
GATE
A GEANT4-based toolkit for Medical Physics

What is GATE?

“GATE is an advanced opensource software developed by
the international OpenGATE collaboration and dedicated
to numerical simulations in medical imaging and
radiotherapy. GATE is based on the Geant4 toolkit.”

“It currently supports simulations of Emission Tomography (Positron Emission
Tomography - PET and Single Photon Emission Computed Tomography - SPECT),
Computed Tomography (CT), Optical Imaging (Bioluminescence and
Fluorescence) and Radiotherapy experiments. Using an easy-to-learn macro
mechanism to configurate simple or highly sophisticated experimental settings,
GATE now plays a key role in the design of new medical imaging devices, in the
optimization of acquisition protocols and in the development and assessment of
image reconstruction algorithms and correction techniques. It can also be used for
dose calculation in radiation therapy, brachytherapy or any other application.”

2

Summary
GATE runs as a generic GEANT4 application

No programming skills required!

Everything is setup using script commands,
basically macro files — no graphical interface, sorry…

Different strategies for imaging applications and for dosimetry/
radiotherapy

See documentation here

3

4546 S Jan et al

Geant4

Core layer

Application layer

User layer

Defines basic mechanisms
available in GATE

Extends base classes for
specific modelling

Empowers simulation
by using scripts

layer
Developer

Figure 1. Sketch of the layered architecture of GATE.

2.1. Architecture

The requirements discussed above are met using a layered architecture sketched in figure 1.
The core of GATE, developed in C++, defines the main tools and features of GATE. The
application layer is an extensible set of C++ classes based on the GATE core. On top of
the application layer is the user layer, where end-users can simulate experiments using an
extended version of the Geant4 scripting language.

The GATE developer layer consists of the core layer and the application layer. It is
built from the various classes that provide the most general features of GATE. These classes
define which tools are available, what developers can do and how they can do it. The
core layer includes some base classes that are common or even mandatory in all Geant4-
based simulations, such as those involved in the construction of the geometry, the interaction
physics, the event generation and the visualization management. In addition, the core layer
includes classes that are specific to GATE simulations, such as the GATE virtual clock for
time management. Thus, the core layer defines the basic mechanisms available in GATE for
geometry definition, time management, source definition, detector electronics modelling and
data output.

The application layer is composed of classes derived from the base classes of the core
layer to model specific objects or processes. For example, the core layer defines the base class
for volumes, and the application layer comprises all the derived classes for modelling specific
volumes, including boxes, spheres, cylinders and trapezoids. Similarly, the application layer
includes all the specific movement models derived from the movement base class, including
translations, rotations, orbits and oscillations. Thus, the range of features available in GATE
can increase as new application classes are developed, while the general structure remains
unaffected.

In the user layer, Geant4 provides mechanisms for running simulations both interactively
or batch-wise using scripts. An important principle of GATE is that each class must provide
dedicated extensions to the command interpreter class, so that the functionality provided by
the class is available through script commands. The end-users of GATE therefore do not have
to perform any C++ coding. The complete set-up of a nuclear medicine experiment can be
easily defined using the script language, as shown in figure 2.

2.2. Systems

When defining the geometry for a tomograph, specific guidelines with respect to the
geometrical hierarchy of the tomograph components must be followed, so that the Geant4
particles interaction histories, called hits, occurring in the detector, can be processed to

https://opengate.readthedocs.io/en/latest/getting_started.html

GATE-RTion

Dedicated tool for pencil beam facilities
(proton and light ion beam therapy)

Provide a long term stable version of GATE, with all
the necessary features for dosimetric applications

Provide a collection of tools for interface with the
clinical environment

Develop guidelines for clinical users for the use of the
provided tools

4
More details: https://gate.uca.fr/download/gate-rtion#/admin

https://gate.uca.fr/download/gate-rtion#/admin

Useful links

GATE website with documentation and download
instructions

A long list of publications with overviews on Gate
and many specific applications in Medical Physics,
both for imaging and treatment planning

Repository with plenty of examples

5

http://www.opengatecollaboration.org
http://www.opengatecollaboration.org/OpenGATEpublications
https://github.com/OpenGATE/GateContrib

PET
Positron Emission Tomography

The concept

Patient injected with a positron emitting radioactive isotope (e.g. 11C, 13N, 150,
and 18F), attached to a molecule preferably absorbed by the organ to study

Isotope emits a positron, which thermalises and annihilates emitting two
(almost) back-to-back 511 keV gammas

