Lesson 4

Exercises

Alexandre Lindote, 22nd of March 2024

The Experiment

- Consider a WIMP search experiment based on a 2-phase xenon TPC
 - Assume that the fiducial mass is 5600 kg
 - And that the experiment runs for 3 years with an average 90% duty cycle
- As with any similar detector, the experiment measures the S1 (scintillation) and S2 (ionisation) signals for each interaction
 - 3D position reconstruction => ability to fiducialise the volume
 - NR vs ER discrimination (based on S2/S1)
 - Assume a 50% acceptance for nuclear recoils

The Experiment

- This experiment is searching for NRs in the 5-50 keV nuclear recoil range
- Let's treat this as a simplified counting experiment
 - After a thorough analysis of all the background sources (ER and NR), we expect 1.5 events in our search region (before unblinding the science data)
 - After unblinding, we observe **4** candidate events!
- For simplicity, let's assume
 - The Earth is stationary: $\boldsymbol{v}_{\boldsymbol{E}} = (0, 0, 0)$
 - There is no upper limit on the velocity of the DM particles:
 - The form factor is 1: F²(q) = 1

- Find the 90% confidence level interval on the mean number of signal counts (µ) from Feldman-Cousins* statistics
 - Would you claim a WIMP discovery with this experiment?
 - Justify

* G.J. Feldman, R.D. Cousins, "A Unified Approach to the Classical Statistical Analysis of Small Signals", PRD 57 (1998) 3873, arXiv:physics/9711021

Exercise 1 Feldman-Cousins statistics

TABLE IV. 90% C.L. intervals for the Poisson signal mean μ , for total events observed n_0 , for known mean background *b* ranging from 0 to 5.

