
Lesson 2 
Introduction to GEANT4
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GEANT4
• GEANT = GEometry ANd Tracking 

• Software framework for Monte Carlo simulation 
• We don’t need to generate and sample distributions, someone already did it for us! 

• Specifically for simulation of particle interactions with matter 

• Following Object Oriented Programming (OOP) paradigm (C++) 

• Open source — we can see (and modify) the code! 

• Development started at CERN in the late 90’s / early 00’s for the LHC 
experiments, now spread by several institutes around the world 

• Based on GEANT-3 (started in the 70’s, written in Fortran)
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GEANT4 use cases
Originally developed for high energy physics 

(accelerator detectors: e.g. ATLAS, CMS)
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• Medical Physics

• Develop PET and SPECT systems 

• Plan radiation therapy 

• Dosimetry estimates

GEANT4 use cases
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• Dedicated applications (e.g. GATE, TOPAS) 
• Using macros (instead of coding) 
• Commonly used geometry elements 
• Pre-built physics lists 
• Standard generators for primary particles

GEANT4 use cases

5 GATE - http://www.opengatecollaboration.org

http://www.opengatecollaboration.org/
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• Commonly used geometry elements 
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• Standard generators for primary particles

GEANT4 use cases
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TOPAS - https://www.topasmc.org

Click for full video

https://www.topasmc.org
https://drive.google.com/file/d/0B7xnzXaCt_OFQkFaVU9xQ1Z0bG8/view?usp=drive_web&resourcekey=0-z_pe5Cj5YbEMWsd8Rr9bPg


Space instrumentation

• Study the effects of 
high-energy radiation 
in materials and 
living tissues

• Study the response 
of the detectors

GEANT4 use cases
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ESA’s XMM-Newton telescope



• Underground Physics (dark matter, neutrinos, 0𝝂ββ)
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GEANT4 use cases
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GEANT4 Philosophy
• GEANT4 is a library of tools for Monte Carlo 

simulation (in the form of C++ classes) 

• The user must build his/her own application
• this means writing a main C++ program and include GEANT4 classes 
• some software tools built on top of GEANT4 provide several typical and 

tuneable use cases, especially in medical physics — e.g. GATE, TOPAS 

• In order to do that, we need to: 
✓ Build the geometry of our experiment (materials, volumes, positions) 
✓ Define how each event starts (primary particles)  
✓ Choose the physics to use 

➡ not like the real world — we can turn off physical processes! 
✓ Extract useful information from the simulation, for further analysis
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The Application Developer’s Guide can be found here

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/index.html


• GEANT4 provides 
✓ Different types of physical processes 

✴ Electromagnetic, hadronic, decay, optical 
✴ Often more than one model available for the same process 

(sometimes the problem is actually to decide which model to use) 

✓ Common particles and their properties 
✓ Geometrical solids to build our detectors 
✓ A navigator that tracks (follows) each particle as it propagates 

in the detector (includes support for electric and magnetic fields) 
✓ Visualisation (geometry, tracks, hits) 
✓ Analysis tools (for online analysis and exporting results)

GEANT4 Philosophy
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in five slides…
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Object Oriented Programming



Object Oriented Programming
• You’re probably used to program following a “procedural” style 

➡ A main code section, with multiple auxiliar functions 
➡ This is typical in some languages, such as C, Fortran, Python 
➡ OOP is not an exclusive of C++ (Java, Python, Delphi, etc.) 

➡ And you can still write “procedural” code in these languages 

• OOP paradigm: all the elements that make up a program are 
“objects”. They have properties and we can interact with them 
(send and receive information/actions) 

• In a OOP-style simulation, having “independent” objects makes 
things more natural and closer to the real world 

➡ particles, materials (and also isotopes, elements), geometrical solids, volumes 
➡ physical processes/models 
➡ tracks, events and runs 
➡ …
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Object Oriented Programming
• Definition of “object”: 

• An instance — compiled, running version — of a class 
• A class is an independent and self-contained block of code 
• You can think of it as a program that can run independently and is 

waiting to interact with the “outside world” — i.e. other objects 
• It may not do anything until ordered to by another program or object
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The base 
class is 
generic

The object is 
specific 

We can have 
multiple objects 

of the same base 
class running at 
the same time



Object Oriented Programming
• Encapsulation: 

➡ A class has functions (usually called methods) to interact with the 
“exterior world” (other objects or programs) or perform internal tasks 

➡ Usually has several internal (private) variables, which can only be 
accessed or modified using the methods of the class

14

Encapsulation protects 
class variables from direct 

access by users



Object Oriented Programming
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class Dog { 
    constructor(name, birthday) { 
        this.name = name; 
        this.birthday = birthday; 
    } 

