
03/10/2023

Lesson 3
Particles and Physical Processes 
Optional (but very useful) Classes
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Particle tracking slang

✤ Each particle is associated with a track
✤ green: neutral particles
✤ red: negatively charged particles
✤ blue: positively charged particles

✤ Tracks are divided in steps

✤ A new step every time the particle:
✤ crosses a border
✤ has a physical interaction

✤ The point joining two steps is a hit

✤ Secondary particles resulting from physical processes are treated in the same way as 
primaries

✤ An event is thus composed of many tracks, one for each particle
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Mandatory classes

✤ To have a working simulation, the user must develop:

✤ main()

✤ DetectorConstruction() - geometry/materials

✤ PrimaryGenerator() - primary particles 

✤ PhysicsList() - define what physics to include
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PhysicsList

1. Define which particles to track
• other particles may be created during interactions, but if they have no associated 

process they will just leave the geometry without interacting

2. Attach physics processes to each particle
• each process may have one or more models that the user can choose from  

(or even use simultaneously, for different energy intervals)

3. Set (production) cuts
• GEANT4 follows each particle until it stops or leaves the geometry. The notion 

of “cut” is connected to the production of secondary particles 
(more on this later)
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PhysicsList — a word of caution

➡ This is a simulation, not the real world!

➡ So we can pick and choose the physics to use.

➡ This is useful but also dangerous!
➡ Allows us to study particular physics processes and their effect in detail

➡ Forgetting to include all the required physics processes will lead to 
wrong/incomplete results

➡ To make things more difficult, processes often have multiple models
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Declaring particles

✤ This must be done inside ConstructParticle()

✤ GEANT4 already includes classes for most particles

✤ Particle properties already included in these classes

✤ Uses a standard naming convention, making them 
very easy to use
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✤ Some examples:
✤ G4Gamma::GammaDefinition()

✤ G4Positron::PositronDefinition()

✤ G4NeutrinoE::NeutrinoEDefinition()

✤ G4PionMinus::PionMinusDefinition()

✤ G4AntiNeutron::AntiNeutronDefinition()

✤ G4GenericIon::GenericIonDefinition()

Declaring particles
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✤ There are also methods to declare all the particles of a 
given type
✤ #include “G4BosonConstructor.hh" 

G4BosonConstructor consBos; consBos.ConstructParticle();

✤ #include "G4LeptonConstructor.hh" 
G4LeptonConstructor consLep; consLep.ConstructParticle();

Declaring particles
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Declaring physical processes

✤ Must be done in the ConstructProcess() method

✤ Transportation is a fundamental process in GEANT4, otherwise 
particles will not be tracked in the geometry (!)
✤ AddTransportation()

✤ GEANT4 already includes processes for most interactions

✤ Some have more than one model available

✤ If needed the user may create a new process 
(don’t worry, we will not be doing this!)
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✤ (Simplified) example for gammas:

#include "G4ComptonScattering.hh"
#include "G4GammaConversion.hh"
#include "G4PhotoElectricEffect.hh"
if (particleName == "gamma") {
      // gamma         
      pmanager->AddDiscreteProcess(new G4PhotoElectricEffect);
      pmanager->AddDiscreteProcess(new G4ComptonScattering);
      pmanager->AddDiscreteProcess(new G4GammaConversion);
}

Declaring physical processes
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✤ Radioactive decay example:

  // Add Decay Process

  G4Decay* theDecayProcess = new G4Decay();

  theParticleIterator->reset();

  while( (*theParticleIterator)() ){

    G4ParticleDefinition* particle = theParticleIterator->value();

    G4ProcessManager* pmanager = particle->GetProcessManager();

    if (theDecayProcess->IsApplicable(*particle)) { 

      pmanager ->AddProcess(theDecayProcess);

}}

Declaring physical processes
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✤ Example of a process with more than one model:
✤ Changeover between models at 19 MeV

Declaring physical processes
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✤ GEANT also offers classes with sets of physical processes for typical use 
cases. For example, for electromagnetic physics:

#include “G4EmStandardPhysics_option3.hh”

G4EmStandardPhysics_option3* emPhysicsList  
= new G4EmStandardPhysics_option3();

emPhysicsList->ConstructProcess();

✤ And also full physics lists for typical applications (high energy, low 
background experiments, medical physics , etc.).  
They already include:

✤ electromagnetic physics
✤ hadronic physics
✤ optical processes
✤ decay
✤ …
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Declaring physical processes

These are easier (and safer!) to use,
we will use them in most examples

Several options available, with different 
models and accuracy/speed



Setting cuts

✤ By default, all the particles are tracked until they stop 
(or leave geometry boundaries)

✤ We can set cuts in the production of secondary particles
✤ If the expected range of a secondary particle is smaller than the set cut…
✤ … instead of creating a new particle, the energy is deposited locally

✤ We may set different cuts for different particles…

✤ … and/or different materials or volumes
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Quick example on the effect of cuts
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✤ A gamma-ray (our primary particle) interacts 
with an electron from an outer shell via Compton 
scatter