$n_0 \setminus b$	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	5.0
0	0.00, 2.44	0.00, 1.94	0.00, 1.61	0.00, 1.33	0.00, 1.26	0.00, 1.18	0.00, 1.08	0.00, 1.06	0.00, 1.01	0.00, 0.98
1	0.11, 4.36	0.00, 3.86	0.00, 3.36	0.00, 2.91	0.00, 2.53	0.00, 2.19	0.00, 1.88	0.00, 1.59	0.00, 1.39	0.00, 1.22
2	0.53, 5.91	0.03, 5.41	0.00, 4.91	0.00, 4.41	0.00, 3.91	0.00, 3.45	0.00, 3.04	0.00, 2.67	0.00, 2.33	0.00, 1.73
3	1.10, 7.42	0.60, 6.92	0.10, 6.42	0.00, 5.92	0.00, 5.42	0.00, 4.92	0.00, 4.42	0.00, 3.95	0.00, 3.53	0.00, 2.78
4	1.47, 8.60	1.17, 8.10	0.74, 7.60	0.24, 7.10	0.00, 6.60	0.00, 6.10	0.00, 5.60	0.00, 5.10	0.00, 4.60	0.00, 3.60
5	1.84, 9.99	1.53, 9.49	1.25, 8.99	0.93, 8.49	0.43, 7.99	0.00, 7.49	0.00, 6.99	0.00, 6.49	0.00, 5.99	0.00, 4.99
6	2.21,11.47	1.90,10.97	1.61,10.47	1.33, 9.97	1.08, 9.47	0.65, 8.97	0.15, 8.47	0.00, 7.97	0.00, 7.47	0.00, 6.47
7	3.56,12.53	3.06,12.03	2.56,11.53	2.09,11.03	1.59,10.53	1.18,10.03	0.89, 9.53	0.39, 9.03	0.00, 8.53	0.00, 7.53
8	3.96,13.99	3.46,13.49	2.96,12.99	2.51,12.49	2.14,11.99	1.81,11.49	1.51,10.99	1.06,10.49	0.66, 9.99	0.00, 8.99
9	4.36,15.30	3.86,14.80	3.36,14.30	2.91,13.80	2.53,13.30	2.19,12.80	1.88,12.30	1.59,11.80	1.33,11.30	0.43,10.30
10	5.50,16.50	5.00,16.00	4.50,15.50	4.00,15.00	3.50,14.50	3.04,14.00	2.63,13.50	2.27,13.00	1.94,12.50	1.19,11.50
11	5.91,17.81	5.41,17.31	4.91,16.81	4.41,16.31	3.91,15.81	3.45,15.31	3.04,14.81	2.67,14.31	2.33,13.81	1.73,12.81
12	7.01,19.00	6.51,18.50	6.01,18.00	5.51,17.50	5.01,17.00	4.51,16.50	4.01,16.00	3.54,15.50	3.12,15.00	2.38,14.00
13	7.42,20.05	6.92,19.55	6.42,19.05	5.92,18.55	5.42,18.05	4.92,17.55	4.42,17.05	3.95,16.55	3.53,16.05	2.78,15.05
14	8.50,21.50	8.00,21.00	7.50,20.50	7.00,20.00	6.50,19.50	6.00,19.00	5.50,18.50	5.00,18.00	4.50,17.50	3.59,16.50
15	9.48,22.52	8.98,22.02	8.48,21.52	7.98,21.02	7.48,20.52	6.98,20.02	6.48,19.52	5.98,19.02	5.48,18.52	4.48,17.52
16	9.99,23.99	9.49,23.49	8.99,22.99	8.49,22.49	7.99,21.99	7.49,21.49	6.99,20.99	6.49,20.49	5.99,19.99	4.99,18.99
17	11.04,25.02	10.54,24.52	10.04,24.02	9.54,23.52	9.04,23.02	8.54,22.52	8.04,22.02	7.54,21.52	7.04,21.02	6.04,20.02
18	11.47,26.16	10.97,25.66	10.47,25.16	9.97,24.66	9.47,24.16	8.97,23.66	8.47,23.16	7.97,22.66	7.47,22.16	6.47,21.16
19	12.51,27.51	12.01,27.01	11.51,26.51	11.01,26.01	10.51,25.51	10.01,25.01	9.51,24.51	9.01,24.01	8.51,23.51	7.51,22.51
20	13.55,28.52	13.05,28.02	12.55,27.52	12.05,27.02	11.55,26.52	11.05,26.02	10.55,25.52	10.05,25.02	9.55,24.52	8.55,23.52

Exercise 1

Feldman-Cousins statistics

TABLE IV. 90% C.L. intervals for the Poisson signal mean μ , for total events observed n_0 , for known mean background *b* ranging from 0 to 5.

