

USING THE EVENT ACTION

RANGE OF ELECTRONS

- Simulate electrons with different energies propagating in different materials
- Estimate the CSDA range and the projected range
 - CSDA = continuous-slowing-down approximation
 - Rate of energy loss at every point along the track is assumed to be equal to the total stopping power
 - Obtained by integrating the reciprocal of the total stopping power with respect to energy
- Compare CSDA range with NIST values
- Use E = 10 keV, 100 keV and 1 MeV
- ▶ In air (*q*=1.205 mg/cm3) and soft tissue (*q*=1.05 g/cm3)

RANGE OF ELECTRONS

- Get the eRange.zip simulation skeleton from <u>lip.pt/~alex/G4Classes/Examples</u>
- We will use NIST materials in GEANT4
 - much easier to define
 - standard materials that can be compared by everyone
 - makes sense given that we're comparing with NIST ranges
- G4_Air and G4_MUSCLE_SKELETAL_ICRP
 - Check full list of materials here:

http://geant4-userdoc.web.cern.ch/geant4-userdoc/UsersGuides/ ForApplicationDeveloper/html/Appendix/materialNames.html

You can compare these with NIST materials here: <u>http://physics.nist.gov/cgi-bin/Star/compos.pl</u>

RANGE OF ELECTRONS

- Check (and modify if needed) the mandatory classes
 - Detector construction, PrimaryGenerator
- Compile and run the simulation in interactive mode
 - Use /tracking/verbose 1 followed by /run/beamOn 1 to get details on what is going on
 - You can get the CSDA range from the total track length
 - Note that there are usually secondary electrons
- Modify the SteppingAction to write out the CSDA range
 - What is the best way to identify the primary electrons?

LESSON 6

RANGE OF ELECTRONS

Energy (MeV)	Range in air [cm] (e=1.205 mg/cm ³)		Range in muscle tissue [cm] (e=1.04 g/cm ³)	
	R _{CSDA} (cm)	R _{proj} (cm)	R _{CSDA} (cm)	R _{proj} (cm)
0,01	0,24		2.4x10 -4	
0,1	13,5		1.4x10 -2	
1	408		0,42	

PROJECTED RANGE

Let us define"projected range" as the maximum depth an electron reaches along its initial direction

- For the CSDA range we just used the total length of the track
- How can we get the projected range?

PROJECTED RANGE

Sometimes (many times) the point with maximum projected range will not coincide with the end point

- How do we handle these cases?
- In the SteppingAction class we don't have access to the history of the track, only to it's current status

EVENT ACTION

This cannot be done using the SteppingAction class

Inside this class we do not have access to the history of the track, only the current "local" step

This is where the EventAction class is helpful

- > It provides 2 methods: one is called at the start of each event and the other at the end
- We can use them to initialise variables (at the beginning) and write them to file (at the end), and these variables live (and are accessible) throughout the entire event
- We can have a variable to store the maximum projected range, and update it at each step in the SteppingAction
- Edit SteppingAction and EventAction as needed to store the CSDA and projected ranges for each event
- Make histograms of both these quantities and compare them. You can also make a 2D plot to compare them directly