of these results, for the subleading jet
and the subleading constituent of the subleading jet. In or-
der to minimize this problem, the following variables were
used instead: log

(
pT1
pT2

)
(for the jets) and log

( pTi j

pTi

)
(for the

constituents), (where, as mentioned previously, i identifies
the jet and j the constituent, with both being either 1 or 2).

Figure 5: AE poor reconstruction of pT2 and pT22.

This transformation significantly improved the recon-
struction of the variables associated to the constituents;

however, that was not the case for the jets, as is shown
in Figure 6. Hence, the pT of the jets was once again con-
sidered in separate.

Figure 6. AE poor
reconstruction of log

(
pT1
pT2

)
.

3.3 AE Architecture and Performance

Several different AE architectures were tested, considering
different combinations of the parameters presented in sec-
tion 3. The goal was to find the version of the AE that bet-
ter reconstructed the input features (lower validation loss),
and whose performance was stable when the training was
repeated with different network initializations and using
different training and validation sets.

As was mentioned in 1.1, the encoder contains sev-
eral hidden layers and compresses the input (with dimen-
sion 27, in this case) to its representation on the latent
space, which corresponds to a latent layer, whose dimen-
sion needs to be optimized. The decoder mirrors the struc-
ture of the encoder, with the same number and dimension
of layers, but in the reverse order, and with an output layer
that recovers the input’s dimension.

In this case, we started by testing an AE with three hid-
den layers and the latent space with dimension 14, which
did not give a good reconstruction of the data. Thus, we
increased the dimension of the latent space by successively
adding two and testing the results of the reconstruction
after each increase. For each latent space dimension, an
encoder structure with two and three hidden layers was
tested. As expected, the results were consistently better
when three layers were added, but adding a fourth layer
did not improve the results. The dimension of the latent
space was increased until 20, after which the performance
of the model stabilized. Therefore the final version of the
model contains three hidden layers, with dimensions 25,
24 and 22, and the latent layer with dimension 20.

For all training iterations, the ReLU activation func-
tion is applied to all layers, except the last, the model is
compiled using the accuracy as the weighted metrics and
the Adam optimizer. The batch size is 1024 (a batch size
of 512 was also tested, but it was not found any clear in-
fluence on the results). The reconstruction loss function
corresponds to the mean squared error between the input
and the reconstructed values of the dataset. The training
process is monitored using the reconstruction loss of the
validation set for 300 epochs, with an early stopping when
this value does not decrease within 15 epochs (in this case,
the best weights are restored).

The EB weights of each event were also added to the
AE. During the training process, the loss of each sample of
the batch is rescaled by the corresponding element in the
sample weight vector, so that samples with higher weights
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will have a greater influence on the total loss and the model
will prioritize minimizing the loss of these samples.

The results for the final version of the AE are presented
in Figure 7, where the data of the jets and the subleading
constituents of the subleading jets from the test dataset is
represented before and after reconstruction. While the op-
timization of the model led to a very good reproduction
of some of the variables, others, namely the jets pT and
nCells, were still not perfectly reconstructed.

Figure 7: AE reconstruction of the jet variables and the
subleading constituent of the subleading jet from the test
dataset.

One possible explanation for this would be that the
duration of the training was insufficient for the model to
learn all the features of the variables. The evolution of
the training and validation loss function shows that it is
common for both of these to stabilize for a certain num-
ber of epochs, before start decreasing again. An exam-
ple of this behaviour is presented in Figure 8. Imposing
an early stopping in the training could prevent the model
from reaching its maximum performance. So, to test if
increasing the duration of training would improve the re-
sults, both the number of epochs and the patience of the
model (that controls the early stopping) were increased.
Different values of both parameters were tested, up to 2000
epochs with 100 epochs of patience, but the model still
struggled to reconstruct the same variables as previously
(the reconstruction of the jets pT is presented in Figure
9, which confirmed that the training hyperparameters that
were previously used did not significantly compromise the
AE performance).

Figure 8. Example of
training and validation loss.

Figure 9: Reconstruction of pT1 and pT2 after increasing
the duration of training.

The model was then used to try to reconstruct the sig-
nal (which was also standardized), and the results are pre-
sented in Figure 10. As was expected, in general, the AE
was not able to reconstruct the signal, although for some
variables, such as time, the distribution of the reconstruc-
tion was closer to the original distribution than expected.