$n_0 b$	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	5.0
0	0.00, 2.44	0.00, 1.94	0.00, 1.61	0.00, 1.33	0.00, 1.26	0.00, 1.18	0.00, 1.08	0.00, 1.06	0.00, 1.01	0.00, 0.98
1	0.11, 4.36	0.00, 3.86	0.00, 3.36	0.00, 2.91	0.00, 2.53	0.00, 2.19	0.00, 1.88	0.00, 1.59	0.00, 1.39	0.00, 1.22
2	0.53, 5.91	0.03, 5.41	0.00, 4.91	0.00, <i>4 4</i> 1	0 00 3 91	0.00 3.45	0.00 3.04	0 00 2 67	0.00, 2.33	0.00, 1.73
3	1.10, 7.42	0.60, 6.92	0.10, 6.42	0.00, At 9	90% CL t	here seel	ms to be	a signal!	0.00, 3.53	0.00, 2.78
4	1.47, 8.60	1.17, 8.10	0.74, 7.60	0.24, 7.10	0.00, 6.60	0.00, 6.10	0.00, 5.60	0.00, 5.10	0.00, 4.60	0.00, 3.60
5	1.84, 9.99	1.53, 9.49	1.25, 8.99	0.93, 8.49	0.43, 7.99	0.00, 7.49	0.00, 6.99	0.00, 6.49	0.00, 5.99	0.00, 4.99
6	2.21,11.47	1.90,10.97	1.61,10.47	1.33, 9.97	1.08, 9.47	0.65, 8.97	0.15, 8.47	0.00, 7.97	0.00, 7.47	0.00, 6.47
7	3.56,12.53	3.06,12.03	2.56,11.53	2.09,11.03	1.59,10.53	1.18,10.03	0.89, 9.53	0.39, 9.03	0.00, 8.53	0.00, 7.53
8	3.96,13.99	3.46,13.49	2.96,12.99	2.51,12.49	2.14,11.99	1.81,11.49	1.51,10.99	1.06,10.49	0.66, 9.99	0.00, 8.99
9	4.36,15.30	3.86,14.80	3.36,14.30	2.91,13.80	2.53,13.30	2.19,12.80	1.88,12.30	1.59,11.80	1.33,11.30	0.43,10.30
10	5.50,16.50	5.00,16.00	4.50,15.50	4.00,15.00	3.50,14.50	3.04,14.00	2.63,13.50	2.27,13.00	1.94,12.50	1.19,11.50
11	5.91,17.81	5.41,17.31	4.91,16.81	4.41,16.31	3.91,15.81	3.45,15.31	3.04,14.81	2.67,14.31	2.33,13.81	1.73,12.81
12	7.01,19.00	6.51,18.50	6.01,18.00	5.51,17.50	5.01,17.00	4.51,16.50	4.01,16.00	3.54,15.50	3.12,15.00	2.38,14.00
13	7.42,20.05	6.92,19.55	6.42,19.05	5.92,18.55	5.42,18.05	4.92,17.55	4.42,17.05	3.95,16.55	3.53,16.05	2.78,15.05
14	8.50,21.50	8.00,21.00	7.50,20.50	7.00,20.00	6.50,19.50	6.00,19.00	5.50,18.50	5.00,18.00	4.50,17.50	3.59,16.50
15	9.48,22.52	8.98,22.02	8.48,21.52	7.98,21.02	7.48,20.52	6.98,20.02	6.48,19.52	5.98,19.02	5.48,18.52	4.48,17.52
16	9.99,23.99	9.49,23.49	8.99,22.99	8.49,22.49	7.99,21.99	7.49,21.49	6.99,20.99	6.49,20.49	5.99,19.99	4.99,18.99
17	11.04,25.02	10.54,24.52	10.04,24.02	9.54,23.52	9.04,23.02	8.54,22.52	8.04,22.02	7.54,21.52	7.04,21.02	6.04,20.02
18	11.47,26.16	10.97,25.66	10.47,25.16	9.97,24.66	9.47,24.16	8.97,23.66	8.47,23.16	7.97,22.66	7.47,22.16	6.47,21.16
19	12.51,27.51	12.01,27.01	11.51,26.51	11.01,26.01	10.51,25.51	10.01,25.01	9.51,24.51	9.01,24.01	8.51,23.51	7.51,22.51
20	13.55,28.52	13.05,28.02	12.55,27.52	12.05,27.02	11.55,26.52	11.05,26.02	10.55,25.52	10.05,25.02	9.55,24.52	8.55,23.52

But is it enough to claim a discovery?...

Exercise 1

Feldman-Cousins statistics

- In science, a 90% CL is not enough to declare a "discovery"
- Definitions vary, but in high-energy physics the accepted levels are:
 - 3σ to be considered an "observation"
 - 5σ to be considered a "discovery"
- Both are well above a 90% CL:
 - 3*σ* is a 99.73% CL
 - 5*σ* is a 99.999943% CL

Exercise 1

Feldman-Cousins statistics

• If we look in the 95% CL table, these results are already compatible with no signal !

TABLE VI. 95% C.L. intervals for the Poisson signal mean μ , for total events observed n_0 , for known mean background *b* ranging from 0 to 5.

