
A brief introduction to 
GEANT4 and the  
Monte Carlo Method

Alexandre Lindote 
Office E16, alexandre.lindote@uc.pt

1



❖ 7 classes in total (tentative dates: 19-26/09, 3-17-31/10, 14-28/11)
❖ Slides and class material will be available here, slides shared on UCStudent: 

https://www.lip.pt/~alex/G4Classes/

❖ Total of 5 values for the GEANT4 mini-course
❖ 2 (very easy) home-works: 0.5 each

❖ 2 simple simulations (probably done in class with my help): 0.75 each

❖ Deadline for submission is 2 weeks

❖ Final project: 2.5
❖ deadline to be defined, but before the final exam

❖ For the homeworks I expect a simple report with relevant plots  
(1-2 pages) and the code

❖ For the project you’ll have to write a detailed report (more details later)
❖ You can do this on your own, but preferably in groups of 2
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Logistics and grading

https://www.lip.pt/~alex/G4Classes/


More on logistics…
❖ Computers in this room have the required software  

(GEANT4 and ROOT)
❖ We will use Linux, not Windows

❖ You must select Ubuntu upon restart

❖ By default, we will use ROOT for analysis of the results, but feel free to use a different 
software if you’re familiar with it (GNUPlot, Python, MatLab, etc.)

❖ Later on you will need to use GEANT4 on your own computer
❖ You will need it for the final project
❖ I’ll send instructions for the installation
❖ It will (hopefully!) work on Windows, macOS and Linux

❖ If you don’t have a computer, or have problems installing GEANT4,  
you can use the computers in this room
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Plan for the classes
❖ Lesson 1:

• Concept of Monte Carlo simulation
• Random numbers
• Distribution generators 
• Some examples of Monte Carlo sampling

❖ Lesson 2:
• What is Object Oriented Programming? 
• Introduction to GEANT4
• Basic simulation structure — Mandatory classes in GEANT4
• Concept of Run, Event and Track
• Basic geometry concepts in GEANT4 (materials and volumes)
• Visualisation tools
• Particle generators and particle tracking
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❖ Lesson 3:
• List of available particles and physics processes 
• Following the simulation in real time (step-by-step)
• Optional (but very useful) classes
• Storing simulation results
• Running the simulation in batch mode
• A simple example: simulate the Bragg peak for alpha particles

❖ Lessons 4 — … :
• More examples: gamma shielding, radioactive decay, range of 

electrons, neutron interactions, etc.

• Distribution of the final projects before the last lesson
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Lesson 1 - Monte Carlo Simulation
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Monte Carlo Simulation
❖ Useful when the problem is too complex for an analytical solution 

❖ The goal is to predict the evolution of complex systems using the 
known probability (and final state) of each individual process

❖ Each probability is described by a function (or known distribution), 
which is randomly sampled

❖ It is possible to obtain an approximation of the mean response of the 
full system by running the simulation many times

❖ In physics, distributions are usually in time (e.g. radioactive decay) or 
in space (e.g. Compton scatter), but more complex quantities are also 
used (e.g. final energy and angular distribution after nuclear decays)
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❖ This method was developed in Los Alamos during World 
War II, by people working in the Manhattan Project

❖ It was a secret project, so it (obviously) needed a catchy code 
name: “Monte Carlo”
❖ from the similarity with games of chance in the Monte Carlo casino

❖ First used to estimate shielding  
requirements for gamma radiation and  
neutron scattering (nuclear bombs) 
(we will do both, yay!)

❖ Used in many other scientific areas  
(meteorology, economy, social sciences, etc.)
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Monte Carlo Simulation



❖ Some frequent uses in physics:
➡ designing and optimising experiments
➡ developing data analysis ahead of running an experiment
➡ help interpreting experimental results

❖ It is nowadays a crucial component in every large 
physics experiment!

❖ Widely used in medical physics too, in the development 
and optimisation of imaging techniques, but also in 
treatment planning (e.g. proton therapy, brachytherapy)
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Monte Carlo Simulation



An example from my own experience
❖ I work in the LUX-ZEPLIN (LZ) 

experiment, a detector to search for 
interactions of dark matter with 
(normal) baryonic matter

❖ This is a detector with 10 tons of 
liquified xenon, working 1.5 km 
underground in an old gold mine

❖ From the design and optimisation 
to construction and installation, 
several years are needed (the 
concept started in 2013, the detector 
only started operating in 2021!)
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struction tools.

