Monte Carlo software packages for Medical Physics

A brief (and incomplete) overview

Alexandre Lindote

What is a MC software package?

- More specifically, a MC package for radiation interaction tracking which typically can also be used for Medical Physics
 You now know how to sample a given distribution (either using the inverse of the cumulative function or the rejection method)
- ☐ You also know how to use that to simulate a simple physics process (e.g. Compton scattering)
- ☐ A MC package tries to make our life easier, by including:
 - a set of algorithms to simulate multiple (and simultaneous) physics processes (may be limited to a given set of physics, e.g. electromagnetic, or more general)
 - \square a philosophy to set up the geometry of an experiment (materials and shapes)
 - \square an algorithm for tracking particles inside the set-up (may include support for fields)

Requirements

What we want from a MC software package

- ☐ Reliability of the results
- □ Versatility and completeness
- □ Computational speed
- ☐ Ease of use (not mandatory, but nice to have)
- □ Open source code (not mandatory, but nice to have)

Requirements

What we want from a MC software package

- offer tools that help set up a new simulation and analyse the results

Open source code

- □ Reliability of the results

 extensive and continuous comparison with published data

 □ Versatility and completeness

 ideally it should be able to simulate a wide range of physics processes (e.g. electromagnetic, hadronic, optical, etc.)

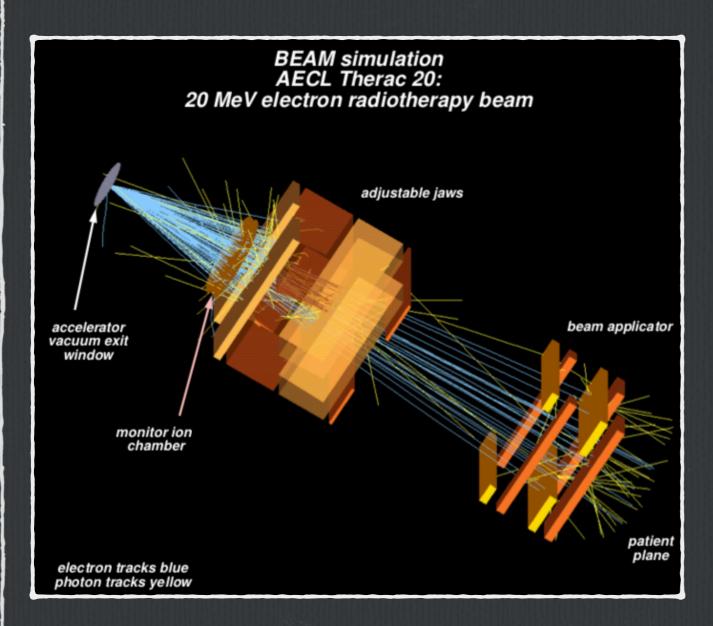
 □ Computational speed

 we need to simulate a large amount of events for study and development of new techniques, need to be able to quickly plan a treatment

 □ Ease of use
 - an open source code ensures more people can inspect the code, leading to quicker debugging, optimisation and benchmarking

A non-comprehensive list...

- □ ETRAN (NIST 1978)
 □ SRIM (Ziegler and Biersack 1983)
 (www.srim.org Windows only, recent-ish versions available)
 □ EGS4 (SLAC 1970s)
 (www.slac.stanford.edu/egs)
 □ EGSnrc (NRCC 2000)
 (www.irs.inms.nrc.ca/inms/irs/irs.html)
 □ EGS5 (KEK-SLAC 2005)
- Penelope (U. Barcelona 1999) (www.nea.fr/lists/penelope.html)

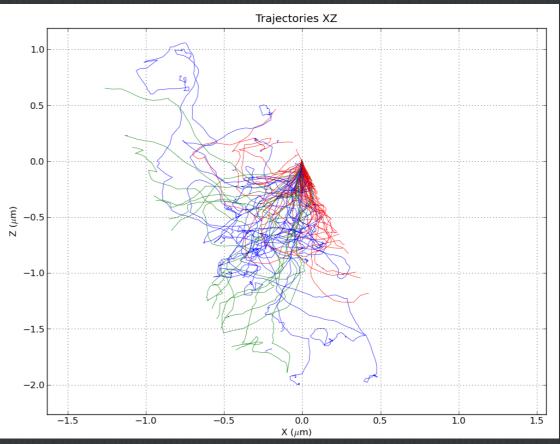

(www.kek.jp/research/egs/egs5.html)

A non-comprehensive list...

- ☐ Fluka (CERN-INFN 2005)
 (www.fluka.org)
 ☐ Geant3 (CERN 1986) superseded by GEANT4, but still used
- ☐ Geant4 (CERN++ 1999) (geant4.web.cern.ch/geant4)
- ☐ MARS (FNAL)
 (www-ap.fnal.gov/MARS)
- ☐ MCNP (LANL 1970s) (mcnpx.lanl.gov)