$n_0 \setminus b$	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	5.0
0	0.00, 3.09	0.00, 2.63	0.00, 2.33	0.00, 2.05	0.00, 1.78	0.00, 1.78	0.00, 1.63	0.00, 1.63	0.00, 1.57	0.00, 1.54
1	0.05, 5.14	0.00, 4.64	0.00, 4.14	0.00, 3.69	0.00, 3.30	0.00, 2.95	0.00, 2.63	0.00, 2.33	0.00, 2.08	0.00, 1.88
2	0.36, 6.72	0.00, 6.22	0.00, 5.72	0.00, 5.22	0.00, 4.72	0.00, 4.25	0.00, 3.84	0.00, 3.46	0.00, 3.11	0.00, 2.49
3	0.82, 8.25	0.32, 7.75	0.00, 7.25	0.00, 6.75	0.00, 6.25	0.00, 5.75	0.00, 5.25	0.00, 4.78	0.00, 4.35	0.00, 3.58
4	1.37, 9.76	0.87, 9.26	0.37, 8.76	0.00, 8.26	0.00, 7.76	0.00, 7.26	0.00, 6.76	0.00, 6.26	0.00, 5.76	0.00, 4.84
5	1.84,11.26	1.47,10.76	0.97,10.26	0.47, 9.76	0.00, 9.26	0.00, 8.76	0.00, 8.26	0.00, 7.76	0.00, 7.26	0.00, 6.26
6	2.21,12.75	1.90,12.25	1.61,11.75	1.11,11.25	0.61,10.75	0.11,10.25	0.00, 9.75	0.00, 9.25	0.00, 8.75	0.00, 7.75
7	2.58,13.81	2.27,13.31	1.97,12.81	1.69,12.31	1.29,11.81	0.79,11.31	0.29,10.81	0.00,10.31	0.00, 9.81	0.00, 8.81
8	2.94,15.29	2.63,14.79	2.33,14.29	2.05,13.79	1.78,13.29	1.48,12.79	0.98,12.29	0.48,11.79	0.00,11.29	0.00,10.29
9	4.36,16.77	3.86,16.27	3.36,15.77	2.91,15.27	2.46,14.77	1.96,14.27	1.62,13.77	1.20,13.27	0.70,12.77	0.00,11.77
10	4.75,17.82	4.25,17.32	3.75,16.82	3.30,16.32	2.92,15.82	2.57,15.32	2.25,14.82	1.82,14.32	1.43,13.82	0.43,12.82
11	5.14,19.29	4.64,18.79	4.14,18.29	3.69,17.79	3.30,17.29	2.95,16.79	2.63,16.29	2.33,15.79	2.04,15.29	1.17,14.29
12	6.32,20.34	5.82,19.84	5.32,19.34	4.82,18.84	4.32,18.34	3.85,17.84	3.44,17.34	3.06,16.84	2.69,16.34	1.88,15.34
13	6.72,21.80	6.22,21.30	5.72,20.80	5.22,20.30	4.72,19.80	4.25,19.30	3.84,18.80	3.46,18.30	3.11,17.80	2.47,16.80
14	7.84,22.94	7.34,22.44	6.84,21.94	6.34,21.44	5.84,20.94	5.34,20.44	4.84,19.94	4.37,19.44	3.94,18.94	3.10,17.94
15	8.25,24.31	7.75,23.81	7.25,23.31	6.75,22.81	6.25,22.31	5.75,21.81	5.25,21.31	4.78,20.81	4.35,20.31	3.58,19.31
16	9.34,25.40	8.84,24.90	8.34,24.40	7.84,23.90	7.34,23.40	6.84,22.90	6.34,22.40	5.84,21.90	5.34,21.40	4.43,20.40
17	9.76,26.81	9.26,26.31	8.76,25.81	8.26,25.31	7.76,24.81	7.26,24.31	6.76,23.81	6.26,23.31	5.76,22.81	4.84,21.81
18	10.84,27.84	10.34,27.34	9.84,26.84	9.34,26.34	8.84,25.84	8.34,25.34	7.84,24.84	7.34,24.34	6.84,23.84	5.84,22.84
19	11.26,29.31	10.76,28.81	10.26,28.31	9.76,27.81	9.26,27.31	8.76,26.81	8.26,26.31	7.76,25.81	7.26,25.31	6.26,24.31
20	12.33,30.33	11.83,29.83	11.33,29.33	10.83,28.83	10.33,28.33	9.83,27.83	9.33,27.33	8.83,26.83	8.33,26.33	7.33,25.33