    //Declare private variables 
    _attendance = 0; 

    getAge() { 
        //Getter 
        return this.calcAge(); 
    } 

    calcAge() { 
        //calculate age using today's date and birthday 
        return Date.now() - this.birthday; 
    } 
     
    bark() { 
        return console.log("Woof!"); 
    } 

    updateAttendance() { 
        //add a day to the dog's attendance days at the petsitters 
        this._attendance++; 
    } 
}

//instantiate a new object of the Dog class, and individual dog named Rufus 
const rufus = new Dog("Rufus", “2/1/2017"); 
rufus->getAge(); 
rufus->bark();

Code samples from here

Constructor

Internal variables

Methods

https://scoutapm.com/blog/functional-vs-procedural-vs-oop


Object Oriented Programming

• Inheritance: 
• Classes have inheritance: a class may be “daughter” of another, 

inheriting its internal variables and methods — and then have 
additional ones 

• Given their modularity, it’s  
easy to reuse classes in  
different applications
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Don’t worry if you’re feeling a bit lost. 
This will become more natural when we  

start with examples.



A GEANT4 example

Particle properties:

name
mass

charge
life time

etc.

G4ParticleDefinition
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Base class Daughter classes

Methods to access 
these properties:

GetParticleName
GetPDGMass

GetPDGCharge
GetPDGLifeTime

etc.

Methods to modify 
these properties:

SetParticleName
SetPDGMass

SetPDGCharge
etc.

G4Electron 
G4Positron 
G4Gamma 
G4Alpha 

G4Ion 
…

Objects
electron1 = new G4Electron();

electron2 = new G4Electron();


e+ = new G4Positron();

gamma = new G4Gamma()


…



Structure of a GEANT4 
simulation

• To create a simulation, the user must define (minimum): 
➡ main() - main program — declare classes, initialise managers 

➡ DetectorConstruction() - geometry definitions (materials, volumes) 

➡ PrimaryGenerator() - define initial particles (primaries)  

➡ PhysicsList() - particles to use, associated physics processes and 
models
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Structure of a GEANT4 
simulation

During these lessons, we will always use pre-made 
simulation structures and modify them. 

You will not need to create them from scratch!
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• To create a simulation, the user must define (minimum): 
➡ main() - main program — declare classes, initialise managers 

➡ DetectorConstruction() - geometry definitions (materials, volumes) 

➡ PrimaryGenerator() - define initial particles (primaries)  

➡ PhysicsList() - particles to use, associated processes and models



• Let’s have a look at a simple example… 
• Go to https://lip.pt/~alex/G4Classes/Examples  

and download BraggPeak.zip 
• Save it to your working area 

• if you see directories from last year, delete them first to avoid confusion 
• Use the file explorer to unzip the file, or open the Terminal and type 

• cd Downloads/ — replace Downloads with the name of your folder 
• unzip BraggPeak.zip 
• cd BraggPeak 

• BraggPeak.cc has the main code of the simulation (inside the main() function) 
• open this file and let’s have a quick look at it 
• there are also 2 folders: include and src 
• Both seem to have the same files: DetectorConstruction, PhysicsList, 

PrimaryGeneratorAction, SteppingAction 
• Actually, in the files inside include we declare variables and methods; 

in the files inside src we implement the actual code
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Structure of a GEANT4 
simulation

https://lip.pt/~alex/G4Classes/Examples


Concept of ‘event’ and ‘run’
• An event is what happens each 

time you run the simulation 
1. start with the primary particles defined by 

the user 
2. these are tracked until they stop, possibly 

interacting with materials 
3. if secondary particles are created (e.g. 

electrons after photoelectric effect), they 
are also tracked until they stop 

4. during this process we can extract useful 
information 
(deposited energy, interaction positions, etc.) 

5. a single event will not give us a good 
approximation of the overall response of 
the system 

6. must have many events under the same 
conditions — this is a run

21 arXiv:1303.2160 [nucl-ex]



• A run is a collection of events 
• sharing the same geometry 
• with the same physics conditions 
• primary particles are generated in the same way 
• ideally it should have enough events to be a good 

approximation of the response of the system being studied
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Concept of ‘event’ and ‘run’



Mandatory classes
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DetectorConstruction()
Where we “construct” our detector 

• Define the materials we want to use 

• Define geometric solids needed for the geometry 

• Position these solids in our virtual “laboratory” 
and associate a material to each 

• If needed, define surfaces between solids 
(for optical processes only: reflection, refraction) 

• Define visualisation properties of each element 
(colour, transparency)
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Materials
➡ We may define a material from its basic constituents: 

• Isotopes → Elements → Molecules, compounds and mixtures 

➡ Or create materials from ‘scratch’  
(main properties only: atomic number, density, molar mass) 

