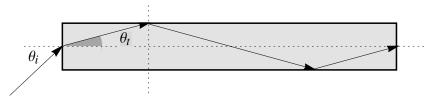
Eletromagnetismo e Ótica (MEC/LEGM)

14^a Semana

Probl. 1) Determine o valor mínimo do índice de refracção n_2 de uma fibra óptica rectilínea para que esta retenha completamente no seu interior um feixe de luz que entre numa extremidade a partir do ar com um ângulo de incidência θ_i arbitrário.



Resposta

R. 1-a)
$$n_2 \ge \sqrt{2}$$

- **Probl. 2)** Uma onda e.m. plana, monocromática, propagando-se no vazio ($\varepsilon_r = \mu_r = 1$), apresenta uma polarização circular direita. Incide segundo um ângulo de $\theta_i = 45\,^{\circ}$ sobre a superfície de um dielétrico com $\varepsilon_r = 2.56$, $\mu_r = 1$. O campo eléctrico da onda apresenta uma amplitude de $E_o = 5 \times 10^{-3} \left(\frac{V}{m}\right)$ e a sua frequência angular é dada por $\omega = 2\pi \times 10^5 \left(\frac{rad}{s}\right)$.
 - a) Calcule o seu comprimento de onda λ_i , e o comprimento de onda λ_t da onda transmitida.
 - b) Escreva a expressão para as componentes de \vec{E} da onda incidente e do respectivo campo magnético \vec{B} .
 - c) Calcule o valor médio do vector de Poynting da onda transmitida.

Respostas

R. 2-a)
$$\lambda_i = 3 \times 10^3 \, m$$
, $\lambda_t = 1.875 \times 10^3 \, m$

$$\textbf{R. 2-b)} \quad \overrightarrow{E}(\vec{r},\ t) = E_o\ e^{i\left(\omega\ t - \vec{k}\cdot\vec{r}\right)} \left(\frac{\vec{e}_x - \vec{e}_y}{\sqrt{2}}\right) + E_o\ e^{i\left(\omega\ t - \vec{k}\cdot\vec{r} + \pi/2\right)} \vec{e}_z, \ \overrightarrow{B}(\vec{r},\ t) = -\frac{E_o}{c_o}\ e^{i\left(\omega\ t - \vec{k}\cdot\vec{r} + \pi/2\right)} \left(\frac{\vec{e}_x - \vec{e}_y}{\sqrt{2}}\right) + \frac{E_o}{c_o}\ e^{i\left(\omega\ t - \vec{k}\cdot\vec{r}\right)} \vec{e}_z$$

R. 2-c)
$$(E_o^s)_t = 3.3 \times 10^{-3} \left(\frac{V}{m}\right), \quad \left(E_o^p\right)_t = 3.48 \times 10^{-3} \left(\frac{V}{m}\right) \implies \left\langle |\vec{S_t}| \right\rangle = 4.9 \times 10^{-8} \left(\frac{W}{m^2}\right)$$

- **Probl. 3)** Uma onda eletromagnética plana, monocromática, de amplitude $E_o = 100 \left(\frac{V}{m}\right)$ e frequência $f = 300 \, MHz$ viaja na direção \vec{e}_z num meio com índice de refração n = 1.5 e permeabilidade magnética μ_o . Sabendo que a onda se encontra polarizada linearmente na direcção $\vec{e}_x + \vec{e}_y$, determine:
 - a) A velocidade de fase v da onda, o seu comprimento de onda λ e o vector número de ondas \vec{k} .
 - b) a expressão para os campos elétrico $\vec{E}(\vec{r}, t)$ e magnético $\vec{H}(\vec{r}, t)$ em função de \vec{k} e ω .
 - c) o vector de Poynting \vec{S} e a intensidade I da onda.
 - d) o ângulo de reflexão total θ_c .
 - e) o ângulo de transmissão θ_I , sabendo que a normal à superfície de separação é dada pela expressão $\vec{n} = -\frac{1}{8} \left(\vec{e}_x + \vec{e}_y \right) + \frac{\sqrt{3}}{2} \vec{e}_z$.
 - f) Diga, justificando, em que condições é possível eliminar a onda refletida. Determine a normal ao plano de separação nessas condições.