WIMP-nucleus cross section limit

Exercise 2: Estimate the experiment sensitivity for a 50 GeV WIMP

• Start from the differential nuclear recoil spectrum we expect from WIMPs (slide 18 in Lesson 2)

$$\frac{dR}{dE_R} = \frac{\rho_0 \sigma_A}{2m_\chi {\mu_A}^2} F^2(q) \int_{\nu_{\min}}^{\nu_{\max}} \frac{f(\vec{v})}{v} d^3 v$$

- dR is the NR differential rate (ev/kg/day/keV)
- dE_R is our energy range

WIMP-nucleus cross section limit

Exercise 2: Estimate the experiment sensitivity for a 50 GeV WIMP

• Start from the differential nuclear recoil spectrum we expect from WIMPs (slide 18 in Lesson 2)

$$\frac{dR}{dE_R} = \frac{\rho_0 \sigma_A}{2m_\chi {\mu_A}^2} F^2(q) \int_{\nu_{\min}}^{\nu_{\max}} \frac{f(\vec{v})}{v} d^3 v$$

- dR is the NR differential rate (ev/kg/day/keV)
- dE_R is our energy range

Let's assume some simplifications:

- The Earth is stationary
- There is no upper limit on the velocity of the DM particles:
- The form factor is 1: $F^2(q) = 1$

WIMP-nucleus cross section limit

Expected Rates in a Detector

We want to evaluate R_0 , E_0 and r. Here are numbers for the quantities that we need to input:

$$\rho_0 = 0.3 \text{ GeVc}^{-2} \text{cm}^{-3}$$

= 3 × 10⁵ GeVc⁻²m⁻³
$$v_0 = 220 \text{ kms}^{-1}$$

= 2.2 × 10⁵ ms⁻¹
$$m_{\chi} = 50 \text{ GeVc}^{-2}$$

$$m_A = 122.30 \text{ GeVc}^{-2} \quad \text{(Xenon)}$$

which leads to:

$$R_0 = (1.2179 \times 10^7 \text{ GeV}^{-1} \text{c}^2 \text{m}^{-2} \text{s}^{-1}) \sigma_A$$
(34)

$$= (6.8319 \times 10^{33} \text{ kg}^{-1} \text{m}^{-2} \text{s}^{-1}) \sigma_A$$

$$= (6.8319 \times 10^{29} \text{ kg}^{-1} \text{cm}^{-2} \text{s}^{-1}) \sigma_A$$

$$= (5.9028 \times 10^{34} \text{ counts/kg/day/cm}^2)\sigma_A$$

$$E_0 = 1.21 \times 10^{12} \text{ GeVc}^{-2}\text{m}^2\text{s}^{-2}$$

$$= 13.463 \text{ keV}$$

$$r = 0.82392$$

$$\rightarrow \frac{R_0}{E_0 r} = 5.3215 \times 10^{33} \text{ counts/kg/day/keV/cm}^2) \sigma_A$$

$$1 \text{ GeV/c}^2 = 1.78266 \times 10^{-27} \text{ kg}$$

(35)

(36)

(37)

(38)

(39)

(40)

(41)

$$R_0 = \frac{2\rho_0 \sigma_A v_0}{m_\chi m_A \sqrt{\pi}}$$

$$E_i = \frac{1}{2}m_{\chi}v^2$$

$$r = \frac{4m_{\chi}m_N}{\left(m_{\chi} + m_N\right)^2}$$

$$r = \frac{4m_{\chi}m_N}{\Gamma} (1)$$

WIMP-nucleon cross section limit

Exercise 3 (use the WIMP-nucleus CS obtained in exercise 2)