B. Particle Generation and Tracking: BACCARAT

The LZ code for simulating particles and their inter-
actions, BACCARAT (Basically, A Component-Centric
Analog Response to AnyThing), builds upon that devel-
oped for LUX [6], which sought to provide a more use-
ful interface toGeant4 for low-background experiments.
Central to this interface is the shift of focus towards in-
dividual volumes in the geometry (components). A C++
detector component object was implemented that inher-
its from the underlying Geant4 structure with the goal
of making the code familiar to users of this software, but
also providing additional functionality. This functional-
ity includes macro-level control to set a component as
a three-dimensional source of radioactivity for modeling
impurities in the materials or surface contaminants, as
well as the ability to record varying levels of information
about what occurs in each component, such as the total
energy deposited. Figure 2 illustrates the geometry of
the LZ detector components defined with BACCARAT.

FIG. 2. Visualization of the LZ detector in Geant4-based
BACCARAT. The TPC (magenta) within the cryostat (light
green) is surrounded by the GdLS outer detector tanks (yel-
low) that are immersed in a water tank. The inner part of
the water tank within the PMT structure is shown in blue.

A suite of custom-built generators, based on the
standard framework and generators available within
Geant4, is used to produce the various types of par-
ticles that might interact in the detector, including those

from radiogenic decay and cosmic ray events. They al-
low for the simultaneous and time-delayed emission of
multiple primary particles from a given source. Several
sources may be loaded onto the same or di↵erent compo-
nents, and with arbitrary activities, to replicate the total
expected particle flux in a single simulation run. The
primary particles are pre-determined in time and loca-
tion and chronologically ordered at the beginning of the
simulation, allowing for realistic position and time-based
analysis of the output data stream. A similar approach
is described in Ref. [7]. The resultant particles can go on
to interact in the detector media and form a single event.
The beginning time of each event is recorded to allow for
higher-level analysis, such as event pile-up.
The Geant4 toolkit contains pre-defined physics lists

that provide options for modeling various processes, in-
tended to align with a specific application. The toolkit
also contains the functionality to allow user-defined pro-
cesses to be integrated into the physics of the simula-
tion. The prominent modules that are deployed in BAC-
CARAT are:

1. G4EMLivermorePhysics, which covers electro-
magnetic interactions using Livermore models for
gamma and electron cross-sections [8] [9], extending
the validity of the physics down to 10 eV. This has
a particular focus on low energy processes, such as
Rayleigh and Compton scattering, bremsstrahlung
and the photoelectric e↵ect;

2. G4HadronPhysicsQGSP BIC HP Gd, which
uses the Binary Cascade (BIC) intra-nuclear model
[10] for certain lower energy inelastic interactions,
and adds several community modifications that
better model nuclear processes on Gd: this includes
the DICEBOX neutron capture model described in
Section III C 4;

3. G4S1Light & G4S2Light, which have been de-
veloped by LZ collaborators to integrate NEST
physics into BACCARAT (Section IIC 1), and
which govern the generation of light and charge
quanta in the xenon.

These are in addition to a set of standard reference
physics lists that determine, amongst other things, the
production of light via scintillation and Cherenkov pro-
cesses in non-xenon materials; the at rest and in-flight
decay of radioactive nuclei via ↵, �±, � emission or elec-
tron capture; the emission of electrons and X-rays due to
the relaxation of excited atomic states; the hadronic in-
teractions of photons, electrons and positrons. Both the
generators and the physics lists have been substantially
developed since the advent of BACCARAT in an e↵ort
to better construct events that might be seen in LZ. Ex-
amples of custom-built generators include muon events,
wall events, coincident neutrons and gammas from (↵, n)
reactions, a number of calibration sources etc. Some of
them will be described in more detail below.

