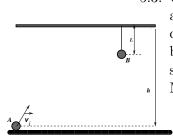

5. Momento Linear

- 5.1. Uma bola com massa $m_1 = 1$ g colide com um alvo parado de massa m_2 . Considere que a colisão é completamente elástica e que a velocidade inicial da bola é $\vec{v}_1 = 1\vec{e_x}$ m/s. Analise o problema assumindo que a colisão se passa ao longo de uma direcção que une o centros de massa de m_1 e m_2 .
 - a) Considere que há conservação da energia e do momento linear na colisão e demonstre que as expressões para v_1^{\star} a velocidade da bola após a colisão e v_2^{\star} a velocidade do alvo após a colisão são dadas, respectivamente, por:


$$v_1^{\star} = \frac{m_1 - m_2}{m_1 + m_2} v_1$$
 e $v_2^{\star} = \frac{2m_1}{m_1 + m_2} v_1$

- b) Calcule a velocidade final da bola e do alvo nos casos em que: i) a massa da bola e do alvo são iguais; ii) a massa do alvo pode ser considerada infinitamente maior que a massa da bola.
- c) Calcule o momento linear transferido ao alvo nos casos anteriormente definidos como i) e ii) por cada colisão.
- 5.2. Uma bola (A) é lançada com uma velocidade inicial $\vec{v}_{\text{o,A}} = v_0 \vec{e}_{\text{x}} \,^{\text{m}/\text{s}}$ de uma altura h. A uma distância D está uma outra bola (B), à mesma altura h. Um mecanismo assegura que a bola A é lançada na direcção da bola B e exactamente no mesmo instante em que a bola B é deixada cair sem velocidade inicial. As massas de A e B são iguais.
 - a) Obtenha a expressão para a velocidade mínima que deverá ter a bola A para que possa colidir com a bola B, em função da distância D e da altura h?
 - b) Considere $\vec{v}_{\text{o,A}} = 5\vec{e}_{\text{x}}\,\text{m/s}$, $h = 1,5\,\text{m}$ e $D = 2\,\text{m}$. Se por falha dos sistema, A e B fossem lançadas em instantes diferentes e não houvesse colisão, quais seriam as componentes das velocidades de A e B quando tocassem no chão? Ao fim de quanto tempo A e B chegariam ao chão? Determine as coordenadas dos pontos em que A e B chegam ao chão.
 - c) Considere os valores indicados no enunciado, nomeadamente que a bola A é lançada com uma velocidade inicial $\vec{v}_{\rm o,A}=5\vec{e}_{\rm x}\,{\rm m/s}$. Ao fim de quanto tempo se dá a colisão?
 - d) A que altura do chão se dá a colisão?

- e) Quais as componentes da velocidade $(\vec{v}_{x,A}, v_{y,A})$ para a bola A e $(\vec{v}_{x,\mathrm{B}},\,v_{y,\mathrm{B}})$ para a bola B no instante antes da colisão?
- f) Considere que a colisão entre A e B é uma colisão elástica. Calcule as componentes (v_x^*, v_y^*) das velocidades de A e B logo após a colisão. Justifique a resposta considerando que há conservação da energia cinética e conservação do momento linear durante a colisão.
 - Sugestão: Compare esta colisão com as conclusões do exercício 5.1 quando as massas são iguas.
- g) Calcule as coordenadas (x_A, y_A) do ponto onde A atinje o solo e as coordenadas (x_B, y_B) onde B atinge o solo após a colisão.

