
Eletromagnetismo e Ótica (MEC/LEGM)

4^a Semana

Problemas

Probl. 1) Considere a região de "gate" de um transistor num microprocessador recente. É constituída por duas camadas metálicas de dimensões de $0.1~\mu m$ por $0.5~\mu m$, separadas por uma camada semi-condutora de óxido de silício SiO_2 com uma espessura de 1.5~nm e uma constante dielétrica $\epsilon_r = 3.5$. A diferença de potencial aplicada é da ordem de 1.5~V. Para este problema considere que se trata de um condensador de placas paralelas de área $0.1~\mu m$ por $0.5~\mu m$.

- a) Qual é a capacidade do condensador?
- b) Quantos electrões se encontram na armadura quando é aplicada a diferença de potencial de 1.5 V?

Esquema de um transistor real. Quando o potencial da Gate é nulo o Óxido de Silício funciona como um dieléctrico e isola o emissor do colector. Quando se aplica um determinado potencial na Gate esta passa a ser condutora e permite a passagem de corrente entre o emissor e o colector.

Respostas:

R. 1-a) $C = 1.031 \times 10^{-3}$ (p F)

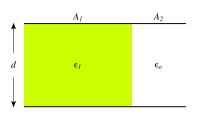
R. 1-b) $N_e \approx 9652$ electrões

Probl. 2) Um condensador plano com armaduras de área A está ligado a uma bateria que fornece uma tensão constante V_o . Descreva o que acontece à diferença de potencial V entre as armaduras, ao campo eléctrico \overrightarrow{E} , à capacidade C e às cargas Q nas armaduras quando:

- a) se afastam as armaduras para o dobro da distância inicial d, mantendo o condensador ligado à bateria.
- b) se afastam as armaduras como na alínea anterior, mas desligando-as da bateria primeiro.


Respostas:

R. 2-a)
$$V=V_o$$
 , $\overrightarrow{E}=\frac{1}{2}$ $\overrightarrow{E_o}$, $C=\frac{1}{2}$ C_o e $Q=\frac{1}{2}$ Q_o


R. 2-b) $V=2\ V_o$, $\overrightarrow{E}=\overrightarrow{E}_o$, $C=\frac{1}{2}\ C_o$ e $Q=Q_o$

Probl. 3) Considere as seguintes situações:

a) Devido a um acidente, o dielétrico de permitividade relativa $\varepsilon_r = 10$ de um condensador plano partiu-se pelo meio, deixando uma separação b entre as duas metades do dielétrico de espessura inicial d=2 mm. Sabendo que a capacidade C do condensador diminuiu agora para metade do valor que tinha, determine o valor de b. Determine as cargas de polarização que aparecem nos dielétricos.

Noutra altura o dielétrico apenas cobria uma área A_1 das armaduras de área total $A = A_1 + A_2$, como indicado na figura ao lado. Determine agora a capacidade C do condensador em função da área coberta A_1 . Determine ainda a densidade de carga livre em cada região A_1 e A_2 da armadura, e as cargas de polarização no dielétrico.

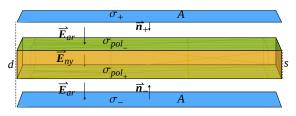
Respostas:

R. 3-a)
$$b=0.2 \ mm;$$
 Se $V=c^{te}, \sigma_p=\frac{9 \, \varepsilon_o \, V}{2 \, d}$. Se $Q=c^{te}, \sigma_p=\mp \frac{9 \, Q}{10 \, A}$.

$$\textbf{R. 3-b)} \quad C = \frac{\varepsilon_o(A+9A_1)}{d} \; ; \; \text{Se} \; V = c^{te}, \; \begin{cases} \sigma_{1\,c} = & 10 \; \varepsilon_o \; \frac{V}{d} \\ \sigma_{2\,c} = & \varepsilon_o \; \frac{V}{d} \\ \sigma_{1\,p} = & \mp 9 \; \varepsilon_o \; \frac{V}{d} \end{cases} \; , \; \; \text{se} \; Q = c^{te}, \; \begin{cases} \sigma_{1\,c} = & \frac{10 \, Q}{A+9A_1} \\ \sigma_{2\,c} = & \frac{Q}{A+9A_1} \\ \sigma_{1\,p} = & \mp \frac{9 \, Q}{A+9A_1} \end{cases}$$