GEANT4 geometry rendering

CAD design

Inner detector



An example from my own experience
❖ In the meantime, the Monte 

Carlo simulation of the 
experiment is used to:
❖ Optimise the geometry of the 

various subsystems
❖ Select building materials based on 

their radioactive content
❖ Generate fake data to develop the 

data processing and analysis tools
❖ Estimate how sensitive the 

experiment will be (basically its 
physics reach)
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stead of the default Geant4 value of 6.3% (this addi-
tional scaling of BACCARAT simulations has not been
applied to the curves in Figure 9). Similarly, a 13.3%
probability of 212Pb decaying into the ground state of
212Bi was assumed [51]. Events above 1 MeV are very
unlikely to be single scatters causing a significant reduc-
tion of the event rate at these energies after selecting only
single scatters.
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FIG. 9. Energy spectra of ER events from radon decay. Black
– all events in LXe; red – events with a single scatter in the
TPC; brown – events after all cuts (including veto and fidu-
cial volume cuts, but without NR/ER discrimination). An
initial radioactivity of 1 µBq/kg of radon has been assumed
for normalization.

C. Neutrons from Radioactivity

1. (↵, n) Reactions

Neutrons emitted from radioactive processes in mate-
rials near the LXe target can produce isolated nuclear
recoils that can mimic those expected from WIMPs. To
simulate neutron backgrounds from radioactivity (the
238U, 235U and 232Th decay chains), BACCARAT uses
input neutron spectra calculated with the SOURCES4A
package [52].

The SOURCES4A code calculates neutron yields and
spectra from spontaneous fission, (↵, n) reactions and de-
layed neutron emission due to the decay of radionuclides.
Its library contains all alpha emission lines from known
radioactive isotopes. The code takes into account the
energy losses of alphas, cross-sections of (↵, n) reactions
and the probabilities of nuclear transition to di↵erent ex-
cited states (excitation functions). We use an option for
a thick target, allowing for the calculation of neutron
yields and spectra under the assumption that the size of
a material sample significantly exceeds the range of al-
phas. The original SOURCES4A code has been modified

[53–55] to extend the energy range of alpha particles to
10 MeV and to include (↵, n) cross-sections and excita-
tion functions for most isotopes relevant to underground
rare event experiments, based either on measurements or
on EMPIRE2.19 code [56].

The neutron spectra from SOURCES4A are imple-
mented as generators in BACCARAT, allowing any de-
tector component to become a source of neutrons. The
measurements of the radioisotope concentrations or de-
cay rates are used to scale the simulation results to pre-
dict the background rates. The 238U decay chain is
split into the early (before 226Ra) and late (starting from
226Ra) sub-chains, and the 210Pb sub-chain is calculated
separately if required. The 235U decay chain is not split
(due to short lifetimes of all isotopes below 235U) and is
added to the early 238U decay chain. Figure 10 shows
example neutron spectra from PTFE, titanium and ce-
ramics (Al2O3) from the whole uranium chain assumed
to be in equilibrium. These materials have been chosen
as examples because they either have a high mass or a
significant neutron yield per unit activity. Both sponta-
neous fission and (↵, n) reactions are shown on this plot
but spontaneous fission is not included in the background
estimate due to the predicted high e�ciency of simultane-
ous detection of neutrons and gammas from this process
(see Section III C 3).
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FIG. 10. Neutron spectra from (↵, n) reaction from uranium
decay chains in equilibrium (238U and 235U are combined to-
gether) in 3 materials: black - PTFE (C2F4), blue - ceramics
(Al2O3), red - titanium. The green curve shows the spectrum
from spontaneous fission (same for all materials).

Appendix A includes a table with neutron yields as
calculated using SOURCES4A and used in the evaluation
of backgrounds for LZ.



❖ Maybe the best example of MC use in physics are the LHC experiments
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GEANT4 rendering of the ATLAS detector

Monte Carlo Simulation

In fact, GEANT4 was developed for the LHC experiments!



