A brief introduction to
GEANT4 and the e
Monte Carlo Method



Logistics and grading

» 7 classes in total (tentative dates: 19-26/09, 3-17-31/10, 14-28/11)

+ Slides and class material will be available here, slides shared on UCStudent:

https:/ /www.lip.pt/~alex/G4Classes /

+ Total of 5 values for the GEANT4 mini-course

# 2 (very easy) home-works: 0.5 each
* 2 simple simulations (probably done in class with my help): 0.75 each
+ Deadline for submission is 2 weeks

* Final project: 2.5
+ deadline to be defined, but before the final exam

* For the homeworks I expect a simple report with relevant plots
(1-2 pages) and the code

» For the project you'll have to write a detailed report (more details later)

# You can do this on your own, but preferably in groups of 2
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More on logistics...

+ Computers in this room have the required software
(GEANT4 and ROOT)

+ We will use Linux, not Windows

* You must select Ubuntu upon restart

* By default, we will use ROOT for analysis of the results, but feel free to use a different
software if you're familiar with it (GNUPIot, Python, MatLab, etc.)

+ Later on you will need to use GEANT4 on your own computer

* You will need it for the final project
= I'll send instructions for the installation

It will (hopefully!) work on Windows, macOS and Linux

« If you don’t have a computer, or have problems installing GEANT4,
you can use the computers in this room




Plan for the classes

* Lesson 1:
* Concept of Monte Carlo simulation
* Random numbers
 Distribution generators
* Some examples of Monte Carlo sampling

+ Lesson 2:
* What is Object Oriented Programming?
* Introduction to GEANT4
* Basic simulation structure — Mandatory classes in GEANT4
* Concept of Run, Event and Track
* Basic geometry concepts in GEANT4 (materials and volumes)
* Visualisation tools
* Particle generators and particle tracking
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Plan for the classes

+ Lesson 3:

e List of available particles and physics processes

 Following the simulation in real time (step-by-step)

» Optional (but very useful) classes

* Storing simulation results

* Running the simulation in batch mode

* A simple example: simulate the Bragg peak for alpha particles

¢ Lessons4 —...:

* More examples: gamma shielding, radioactive decay, range of
electrons, neutron interactions, etc.

* Distribution of the final projects before the last lesson

<)



l.esson 1 - Monte Carlo Simulation



Monte Carlo Stmulation

« Useful when the problem is too complex for an analytical solution

* The goal is to predict the evolution of complex systems using the
known probability (and final state) of each individual process

« Each probability is described by a function (or known distribution),
which is randomly sampled

+ It is possible to obtain an approximation of the mean response of the
full system by running the simulation many times

« In physics, distributions are usually in time (e.¢. radioactive decay) or
in space (e.g. Compton scatter), but more complex quantities are also
used (e.g. final energy and angular distribution after nuclear decays)
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Monte Carlo Stmulation

Vnancr®

PASSES MUST BE
PRESENTED TO
GUARDS

This method was developed in Los Alamos during World
War II, by people working in the Manhattan Project

It was a secret project, so it (obviously) needed a catchy code
name: “Monte Carlo”

* from the similarity with games of chance in the Monte Carlo casino

First used to estimate shielding
requirements for gamma radiation and
neutron scattering (nuclear bombs)
(we will do both, yay!)

Used in many other scientific areas
(meteorology, economy, social sciences, etc.)



Monte Carlo Stmulation

* Some frequent uses in physics:
= designing and optimising experiments
= developing data analysis ahead of running an experiment

= help interpreting experimental results

“ [t is nowadays a crucial component in every large
physics experiment!

* Widely used in medical physics too, in the development
and optimisation of imaging techniques, but also in
treatment planning (e.g. proton therapy, brachytherapy)



An example from my own experience
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I work in the LUX-ZEPLIN (LZ)
experiment, a detector to search for
interactions of dark matter with
(normal) baryonic matter

This is a detector with 10 tons of
liquified xenon, working 1.5 km
underground in an old gold mine

From the design and optimisation
to construction and installation,
several years are needed (the
concept started in 2013, the detector
only started operating in 2021!)

10 GEANT4 geometry rendering



An example from my own experience

+ In the meantime, the Monte
Carlo simulation of the
experiment is used to:
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Optimise the geometry of the

various subsystems

Select building materials based on
their radioactive content

Generate fake data to develop the
data processing and analysis tools

Estimate how sensitive the
experiment will be (basically its

physics reach)
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FIG. 10. Neutron spectra from («,n) reaction from uranium
decay chains in equilibrium (238U and **°U are combined to-
gether) in 3 materials: black - PTFE (C,F,), blue - ceramics
(Al;O3), red - titanium. The green curve shows the spectrum
from spontaneous fission (same for all materials).