➡ Use GEANT4 predefined materials (from NIST database) 

➡ The way you create a material depends on the physics  
you want to simulate 
• Some processes depend on the isotopic composition (e.g. neutron capture),  

but most do not (e.g. electromagnetic processes) 

➡ Materials have properties  
(their use also depends on the specific process): 
• density, state, pressure, temperature
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• From a single element:
G4double density = 1.390*g/cm3; 
G4double a = 39.95*g/mole; 
G4double z = 18.; 
G4Material* lAr =  
                 new G4Material(“LiquidArgon", z, a, density);

Defining materials…
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• Molecules are defined from individual elements 
(in this case we use the number of atoms)

a = 1.01*g/mole; 
G4Element* elH  = 
   new G4Element("Hydrogen",symbol="H",z=1.,a); 
a = 16.00*g/mole; 
G4Element* elO  = 
   new G4Element("Oxygen",symbol="O",z=8.,a); 

density = 1.000*g/cm3; 
G4int components = 2; 
G4Material* H2O = 
   new G4Material(“Water", density, components); 
G4int natoms; 
H2O->AddElement(elH, natoms=2); 
H2O->AddElement(elO, natoms=1);
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Defining materials…



• For compounds we use mass fraction
a = 14.01*g/mole; 
G4Element* elN  =  
   new G4Element(name="Nitrogen",symbol="N",z= 7.,a); 
a = 16.00*g/mole; 
G4Element* elO  =  
   new G4Element(name="Oxygen",symbol="O",z= 8.,a); 

density = 1.290*mg/cm3; 
G4int components = 2; 
G4Material* Air =  
   new G4Material(name=“Air”, density, components=2); 
G4double fracMass; 
Air->AddElement(elN, fracMass=70.0*perCent); 
Air->AddElement(elO, fracMass=30.0*perCent);

The sum must  
be 100%
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Defining materials…



• We may also define mixtures, using existing materials 
or elements (in this case we also use mass fraction)

    G4Element* elC  = …;   // define “carbon” element 
  G4Material* SiO2 = …;  // define “quartz” material 
  G4Material* H2O = …;   // define “water” material 

  density = 0.200*g/cm3; 
  G4Material* Aerog = 
     new G4Material(“Aerogel", density, ncomponents=3); 
  Aerog->AddMaterial(SiO2, fractionmass=62.5*perCent); 
  Aerog->AddMaterial(H2O , fractionmass=37.4*perCent); 
  Aerog->AddElement (elC , fractionmass=0.1*perCent);
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Defining materials…



Materials
• From GEANT’s internal database (NIST materials) 
• Full list of available materials can be found here: 

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/
ForApplicationDeveloper/html/Appendix/materialNames.html 

• Use of “standard” materials makes comparison with results 
from other people easier 

• Includes standard materials for medical use 
(e.g. G4_A-150_TISSUE, G4_ADIPOSE_TISSUE_ICRP, G4_B-100_BONE, etc.)
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#include “G4NistManager.hh" 

G4NistManager* man = G4NistManager::Instance(); 
  // Define material Air from the NIST database 
  G4Material* Air  = man->FindOrBuildMaterial("G4_AIR"); 

  // Define material Tissue from the NIST database 
  G4Material* Tissue  = man->FindOrBuildMaterial("G4_MUSCLE_SKELETAL_ICRP"); 

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html
http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ForApplicationDeveloper/html/Appendix/materialNames.html


Geometry
• To generate each element in the geometry of our 

experiment, we need three “layers”: 
1. Solid (defines the shape and the size) 
2. Logical volume (associates a material, adds visualisation properties) 
3. Physical volume (positions and rotates in the reference frame)

G4VSolid* pBoxSolid = new G4Box(“aBoxSolid”, 1.*m, 2.*m, 3.*m); 
    

G4LogicalVolume* pBoxLog = 
  new G4LogicalVolume( pBoxSolid, pBoxMaterial, “aBoxLog”, 0, 0, 0); 
     

G4VPhysicalVolume* aBoxPhys = 
  new G4PVPlacement( pRotation, G4ThreeVector(posX, posY, posZ), 
                    pBoxLog, “aBoxPhys”, pMotherLog, 0, copyNo);
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Most common solids
G4Box(const G4String &pname,   // name 

            G4double half_x,   // X half size 

            G4double half_y,   // Y half size 

            G4double half_z);  // Z half size 

G4Tubs(const G4String &pname,  // name 

             G4double  pRmin,  // inner radius 

             G4double  pRmax,  // outer radius 

             G4double  pDz,    // Z half length 

             G4double  pSphi,  // starting Phi 

             G4double  pDphi); // segment angle
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More solids…
• Conical section - G4Cons(…) 