❖ In medical physics: brachytherapy for prostate cancer treatment
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Monte Carlo Simulation

125I seeds

Radioactive seeds 
implanted in a prostate

Iso-dose contours



❖ Some frequent uses in physics:
➡ designing and optimising experiments
➡ developing data analysis ahead of running
➡ interpreting experimental results

❖ It is nowadays a crucial component in every large 
experiment

❖ Widely used in medical physics too, in the development 
and optimisation of imaging techniques, but also in 
treatment planning (e.g. proton therapy, brachytherapy)
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Monte Carlo Simulation

Critical in every simulation is the ability to generate 

“high quality” random numbers efficiently



Random Numbers
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Random Numbers
❖ How to generate random numbers:

• Get a random number table
• Using random processes:

• throw a dice
• draw numbers from a hat
• use a number pool from electronic noise  

(e.g. /dev/random in Unix/Linux) 
Try this command in a terminal:
➡ $ od -An -N2 -i /dev/random

❖ Actually, this is not what we want
• we need a sequence that can be reproduced

➡ allows us to repeat the simulated “experiment” if necessary  
(e.g. study particular events, solve problems with the code, share results)

• must be fast and easy to use
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Pseudo-random numbers
❖ Not actual random numbers, but rather a sequence of 

seemingly uncorrelated numbers that can be easily 
reproduced

❖ Generated using an iterative algorithm
➡ each new “random” number is generated using one (or more) of 

the previous ones

➡ using the same initial value (called seed) it is always possible to 
reproduce the sequence
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❖ What do we want from a pseudo-random generator?
➡ a distribution between 0 and 1 

๏ easy to transform into whatever interval we want
๏ can be used to generate non-uniform distributions (more on this later)

➡ speed
➡ reproducibility
➡ a very long period 

๏ number of generated numbers until the sequence starts repeating itself

➡ must be statistically consistent with a random sequence:
๏ uniform distribution, non-sequential numbers, etc.
๏ there are several tests (which we will not cover in detail, see, e.g.  

http://www.maths.uq.edu.au/~kroese/mccourse.pdf)
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Pseudo-random numbers

http://www.maths.uq.edu.au/~kroese/mccourse.pdf


Example of a random number generator

❖ LCGs (Linear Congruential Generators)

❖ a, c and m are integers (usually c=0)

❖ period is, at most, m (depends on the remaining parameters)

❖ Rt = Xt / m  —  used to normalize to the interval [0, 1]

❖ The first value used (X0) is called the seed

❖ Simple example: a=5, m=32, c=0. Initial seed, X0=3
i) X1 = 5*3 mod 32 = 15 (R1 = 0.46875)

ii) X2 = 5*15 mod 32 = 11 (R2 = 0.34375)

iii) X3 = 5*11 mod 32 = 23 (R3 = 0.71875)
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mod is the remainder of the 
integer division



LCG Generators
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❖ Quality depends heavily on the choice of parameters
❖ Minimal standard (available in C++11): 

a = 75 = 16807, c = 0, m = 231 − 1

❖ RANDU (IBM, 1960s-70s) 
a = 216+3 = 65539, c = 0, m = 231 

Sequences of 3 consecutive numbers 
fall in parallel planes!

This was the default in every IBM computer, 
widely used at the time.

Scientific results of this period were affected by this problem



Exercise 1
❖ Test the uniformity of the stdlib (C, C++) random generator 

(exercise01.cc)
➡ This is an LCG generator

➡ m depends on the specific system (stored in variable RAND_MAX)

➡ get a sequence of N random numbers between 0 and 1

➡ make the histogram using ROOT (use the plot_histogram.C script)
➡ root -l
➡ .x plot_histogram.C
➡ .q (to quit root)

➡ Vary N and check evolution of the average and the standard deviation 
(e.g. N = 100, 1k, 10k, 100k, 1M, 10M)
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Download the prototype code from www.lip.pt/~alex

http://www.lip.pt/~alex


Non-uniform distributions
❖ In general, the distributions we need are not uniform:

➡ Exponentials (e.g. radioactive decay)
➡ Gaussians (e.g. energy resolution)
➡ Other analytic functions
➡ Experimental data points
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Methods to generate non-uniform distributions