One or more rings of detectors detect these gammas. Coincidences are used to
produce an image of the emission region by overlapping many lines

7

Highly segmented
detectors

Gate PET example
The benchmarks folder has plenty of
examples

The benchPET consists of:
8 detector heads (that can be rotated)

400 detector blocks each

each block is a dual layer of LSO-BGO crystals

cylindrical water phantom with two linear
sources (18F, 109.8 min HL and 15O, 2.03 min
HL) 100 kBq each

total acquisition time is 4 min, in 2x 2 min
frames

the heads rotate by 22.5 deg between frames

coincidence time window is set to 120 ns (to
allow a large number of random coincidences)

takes ~12 hours in a 1 GHz CPU (!)…

Image from this paper

8

https://pubmed.ncbi.nlm.nih.gov/15552416/

PET Example

We obviously don’t have that long just to run the example, so let’s
build our own simplified PET system that we can play with

Download file myPET.zip from www.lip.pt/~alex and unzip it
inside your working folder

To keep things organised, we are going to use different macro files:
- main.mac
- geometry_step?.Mac
- physics.mac
- digitizer.mac
- source.mac
- output.mac
- vis.mac

9

http://www.lip.pt/~alex

How to run Gate

Instead of installing yet another software, let’s use Docker

You can do this in your own computer as long as you install Docker.
Instructions on how to do this for different OSs are here.

The Gate collaboration provides a docker image with GEANT4 10.6
and Gate 9.0

To make things easier, download the scripts setup_docker.sh and run_docker.sh
from here and copy them inside your working folder
(make dure you’re in the gate branch!)

To start the Gate container, open a terminal in your working folder
source setup_docker.sh
source run_docker.sh
cd /usershared/myPET

You should now be in the folder we just unzipped

10

https://docs.google.com/presentation/d/1RyzeaXqsREM0AGacJCdyAaI-T0J01QZx527Q22XeSjQ/edit?usp=sharing
https://gitlab.com/alindote/docker-instructions/-/tree/gate_branch

Step-by-step…

Look inside main.mac — this is where we will control the flow and
call the other macros

You’ll notice most commands are commented out. Let’s slowly
construct the geometry… using files geometry_step1.mac through
…step5.mac

To run the simulation, type Gate main.mac

Unfortunately the GEANT4 in the Gate image was not compiled with
OpenGL support. So we must use VRML2 files for visualisation

Uncomment the line that executes vis.mac from main.mac

Run the simulation again, you’ll see a new file g4_00, with .wrl
termination

Open it with view3dscene

11

Step-by-step…

Look inside main.mac — this is where we will control the flow and call
the other macros

You’ll notice most commands are commented out. Let’s slowly construct
the geometry… using files geometry_step1.mac through …step5.mac

To run the simulation, type Gate main.mac

Unfortunately the GEANT4 in the Gate image was not compiled with
OpenGL support. So we must use VRML2 files for visualisation

Then uncomment the use of the remaining macros, analysing the
commands inside them

To have decent statistics run the simulation with at least 1M events
(using /gate/application/setTotalNumberOfPrimaries)

Remember to comment out the execution of vis.mac

12

Analysis

Open root (in a different terminal) and start a new TBrowser to
navigate the output file

There are several TTrees inside the .root file:

Hits — provides extensive information about all the hits in all
the crystals

Singles — information for each crystal

Coincidences — information about events where a
coincidence was detected

OpticalData (we don’t use this)

13

Analysis
Some suggested plots:

Have a look at the time distribution
Singles->Draw(“time”)

Check the position distribution of the source
Singles->Draw(“sourcePosZ:sourcePosY:sourcePosX”)
Singles->Draw(“sourcePosZ:sourcePosX**2 + sourcePosY**2”)

Check the interactions in the crystals
Singles->Draw(“energy") — and fit a gaussian, is the resolution as expected?
Singles->Draw(“globalPosZ:globalPosY:globalPosX")
Singles->Draw(“globalPosX:globalPosZ")
Singles->Draw(“globalPosY:globalPosX")
Singles->Draw(“energy:sqrt(globalPosX**2+globalPosY**2)”,"","colz")

Suggestion: start an analysis script and add these plots as
you go along. It will make your like much easier!
You can start with exercises.C from the website

14

https://www.lip.pt/~alex/MedicalPhysics/exercises.C

Coincidences
A few interesting plots to try:

Coincidences->Draw(“sourcePosZ1")
Coincidences->Draw(“sourcePosZ2")
Do you expect these distributions to be identical?