- **Probl. 4**) Duas esferas condutoras, ôcas e concêntricas, de raios $R_1 = 2 cm$ e $R_2 = 6 cm$ e espessura desprezável são carregadas até atingirem potenciais $\varphi_1 = 6 V$ e $\varphi_2 = 1 V$.
 - a) Deduza a expressão para o potencial $\varphi(r)$ em todas as regiões do espaço.
 - b) Determine o campo eléctrico \overrightarrow{E} nas mesmas regiões. Devem-se esperar descontinuidades no campo elétrico? Onde e porquê?
 - c) Calcule as cargas Q_1 e Q_2 de cada esfera.
 - d) Determine a capacidade C deste sistema visto como um condensador.
 - e) Qual é a pressão electroestática à superfície de cada esfera ?

Respostas:


R. 4-a)
$$\varphi(r) = \begin{cases} 6 & (r \le R_1) \\ \frac{3}{20} \left(\frac{1}{r} - 10\right) & (R_1 \le r \le R_2) \\ \frac{3}{50r} & (R_2 \le r) \end{cases}$$
 (V)

R. 4-b)
$$\overrightarrow{E}(\overrightarrow{r}) = \begin{cases} 0 & (r \leq R_1) \\ \frac{3}{20r^2} \overrightarrow{e}_r & (R_1 \leq r \leq R_2) & (\frac{V}{m}) ; \quad \Delta \overrightarrow{E}(R_1) = 375 \left(\frac{V}{m}\right) \text{ e } \Delta \overrightarrow{E}(R_2) = -25 \left(\frac{V}{m}\right) \\ \frac{3}{50r^2} \overrightarrow{e}_r & (R_2 \leq r) \end{cases}$$

R. 4-c)
$$Q_1 = 16.7 (pC)$$
 e $Q_2 = -10 (pC)$

R. 4-d)
$$C = 3.33 (pF)$$

Probl. 5) Um condensador de placas paralelas tem uma área $A = 0.1 \ m^2$ e uma distância entre placas de $d = 3 \ mm$. A meio no seu interior está uma placa de nylon de espessura $s = 1 \ mm$. A constante dielétrica relativa do nylon é $\epsilon_r = 3.4$, e suporta um campo eléctrico máximo de $14 \times 10^6 \ \frac{V}{m}$. A constante dielétrica relativa do ar é $\epsilon_r = 1.00059 \sim 1$ e suporta um campo eléctrico máximo de $3 \times 10^6 \ \frac{V}{m}$. A carga no condensador é $Q = 1.5 \times 10^{-8} \ C$.

Condensador Plano com dielétrico de ar+nylon+ar

a) Calcule o campo eléctrico no ar \vec{E}_{ar} e no nylon \vec{E}_{ny} dentro do condensador. Determine a partir daí as densidades de carga de polarização no nylon.

- b) Qual é a capacidade C do condensador?
- c) Qual é a energia U necessária para carregar o condensador e qual a energia armazenada no campo elétrico final?
- d) Qual é a maior carga que esse condensador pode ter nas armaduras sem correr riscos de uma descarga?
- e) Estando o condensador em circuito aberto, qual é a tensão V_{ar} entre as armaduras quando a placa de nylon é retirada? Como se compara à tensão V_{ny} com a placa de nylon?
- f) Qual é o trabalho W que é preciso efectuar para retirar essa placa de nylon?

Respostas:

R. 5-a)
$$\overrightarrow{E}_{ny} = 4.989 \times 10^3 \, \overrightarrow{n}_+ \, \left(\frac{V}{m}\right) \, e \, \overrightarrow{E}_{ar} = 16.964 \times 10^3 \, \overrightarrow{n}_+ \, \left(\frac{V}{m}\right)$$

R. 5-b)
$$C = 3.85 \times 10^{-1}$$
 (nF)

R. 5-c)
$$U = 2.92 \times 10^{-7}$$
 (*J*)

R. 5-d)
$$Q_{rot} = 42 \times 10^{-6} (C)$$

R. 5-e)
$$V_{ar} = 50.89 (V) > V_{ny} = 38.92 (V)$$

R. 5-f)
$$W = 8.98 \times 10^{-8} (J)$$