❖ We’ll only talk about the two more usual ones:
❖ Rejection method
❖ Inverse transform method
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Rejection Method
1. Enclose the function to sample (f)  

using a rectangle:
❖ a < x < b; fmin < y < fmax

➡ it may be necessary to ignore long tails…

2. Using a uniform generator, sample  
in x between the limits of the rectangle:  
r1 ∊ [a, b]

3. Estimate the value of the function at point r1: f(r1)

4. Sample a second random number within the vertical limits of the rectangle: 
r2 ∊ [fmin, fmax]

5. If r2 ≤ f(r1) we can take r1 as a sample from distribution f

6. If r2 > f(r1), discard r1
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Points in the 
distribution

Rejected 
points
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Rejection Method

Using a sufficiently large number of samples, we can reproduce the function f(x)



❖ Based on the ratio between the total area of the rectangle 
and the area under the function to sample

❖ This means it can also be used to estimate areas!
➡ Using the ratio of accepted/total samples

❖ Pro: can be used with any function

❖ Con: computationally slow
➡ needs 2 uniform randoms for each trial
➡ the function must be calculated (at least once) in each iteration
➡ a (possibly significant) fraction of the trials is rejected
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Rejection Method



Rejection method
❖ For a data based distribution we can use a fit to the data, 

or interpolate between consecutive data points

27

Function fit

Linear interpolation

Cubic spline interpolation



Inverse Transform Method
1. Get the cumulative distribution function (cdf) of the (probability) function to 

sample:

2. The cdf is the fraction of the integral of the function up to the value x. It can be 
interpreted as the probability of obtaining a value smaller than x when sampling 
the function
➡ grows continuously

➡ has a maximum of 1

3. Get a random from a uniform 
distribution (U), which is a  
sample in F(x)

4. We may now get a sample of 
f(t) by inverting F(x)
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❖ A simple (but very useful) example: exponential distribution
➡ f(t) = 𝜆 e-𝜆t

❖ The cumulative function is
➡ F(x) = 1 - e-𝜆x

❖ Using a random number (U) from a uniform generator, we get a new random 
number (x) which follows the exponential distribution:

➡ x = F-1(U) = -ln(1 - U)/𝜆
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Inverse Transform Method



❖ Distribution obtained with 100k samples
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Inverse Transform Method



f = e-x
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Inverse Transform Method
❖ Distribution obtained with 100k samples



Gaussian distribution
❖ Also called normal distribution
❖ Probably the most useful distribution in physics
❖ No exact integral, but there are several numerical 

approximations to the cdf
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Gaussian distribution

❖ The Box-Muller method is a good, simple and often used approximation:

Z = (-2ln(r1))1/2cos(2 𝛑 r2)

❖ Use 2 random numbers from a uniform distribution (r1, r2)

❖ Z will follow a gaussian distribution with 𝜇 = 0 and 𝝈 = 1 

❖ Use x = 𝜇 + Z𝝈 to get a distribution with the required mean (𝜇) and width (𝝈)

❖ The rejection method also works!
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Gaussian distribution

34 By Davidjessop - Own work, CC BY-SA 4.0

An animation of how inverse transform sampling 
generates random values

https://commons.wikimedia.org/w/index.php?curid=100369573


Exercise 2
❖ Estimate the value of 𝛑 using the Rejection Method
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Exercise 2
❖ Estimate the value of 𝛑 using the Rejection Method

❖ Tip: Consider a circle inside a square and use the ratio 
between the areas

36



Exercise 2
❖ Estimate the value of 𝛑 using the Rejection Method

➡ Vary the number of samples (100, 1000, 10k)
➡ Check what happens to the relative error to the “real” value of 𝛑 as you 

increase the number of samples

❖ Tip: Consider a circle inside a square and use the ratio between 
the areas
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Make a copy of exercise 1 and start from there
If you get stuck, have a look at exercise02.cc

https://www.lip.pt/~alex/G4Classes/Exercises/E02/


Exercise 3 - Homework
❖ Write a generator for the exponential distribution using the inverse 

transform method. Create plots of the distribution for at least two 
different values of 𝜆

OR

❖ Write a generator for the Gaussian distribution using the Box-
Muller method. Create plots with the default gaussian parameters 
for the method (𝜇 = 0 and 𝝈 = 1) and at least a different set of (𝜇, 𝝈)
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Preferably in C++ (it’s easy to adapt example 1 for this),  
but you may use any language

(or even just write the algorithm)