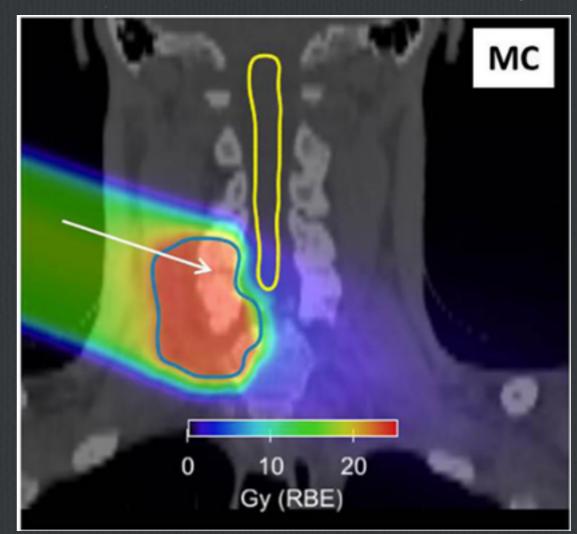
(www.cern.ch)

EGS — Electron Gamma Shower



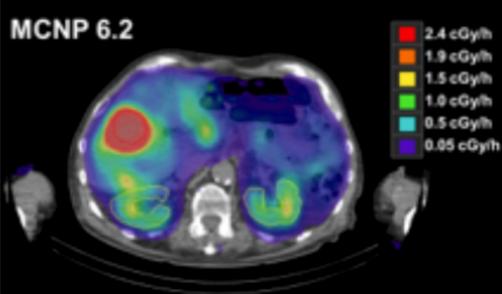
- ☐ For electrons, positrons and gammas (electromagnetic processes only)
- ☐ keV GeV range
- ☐ Currently split in two releases:
 - ☐ EGS5 (maintained by KEK)
 - ☐ EGSnrc (maintained by the NRC of Canada)
- ☐ In particular, BEAMnrc is widely used for LINAC simulations
- □ Open source (NRC on <u>GitHub</u>), Fortran
 base but C++ interface to build new sims
- ☐ Online <u>documentation</u> (including tutorials)

Penelope


- Penetration and <u>ENErgy LOss</u> of <u>Positrons</u> and <u>Electrons</u>
- □ Developed in Fortran
- ☐ For tracking of electrons, positrons and photons (EM processes only)
- ☐ 50 eV 1 GeV (but large uncertainties below 1 keV)
- ☐ Check out <u>pyPENELOPE</u>, a Python interface to the Fortran core code
- ☐ The Penelope code is available upon request

Electron shower simulation in PENELOPE

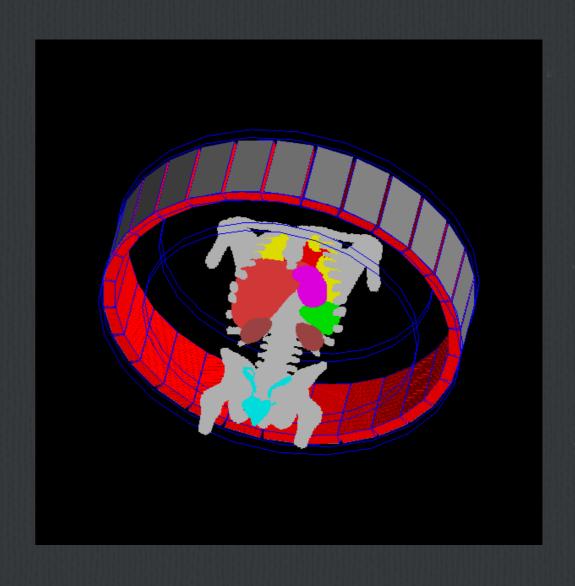
FLUKA


- ☐ General purpose code, includes EM and hadronic interactions
- □ Can also track optical photons
- ☐ Code base in Fortran
- ☐ User can create simple new applications without programming using "card" files (sequences of commands following a specific format and alignment, have a look at subsection 2.2.13 here)
- New release just last month (http://www.fluka.org)

FLUKA simulation of the dose distribution for a Carbon beam therapy, superimposed with a CT planning image (see full article <u>here</u>)

MCNP

- □ Developed in the Los Alamos National Laboratory (where the Monte Carlo technique was invented in the 1940s)
- ☐ Another general purpose MC package, also in Fortran
- □ Applications can be developed through the use of input files with 'cards' (command sequences)
- ☐ It is known to be the 'standard' for nuclear reactions and neutron transport and interactions
- ☐ Used in safety codes in nuclear reactors (analyse the safety of a reactor and simulate possible accidents)
- □ Code maintained and controlled by LANL, <u>requests</u> must be approved and non-US citizens do not have access to the source code
 - ☐ distribution is governed by US laws and Department of Energy regulations


Example use of MCNP6.2 to estimate the dose distribution in the use of ¹⁷⁷Lu and ¹³¹I sources, poster available <u>here</u>

GEANT4

General purpose package, includes a large variety of physics processes (EM, hadronic, optical, nuclear)
Developed in C++, using an Object Oriented Programming paradigm
Open source code, new releases every 6 months
Maintained by a large, world-wide collaboration
Often multiple models available for each process (e.g. straightforward to use a Penelope physics list for EM processes)
The fact that it is open source and the very large user community ensure extensive benchmarking against experimental results and error corrections
Initially developed for HE particle physics (LHC experiments) but has found users in other areas and now has a large community of users in medical physics
Includes multiple tools for visualisation and analysis
Developing new simulations requires some programming knowledge

GATE

- Open source code targeted for Medical Physics
- □ Uses GEANT4 as backend, offering a user interface (macro files) for typical medical applications
- ☐ Currently supports PET and SPECT, CT, Optical Imaging (Bioluminescence and Fluorescence) and Radiotherapy
- ☐ Includes time varying geometries (e.g. breathing)
- ☐ We will explore it next week!