Respostas:

R. 3-a)
$$v = 2 \times 10^8$$
, $\lambda = \frac{2}{3} m$, $\vec{k} = 3 \pi \vec{e}_z m^{-1}$

R. 3-b)
$$\overrightarrow{E} = 100 \ Cos \left[6 \times 10^8 \ \pi \ t - 3 \ \pi \ z \right] \left(\frac{\overrightarrow{e}_x + \overrightarrow{e}_y}{\sqrt{2}} \right) \quad \left(\frac{V}{m} \right), \quad \overrightarrow{H} = \frac{n}{Z_o} \ E \left(\overrightarrow{r}, \ t \right) \left(\frac{\overrightarrow{e}_y - \overrightarrow{e}_x}{\sqrt{2}} \right) \quad \left(\frac{A}{m} \right)$$

R. 3-c)
$$\vec{S} = \frac{125}{\pi} Cos[6 \times 10^8 \pi t - 3\pi z]^2 \hat{e}_z \left(\frac{W}{m^2}\right)$$
; $I = \frac{250}{4\pi} \left(\frac{W}{m^2}\right)$

R. 3-d)
$$\theta_c = sin^{-1} \left(\frac{2}{3}\right)$$

R. 3-e)
$$\theta_t = sin^{-1} \left(\frac{3}{4} \right)$$

R. 3-f)
$$\theta_B = tan^{-1} \left(\frac{2}{3}\right), \quad \vec{n} = \pm \frac{2}{\sqrt{13}} \left(\frac{\vec{e}_x + \vec{e}_y}{\sqrt{2}}\right) + \frac{3}{\sqrt{13}} \vec{e}_z$$

- **Probl. 4**) Uma onda plana linearmente polarizada cujo campo elétrico faz 45 ° com o plano de incidência incide a partir do ar na superfície de um meio de permitividade relativa $\varepsilon_r = 2.7$ com um ângulo de incidência $\theta_i = 45$ °.
 - a) Qual o estado de polarização da onda reflectida?
 - b) Se o ângulo de incidência for o ângulo de Brewster qual o estado de polarização da onda refletida?

Respostas:

- **R. 4-a)** Linearmente polarizada com inversão de fase a 45 ° do plano de incidência.
- **R. 4-b)** Verticamente polarizada para $\theta_B = 58.7^{\circ}$
- **Probl. 5**) Quando uma onda incide a partir de um meio de maior densidade para um de menor densidade num ângulo igual ou maior que o ângulo crítico θ_c , a onda será totalmente reflectida para o meio mais denso e será acompanhada por uma onda superficial no meio menos denso.
 - a) Para a água destilada $\varepsilon_r = 81$ e $\mu_r = 1$. Numa onda incidente a partir da água para o ar, qual é o ângulo crítico?
 - b) Se o campo incidente tiver $E_o^s = 1 \frac{V}{m}$ e incide com um ângulo $\theta_i = 45 \,^{\circ}$, determine a magnitude do campo elétrico à superfície no ar e a $\frac{\lambda}{4}$ da superfície.

Respostas:

R. 5-a)
$$\theta_c = sin^{-1} \left(\sqrt{\frac{1}{81}} \right)$$

R. 5-b)
$$|E_t|_s = 1.42 \frac{V}{m}$$
 e $|E_t|_{\lambda/4} = 73.2 \,\mu\text{V}$

Formulas Fresnel

■ Ondas - p (TM)

$$\rho_p = \frac{\left(E_o^p\right)_r}{\left(E_o^p\right)_i} = \frac{Tan[\theta_i - \theta_t]}{Tan[\theta_i + \theta_t]} \quad ; \quad \tau_p = \frac{\left(E_o^p\right)_t}{\left(E_o^p\right)_i} = \frac{2 \, Cos[\theta_i] \, Cos[\theta_t]}{Cos[\theta_i - \theta_t] \, Sin[\theta_i + \theta_t]}$$

■ Ondas - s (TE)

$$\rho_s = \frac{(E_o^s)_r}{(E_o^s)_i} = -\frac{Sin[\theta_i - \theta_t]}{Sin[\theta_i + \theta_t]} \quad ; \quad \tau_s = \frac{(E_o^s)_t}{(E_o^s)_i} = \frac{2 \, Cos[\theta_i] \, Cos[\theta_t]}{Sin[\theta_i + \theta_t]}$$