Monte Carlo Sitmulation

+ Maybe the best example of MC use in physics are the LHC experiments
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GEANT4 rendering of the ATLAS detector

In fact, GEANT4 was developed for the LHC experiments!
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Monte Carlo Stmulation

* In medical physics: brachytherapy for prostate cancer treatment
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Radioactive seeds

implanted in a prostate

Iso-dose contours
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Monte Carlo Stmulation

+ Some frequent uses in physics:

= designing and optimising experiments /e \
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Random Numbers

* How to generate random numbers: A iLLion
Random Digits

e (Get a random number table

e
100,000 Normal Deviates

V95 0520
62591 00174
97110 31292 |
39736 62674

24412 29650
40515 18454
29233 81372 4
D 33407 44464
20746 6394

» Using random processes:

e throw a dice

A Million Random
. draW number S from a hat Digits with 100000...
€74.00
Book Megastore
+€10.49 shipping

* use a number pool from electronic noise
(e.. /dev/random in Unix /Linux)
Try this command in a terminal:
= $od -An -N2 -i /[dev/random

# Actually, this is not what we want

* we need a sequence that can be reproduced

= allows us to repeat the simulated “experiment” if necessary
(e.g. study particular events, solve problems with the code, share results)

* must be fast and easy to use
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Pseudo-random numbers

* Not actual random numbers, but rather a sequence of
seemingly uncorrelated numbers that can be easily
reproduced

« Generated using an iterative algorithm

= each new “random” number is generated using one (or more) of
the previous ones

= using the same initial value (called seed) it is always possible to
reproduce the sequence
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Pseudo-random numbers

What do we want from a pseudo-random generator?

= a distribution between 0 and 1

« easy to transform into whatever interval we want
+ can be used to generate non-uniform distributions (more on this later)

- speed
= reproducibility

= avery long period

< number of generated numbers until the sequence starts repeating itself

= must be statistically consistent with a random sequence:
o uniform distribution, non-sequential numbers, etc.

o there are several tests (which we will not cover in detail, see, e.g.
hitp:/[www.maths.uq.edu.au/~kroese/mccourse.pdf)
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Example of a random number generator

* LCGs (Linear Congruential Generators)

X;=(aX¢-1+c)modm, t=1,2,...,«—— modis the remainder of the
integer division

* g, c and m are integers (usually c=0)
* period is, at most, m (depends on the remaining parameters)

+ R;=X;/m — used to normalize to the interval [0, 1]

+ The first value used (Xp) is called the seed

& bimiple’example- =9, =52 ¢= Initial seed; Xo=»>
)X =53 mod 32 = 15 (R =046575)

i) X0 = 5715 nod 32 = 11 (Ry—0.34375)
i) X3 — 511 mod:32.— 253 (1% — 0. 71375)
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|.CG Generators

Quality depends heavily on the choice of parameters

* Minimal standard (available in C++11):
T (6807 =0 m—27- 1 i T T

0.8 [ F Sl 0
RANDU (IBM, 1960s-70s) SRR AR T
a-— 2164365539 ¢ =0, m — 25! 0.6 [t RS B e
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LA This was the default in every IBM computer,
widely used at the time.

o 2 | Scientific results of this period were affected by this problem
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Exercise 1

+ Test the uniformity of the stdlib (C, C++) random generator
(exercise01.cc)

= This is an LCG generator

= m depends on the specific system (stored in variable RAND_MAX)

- get a sequence of N random numbers between 0 and 1

= make the histogram using ROOT (use the plot_histogram.C script)
=100l |
= .x plot_histogram.C

~ g (to quit root)

= Vary N and check evolution of the average and the standard deviation
(e.g. N =100, 1k, 10k, 100k, 1M, 10M)

Download the prototype code from www.lip.pt/~alex
21
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Non-uniform distributions

* In general, the distributions we need are not uniform:

e Bxponenfidls (.o tadioacliVe deCaV) et o

= Gaussians (e.g. energy resolution)
= Other analytic functions

= Experimental data points

34.1%




Methods to generate non-uniform distributions

+ We’ll only talk about the two more usual ones:

* Rejection method

+ Inverse transform method
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Rejection Method

f max

. Enclose the function to sample (f)
using a rectangle:

= a<x<b;fmin<y<fmax

= it may be necessary to ignore long tails...