✤ The recoiling electron is emitted from the atom
✤ This will be a secondary particle

✤ If this electron has an energy above the cut, it will be 
created and tracked in the simulation, depositing energy 
as it goes (possibly far away from the origin)

✤ If the energy is lower, no secondary particle is produced, 
and the energy is deposited in the Compton scatter 
position

✤ Note that the cut is usually expressed in range 
(distance) and not energy
✤ These cuts are usually associated with the position 

resolution of our detectors

Image from here

https://radiologykey.com/basic-radiation-protection-and-radiobiology-2/


PhysicsList

✤ Let’s see an example:
✤ Open PhysicsList.cc

✤ From the BraggPeak example

✤ Download the zip and move the folder inside your geant4 folder
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PhysicsList

17

➡ This is just for you to get an idea of the structure of a PhysicsList
‣ In future examples we will always use pre-defined PhysicsLists from GEANT4

✤ Let’s see an example:
✤ Open PhysicsList.cc

✤ From the BraggPeak example

✤ Download the zip and move the folder inside your geant4 folder
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Simulation of alpha particles in air



Run the BraggPeak simulation

✤ Check the code in DetectorConstruction and PrimaryGenerator

✤ Compile (type make) and run the simulation (type BraggPeak)
✤ type tracking/verbose 1 to get information about what is happening in each step

✤ start an event by typing /run/beamOn 1

✤ zoom in to have a closer look at the alpha track

✤ rotate the geometry to see the longitudinal and transverse profiles

✤ scroll through the information printed out, check what happened in each step 

✤ Change the production cut (in PhysicsList) to 0.3 mm, re-compile and run it again 
(what changed? remember to put it back to 0.3 cm)

➡ We can easily get the range for individual events
➡ But we already know that single events are not a good representation of the response of the system
➡ How do we accumulate statistics and do proper analysis?
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Optional classes

✤ By now, we can already create working simulations

✤ But it’s not easy to get useful information from them

✤ There are several classes that the user can define to 
collect information and store it outside the simulation,  
so that it can be analysed later
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Useful optional classes

These are the ones we’ll be using in our classes

✤ SteppingAction() 

✤ EventAction() 

✤ RunAction()
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EventAction

✤ Provides methods that are called by GEANT4 right 
before and right after each event

✤ Allows to perform analysis on data that was collected 
during each event

✤ RunAction works in a similar way, but at the level of 
sets of events
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SteppingAction

✤ This class is called every time a particle has a step

✤ Independently of what particle is being tracked…

✤ … or the volume it is in

✤ Can make the simulation significantly slower
✤ especially with complicated geometries
✤ and events with many tracks
✤ this generally doesn’t apply to us… ;) 
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SteppingAction

✤ It’s the easiest and most straight-forward way of collecting 
information!

✤ Let’s go back to the BraggPeak example to see how it works

✤ Open file SteppingAction.cc

✤ We will use this class to get:
✤ 1) the range of alpha particles in air
✤ 2) the Bragg curve

24

http://BraggPeakSteppingAction.cc


Run & analysis instructions

✤ In the SteppingAction file, check the code after line 23 
“// USE THIS METHOD FOR STEP #1 -- GETTING THE RANGE OF ALPHA PARTICLES”

✤ We collect information about the volume the particle is in, and the particle itself

✤ When the particle stops, we collect information about its position and write to an output file

✤ Compiling and running the code:
✤ make

✤ BraggPeak batch_mode.mac 
(note that this will not open the graphical interface, but will run 1000 events in batch mode)

✤ This will create an output file: BraggPeak.out

✤ Run the script alphaRange.C in ROOT:
✤ root -l

✤ .x alphaRange.C

✤ .q to quit ROOT
25

A couple of other plots you can try:
test->Draw(“radius”);

test->Draw("track:radius","","colz");



Range of 5.5 MeV alpha particles in air
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Run & analysis instructions
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✤ Comment the method which starts at line 23, and uncomment the one starting at line 45 
“// USE THIS METHOD FOR STEP #2 -- PRODUCING THE BRAGG PEAK”

✤ This will save in the output file, for each step:
✤ the total track length (x)

✤ the energy deposited in the step (dE) 

✤ the size of the step (dx)

✤ Edit the file batch_mode.mac and reduce the number of events to 1000 (if needed)

✤ Compile and run the simulation

✤ Run the analysis scripts in ROOT  
(bragg_peak.C and bragg_peak_advanced.C)

✤ Compare the observed curve with what’s expected, in the next slide



Bragg curve for 5.5 MeV alphas in air
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Homework (actually class-work!)

✤ Start from the Shielding.zip simulation “skeleton”
✤ Consider a collimated beam of photons with 1 MeV
✤ What is the required thickness of Pb to reduce the intensity of the 

beam to 1/10th of its initial value? 
✤ What is the mean energy of the photons that get through?
✤ What fraction of these photons suffered at least one Compton scatter?
✤ Repeat the exercise using copper as shielding material.
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That’s it! We have done our first simulation!

The next one is for you to do “on your own”