 $E_{R} = \frac{\left|\vec{q}\right|^{2}}{2m_{N}} = \frac{\mu^{2}v^{2}}{m_{N}}(1 - \cos\theta)$ From slide 22 of lesson 2 (or from L&S paper)

$$\sigma_{A}^{SI}(q \to 0) = \frac{4\mu_{A}^{2}}{\pi} [Zf_{p} + (A - Z)f_{n}]^{2} \approx \frac{\mu_{A}^{2}}{\mu_{p}^{2}} \sigma_{p}A^{2}$$

Reduced masses:

$$\iota = \frac{m_{\chi} m_N}{m_{\chi} + m_N}$$

• m_{Xe} = 122.3 GeV/c²

•
$$m_p = 0.83 \Re(QeV = \frac{\mu_A^2}{\mu_p^2} \sigma_{p,n}^{SD} \left[\frac{4}{3} \frac{J+1}{J} \left(a_p \left\langle S_p \right\rangle + a_n \left\langle S_n \right\rangle \right)^2 \right]$$

• $A = 131.2$

3

Sensitivity curve Homework

- Generalize the calculations we have just done. Create a plot of the experiment sensitivity (at 90%, 95% or 99% CL) to the SI WIMP-nucleon interaction cross section as a function of the WIMP mass (1 GeV to 1 TeV)
- Feel free to use your favourite tool! Use Python, GNUPlot, Excel, Google Sheets, etc. You can even do it manually!

Exercise 4 Minimum WIMP mass

- What is the minimum WIMP mass our detector is sensitive to?
 - Assume a WIMP escape velocity of 544 km/s
 - Assume the velocity of the Earth is 220 km/s

 These are the differential rate and 90% CL limit on the cross section plots with the assumptions we used

• Including a finite escape velocity has basically no effect

- Including a finite escape velocity has basically no effect
- Adding the Earth velocity clearly increases the recoil spectrum in the chosen energy range (WIMP particles have more energy), making the detection more favourable for low masses

- Including a finite escape velocity has basically no effect
- Adding the Earth velocity clearly increases the recoil spectrum in the chosen energy range (WIMP particles have more energy), making the detection more favourable for low masses
- Including a <1 form factor that depends on the transferred momentum has a clear impact, especially for higher masses

Other interesting effects

Feel free to try these in your homework

- With a lighter target we gain some sensitivity at low masses, but lose on the coherence factor (A²)
- A low energy threshold has a big impact on these experiments, particularly (but not only) at low masses

Bibliography

- "A History of Dark Matter", by Gianfranco Bertone and Dan Hooper, Rev. Mod. Phys. 90, 45002 (2018), https://arxiv.org/abs/1605.04909, <u>https://doi.org/10.1103/RevModPhys.90.045002</u>
- "Particle Dark Matter", editor Gianfranco Bertone, Cambridge University Press, August 2010, ISBN: 9780511770739, <u>https://doi.org/10.1017/CBO9780511770739</u>.
- *"Review of mathematics, numerical factor and corrections for dark matter experiments based on elastic nuclear recoils"*, by J.D. Lewin and P.F. Smith, Astroparticle Physics 6 (1996)
- "A Unified Approach to the Classical Statistical Analysis of Small Signals", by G.J. Feldman and R.D. Cousins, <u>PRD 57 (1998) 3873</u>, <u>arXiv:physics/9711021</u>
- "TASI lectures on dark matter models and direct detection", by Tongyan Lin, arXiv: 1904.07915.
- "Lectures on Dark Matter Physics", Mariangela Lisanti, <u>http://indico.ictp.it/event/7624/session/16/</u> <u>contribution/72/material/0/0.pdf</u>
- "Direct Dark Matter Detection", Henrique Araújo, IDPSC School 2021, https://indico.lip.pt/event/643/
- "Dark Matter Searches", Laura Baudis, BND School 2009, <u>http://bnd-graduateschool.org/2009/?</u> <u>Lecture_Notes</u>