• Sphere (or spherical shell) - G4Sphere() 

• Pyramid - G4Trd()
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See all available, and their required parameters here

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Detector/Geometry/geomSolids.html


Operations with solids
• It’s possible to combine previously defined solids: 

➡ Union 

➡ Subtraction 

➡ Intersection 

• This allows us to create more complex solids

G4UnionSolid G4IntersectionSolidG4SubtractionSolid
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Concept of hierarchy in the 
geometry

• A new volume has a mother volume and is placed relatively to its reference frame 

• There is a special volume, called ‘world’, which represents the ‘laboratory’ 

➡ A volume may not extend beyond the limits of its mother volume 

➡ Volumes must not intersect each other  
(except within the mother-daughter paradigm) 

• If any of these happens, the tracker (which follows each particle) may get 
confused and you may get unexpected/inconsistent results 

• A logical volume may be placed several times in the geometry 
(including in different mother volumes) 

• each one becomes an independent geometry element
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Positioning
rotation

Mother volume

translation in 

mother frame
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• Volumes are positioned relatively to the 
coordinate system of its mother volume 

• They may also be rotated (in any of the 3 axis)

• If a mother volume is placed more than once, all 
daughters will appear in all of them 

• The world volume is unique: it must be created first, 
and must fully contain all other volumes 

• A global coordinate system is associated with the 
world volume



Geometry example
• To keep things more organised, create a work folder 

somewhere (e.g. mkdir ~/Desktop/geant4) 

• Go back to the website and download B2a.zip 

• Save it in your work folder  

• On the terminal, navigate to inside the relevant folder 
(e.g. cd ~/Desktop/geant4/B2a) 

• You may need to run this, but try to compile the 
simulation first (next slide) 
source /usr/Geant4/geant4.10.04/share/Geant4-10.4.0/geant4make/
geant4make.sh
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Geometry example
• Let’s compile our first simulation! — this is actually 

a GEANT4 example 
(type make clean, then make) 

• Visualise the geometry by running the simulation 
(type exampleB2a) 

• Rotate the geometry, zoom in/out using your mouse 

• Type exit in the lower text box to quit GEANT4
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Geometry elements
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Target (Pb)

Tracker (air)

Tracker segments (Xe gas)



(More advanced)  
Geometry examples

• Download the .wrl files from the website and 
explore the geometries 

• Underground physics 

• Human phantoms 

• Space telescopes
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Primary particle generator

• The initial particles in each event are called primaries 
(at least one, but we can have many) 

• Must be defined by the user: 
• particle type (electron, proton, gamma, etc.) 
• initial position 
• starting energy 
• initial direction

41

Primary



Primary particle generator
• Each of these properties may be constant, or 

generated using an algorithm 
• randomly 

• uniform position distribution inside a volume 
• isotropic direction 

• sampled from a distribution (e.g. with the rejection method)
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Energy distribution of neutrons  
from a 252Cf source



Primary generator example
• Open file B2aPrimaryGeneratorAction.cc 
• Analyse how primary particles are defined 
• What is the primary particle? 
• Visualise particle tracks inside the geometry 

• run exampleB2a again 
• when geometry shows up, type /run/beamOn 10 

• this will generate 10 events, starting with the defined primary particle 
• we can see particle trajectories and hits/interactions


• Change initial direction and/or energy 
• type exit to quit the simulation 
• change the code, save, and type make on the Terminal 
• run exampleB2a,  type /run/beamOn 10 on the prompt 

• Generate a different primary particle  
(mu-, e-, e+, neutron, gamma) 

• Bonus: try changing the magnetic field value to 0.2 Tesla along x 
(line 306 in DetectorConstruction), recompile and run 

• G4ThreeVector(0.2*tesla, 0., 0.)
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Exercise 4 - Homework

• Define an isotropic generator 
• returns the components of a unitary vector (x,y,z) in each iteration 

• every spacial direction must have the same probability of being 
selected
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Installing GEANT4 on your 
laptop
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• Direct installation on the system (Linux, macOS or Windows) 
• Useful if you want to continue using GEANT4 in the future (e.g. for 

your thesis) 
• It will likely be trickier, dependencies must also be installed, etc. 
• I have no experience at all with the Windows installation 
• Instructions on the GEANT4 web page 

• Using docker and a Linux image with C++/GEANT4/Root 
• Should be faster and easier, although in some systems it may not be 

straightforward, there may be issues with visualisation 
• Instructions in these slides

https://geant4.web.cern.ch/docs/getting-started#how-do-i-install-geant4
https://docs.google.com/presentation/d/1RyzeaXqsREM0AGacJCdyAaI-T0J01QZx527Q22XeSjQ/edit?usp=sharing