. Using a uniform generator, sample
in x between the limits of the rectangle:
¥r1 € [a/ b] fmm

. . . r
. Estimate the value of the function at point r;: f( r) 1

. Sample a second random number within the vertical limits of the rectangle:

r2 € [fmin/ fmax]
. If r2 < f(r1) we can take r; as a sample from distribution f

- = fir), discatd #;
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Rejection Method

Max f(x) - . 3
- ® [ - - . L -
LJ a L
L . - B N - . .
o - -. ! “
Rejected | +—"% . - . e o
. " o - N -
points = .,
. a
" a 2 o o
o ) o Oc
0 : t -
A B

Points in the

distribution

Using a sufficiently large number of samples, we can reproduce the function f(x)

29



Rejection Method

* Based on the ratio between the total area of the rectangle
and the area under the function to sample

+ This means it can also be used to estimate areas!

= Using the ratio of accepted /total samples

* Pro: can be used with any function

“ Con: computationally slow

= needs 2 uniform randoms for each trial
= the function must be calculated (at least once) in each iteration

= a (possibly significant) fraction of the trials is rejected
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Elastic Q Resolution (A'1)

Rejection method

+ For a data based distribution we can use a fit to the data,
or interpolate between consecutive data points
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Inverse Transform Method

1. Get the cumulative distribution function (cdf) of the (probability) function to
sample: x
F(z) = / £(t) dt

2. The cdfis the fraction of the integral of the function up to the value x. It can be
interpreted as the probability of obtaining a value smaller than x when sampling

the function
F(z) A

= grows continuously i

= has a maximum of 1

3. Get a random from a uniform
distribution (U), which is a
sample in F(x)

4. We may now get a sample of
f(t) by inverting F(x)

X = FY(U)
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Inverse Transform Method

“ A simple (but very useful) example: exponential distribution

=l = 1 e/t Lo
+ The cumulative function is 8
- F(x) — 7 - g-Ax 50.6
& 0.4} :
A=0.5
0.2 — =1
| =15
0.0, 1 > 3 4 5

X

« Using a random number (U) from a uniform generator, we get a new random
number (x) which follows the exponential distribution:

= x =10 ="Inl -1
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Inverse Transform Method

* Distribution obtained with 100k samples

htemp
Entries 100000
Mean 0.9864
RMS 0.9545

12000

10000

8000
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4000

2000
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Inverse Transform Method

* Distribution obtained with 100k samples

htemp
Entries 100000
Mean 0.9864
RMS 0.9545

12000

10000

8000
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Gaussian distribution

+  Also called normal distribution

* Probably the most useful distribution in physics

* No exact integral, but there are several numerical
approximations to the cdf

) i s B A aeasssasem
Ve A1 T |
Qoﬁ— p=-2, 02 0.5,—/ ////
5. Iy
V////
R
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Gaussian distribution

flz) = —m=e%

o221

* The Box-Muller method is a good, simple and often used approximation:
Z = (-2In(r1))2cos(2 m 12)

+ Use 2 random numbers from a uniform distribution (71, 72)

= Z will follow a gaussian distribution with y=0and 6 =1

« Use x = u + Zo to get a distribution with the required mean (x) and width (o)

* The rejection method also works!
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Gaussian distribution
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An animation of how inverse transform sampling
generates random values

By Davidjessop - Own work, CC BY-SA 4.0
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Exercise 2

« Estimate the value of & using the Rejection Method

5D



Exercise 2

« Estimate the value of t using the Rejection Method

« Tip: Consider a circle inside a square and use the ratio

between the areas
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Exercise 2

« Estimate the value of t using the Rejection Method

= Vary the number of samples (100, 1000, 10k)

= Check what happens to the relative error to the “real” value of & as you

increase the number of samples

“ Tip: Consider a circle inside a square and use the ratio between

the areas
A . — 3 ., =
Zarcle, - e = 87— K
-A.s'qll(u'(' [2’)' 4= 1
T = _1 sk Ar'irt'lc

Asq uare

Make a copy of exercise 1 and start from there
If you get stuck, have a look at exercise(02.cc
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https://www.lip.pt/~alex/G4Classes/Exercises/E02/

Exercise 3 - Homework

+ Write a generator for the exponential distribution using the inverse
transform method. Create plots of the distribution for at least two

different values of A

OR

« Write a generator for the Gaussian distribution using the Box-
Muller method. Create plots with the default gaussian parameters

for the method (¢ =0 and 6 = 1) and at least a different set of (i, o)

Preferably in C++ (it’s easy to adapt example 1 for this),
but you may use any language
(or even just write the algorithm)
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