Figure 10: AE reconstruction of the signal dataset.

3.4 ROC Curve and Background Rate

The results from the background and signal reconstruction
for the AE can be used to obtain the ROC curve of the
model. A ROC (Receiver Operating Characteristic) curve
is a common method to assess the performance of classifi-
cation models, although it can also be applied to classifiers
that return some confidence score or a probability of pre-
diction, such as decision trees or neural networks [11]. In
this case, as this was a case of unsupervised learning, the
ROC curve was obtained using the logarithm of the re-
construction loss (mean squared error between the input
and the output), log10(mse), as the anomaly score for each
event in both datasets. The plot of the anomaly score for
both datasets is presented in Figure 11. Although the high-
est values for the anomaly score correspond to the signal,
as intended, the fact that some of the background variables
were not perfectly reconstructed increases the anomaly
score of the corresponding events. This also increases the
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overlap between the anomaly scores distributions, com-
promising the model’s ability to distinguish signal from
background, which is reflected in the ROC curve.

Figure 11. Anomaly
score for the signal and
background
reconstruction.
Distributions are
normalised to unit area.

The ROC curve can be obtained by plotting the back-
ground rejection, defined as the inverse of the false pos-
itive rate (proportion of background examples predicted
incorrectly) against the signal efficiency, or true positive
rate (proportion of signal examples predicted correctly), at
various thresholds settings. A better classifier maximizes
the two parameters simultaneously, which corresponds to
a curve closer to the upper right corner of the ROC space.
In this case, the signal efficiency is obtained simply by
calculating the ratio between the number of events that are
above the threshold and the total number of events. How-
ever, for the background dataset, the sum is done on the
weights of the events instead.

The ROC curve is presented in Figure 12 and confirms
what the distribution of the anomaly scores already sug-
gested: the model presents some difficulties distinguishing
the two datasets. Since the distributions of the anomaly
scores are so close, for lower thresholds, there are still a
a significant number of signal events considered as back-
ground, so the signal efficiency doesn’t stabilize in 1.

Figure 12: ROC curve of the AE.

This data can also be used to predict the background
rate of a trigger chain based on this model, for a certain
threshold, which can be obtained using:

R =

N∑
e=1
wEB

∆t
, (2)

where R is the rate (in Hz), ∆t is the time period over
which the EB dataset was collected (21600s were con-

sidered), the sum runs over all the events whose anomaly
score is higher than the threshold and wEB is the enhanced
bias weight of those events, which gives the effective num-
ber of events passed by the chain [5]. The background rate
distribution, along with dynamical restrictions of the oper-
ations and trigger menu, sets the threshold for the anomaly
score.

The distribution of the rate as a function of the signal
efficiency is presented in Figure 13. For lower thresholds,
both signal efficiency and background rate are high, which
is expected. However, the background rate is still consid-
erable for lower thresholds (or lower signal efficiencies),
which confirms that the model does not reject all the back-
ground.

Figure 13: Background rate as a function of signal effi-
ciency.

4 Conclusion and Next Steps

In conclusion, it was possible to develop an unsupervised
learning model that used low-level input variables that are
readily available at HLT. However, that raised new chal-
lenges in its optimization and affected its performance,
compared to a model that used track-based variables.
Namely, despite testing different architectures, input vari-
ables and training hyperparameters, the model struggled
to reject enough background, which kept the trigger back-
ground rate high.

Thus, it would be important to test the AE on another
EB dataset (taken in a different time period, with different
configurations) to verify if the problems in the reconstruc-
tion of some variables encountered with this dataset were
also present and compare the background rate obtained
with the new dataset to the one obtained in this project.

Moreover, this work proved that changing the input
variables of the AE affected its performance, which may
suggest that this ML model might not be the most suitable
for this data. An AE, like other typical ML algorithms,
was designed for fixed dimensional data instances. Since
the number of constituents in each jet is variable, and it
would be desirable to use the data from all constituents,
using an architecture that doesn’t require fixed-size inputs
could improve the results. One possible alternative would
be using Deep Sets, where inputs or outputs of the model
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are permutation invariant sets instead of fixed dimensional
vectors [12]. Hence, since jets can be seen as variably
sized sets invariant under reordering of their constituents,
using an architecture within this framework might be a
more appropriate solution. Future work can focus on the
development of these other architectures in order to test
this hypothesis.
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