The above distributions also show that not all the source emissions
have the same probability of being detected — this is a direct effect
of us having only one ring (solid angle effect)

How are we even seeing coincidences from |source_Z| > 10 mm?

Compare this distribution with sourcePosZ in the Singles TTree

Have a look at the photon travel time. How does that compare
with our “coincidence window”?
Coincidences->Draw(“(time2-time1)*1.e12") — photon travel
time difference (in picoseconds)

Coincidences->Draw(“rsectorID2:rsectorID1","","colz")
Photons are detected in approximately opposite modules (as
expected) but not exactly — Why?

15

Coincidences
A few interesting plots to try:

Coincidences->Draw(“sourcePosZ1")
Coincidences->Draw(“sourcePosZ2")
Do you expect these distributions to be identical?

The above distributions also show that not all the source emissions have the
same probability of being detected — this is a direct effect of us having only
one ring (solid angle effect)

How are we even seeing coincidences from |source_Z| > 10 mm?

Compare this distribution with sourcePosZ in the Singles TTree

Have a look at the photon travel time. How does that compare with our
“coincidence window”?
Coincidences->Draw(“(time2-time1)*1.e12") — photon travel time
difference (in picoseconds)

Coincidences->Draw(“rsectorID2:rsectorID1","","colz")
Photons are detected in approximately opposite modules (as expected) but not
exactly — Why?

This is caused by Compton or Rayleigh scattering (in the phantom or crystals).
Try adding cuts for no Compton/Rayleigh in the phantom)
(This is done using the 2nd parameter in the Draw function)

16

Exercises
Use the information on the Compton scatters in the phantom to get
the energy of events with no energy loss in the phantom

Compare the energy spectrum of gammas with at least 1 Compton scatter in the
phantom with the total — do you think we should adjust our energy window?

What is the fraction of decays that produced a coincidence?

Are all coincidences from gammas in the same decay?

What is the fraction of coincidences with no scatter in the phantom?

Estimate the distance between the detected gammas in coincidence,
with and without phantom scatters

Estimate the acollinearity angle. Again, check the effect on this angle
in the case of no phantom scatters

Double the radius of the phantom and redo the previous estimates.
Also have a look at the coincidence time, has it changed?

17

A more realistic simulation

So far we have not used the extra potential offered by
GATE

Instead of running a fixed number of events, let’s set a
running time and use the activity of our source

Edit the main.mac macro to have an acquisition interval
from 0 to 10 sec. Comment the line to have a fixed
number of events

Set the initial activity of the source as 100k Bq

With 100k Bq x 10 sec we should still have ~1M events

18

Have a look at the absolute time distribution — it now
spans between the limits we defined

Do you expect us to have false coincidences with the
current setup?

How can you check this?

Hint: plot the coincidence time distribution

Increase the coincidence time to see more false
coincidences (e.g. 100 ns or 1 µs)

Redo the distance and angle distributions between coincident gammas
now that you have false coincidences

False coincidences

19

A realistic source

Instead of our ideal source, let’s use 15O

This is a source frequently used in PET

It decays by positron emission (99.9%), which then
annihilates inside the patient

The half-life of this source is ~2 min

GATE can realistically simulate the effect of the
decay of the source during the exam

20

Edit the main.mac macro to use source_O15.mac to define the
primaries

Set the scan duration for 10 min. Set the duration of each time slice
as 10 sec

GATE calculates the source activity in each time slice

Use an initial activity of 1000 Bq

Be patient, this will take some time
(these are in fact 60 simulations!)

Analyse the output file to check the decay of the source activity
Does it agree with the half-life of the source?

A realistic source

21

A moving patient

GATE allows you to add movement to any of the
geometry elements

You can use it to rotate the PET ring and modules

Or to simulate movement of the patient during
the exam (e.g. breathing)

Types of movement: translation, rotation,
orbiting, wobbling (oscillating translation)

22

We will make our phantom “wobble” in the x, y and z directions

We can set the amplitude, period/frequency and initial phase

For this, use the geometry_step6.mac macro file

Note that it is important for the source to be attached to the
phantom, to move with it

Set your acquisition interval to 20 sec, in slices of 1 sec
GATE repositions the geometry at each time slice

Increase the initial activity of the source by 10x to increase the
statistics

Can you tell from the data that the phantom/source is moving?

A moving patient

23