- a) Determine a condição para que B alcance o tecto, em função da altura h e de L, i.e. determine a energia mínima de lançamento de A para que B atinja o tecto.
- b) Considere que a velocidade inicial de A é 20 m/s e faz um ângulo $\alpha = 30^{\circ}$ com a horizontal, $m_{\rm A} = m_{\rm B} = 0.5 \,\mathrm{kg}$ e $L = 30 \,\mathrm{cm}$. Escreva as equações do movimento de A antes e depois da colisão. Determine o instante e a distância ao ponto de lançamento em que A chega ao chão. Determine a altura máxima, $h_{B,max}$, a que B consegue chegar.
- c) Considere agora uma nova situação em que a colisão entre A e B é completamente inelástica. Após a colisão A e B seguem coladas. Obtenha a expressão para a $h_{\text{max}_{A+B}}$ altura máxima atingida por A+B. Calcule essa altura para $h = 20, 4 \,\mathrm{m}$.
- 5.4. Um vagão ($M = 300 \,\mathrm{kg}$) move-se ao longo de um plano horizontal, como representado na figura 5.1. No instante $t_{\rm o}$ a sua velocidade é $v = 7 \,\mathrm{m/s}$. Nesse instante começa a receber areia de uma tremonha fixa ao solo. A massa de areia recebida é no total de $m_{\text{areia}} = 200 \,\text{kg}$.
 - a) Qual a velocidade do vagão quando ficou carregado com os 200 kg de areia?
 - b) No instante t_1 , o vagão começa a despejar areia por uma fenda que se abriu no chão. A areia cai na vertical. Calcule a velocidade do vagão quando perdeu metade da areia. E quando perdeu toda a areia?

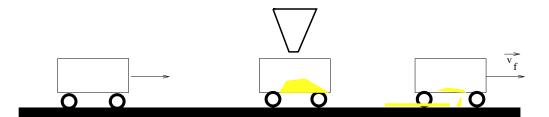
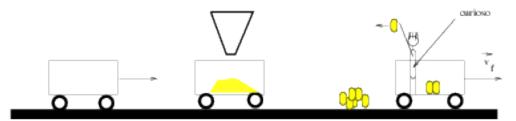
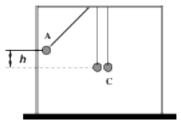
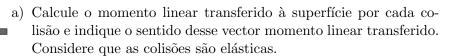


Figura 5.1.: Vagão a carregar e descarregar

5.5. Um vagão ($M=230\,\mathrm{kg}$) move-se ao longo de um plano horizontal, como representado na figura 5.2. No instante t_o a sua velocidade é $v=7\,\mathrm{m/s}$. Nesse instante começa a receber areia de uma tremonha fixa ao solo. A massa de areia recebida é no total de $m_\mathrm{areia}=200\,\mathrm{kg}$, semelhante ao caso anterior da figura 5.1


Figura 5.2.: Vagão a carregar e a ser descarregado

- a) Qual a velocidade do vagão quando ficou carregado com os 200 kg de areia, considerando que no vagão estava escondido um curioso com $m=70\,\mathrm{kg}$?
- b) Um curioso, que conseguira esconder-se no vagão e ficara "com os cabelos em pé" por ter sido coberto com areia, resolve vingar-se. No instante t_1 , esse curioso começa a despejar areia enchendo sacos de plástico e atirando no sentido contrário ao do movimento do vagão. Os sacos são atirados com uma velocidade de $2 \, \text{m/s}$ relativamente ao vagão e cada saco tem $3 \, \text{kg}$ de areia. Atira $4 \, \text{sacos}$ por minuto. Calcule a velocidade do vagão quando perdeu metade da areia. E quando perdeu toda a areia?
- 5.6. Um sistema representado na figura ao lado é constituído por três pêndulos de massa e comprimentos iguais. No instante inicial, A é largado de uma altura h com velocidade nula.
 - a) Se os choques forem elásticos, qual a altura máxima atingida pelo pêndulo C?
 - b) O que acontece aos outros pêndulos após o choque?

5. Momento Linear

- c) Se após o choque as 3 esferas ficarem ligadas entre si, qual a altura máxima atingida pelo conjunto.
- 5.7. Uma superfície faz um ângulo $\alpha=30^{\circ}$ com a horizontal. Sobre a superfície incide segundo a horizontal um fluxo uniforme de esferas, ϕ , onde cada esfera tem $m_e=1$ g e velocidade $\vec{v}=2$ m/s. Considere a superfície tem uma massa $m_S=1,7$ kg e está presa por um sistema de fixação que não lhe permite deslocar-se na horizontal nem girar mas permite-lhe deslocar-se na vertical.

- b) Calcule a força exercida na superfície pelo fluxo de esferas, sua direcção e sentido.
- c) Calcule a componente \vec{F}_S força de sustentação, e que é a componente vertical da força \vec{F} que actua na superfície devido às colisões. Calcule qual deve ser o fluxo para a superfície estar em equilíbrio.
- 5.8. Uma bola de massa igual a $100\,\mathrm{g}$ choca contra uma parede, tendo no instante do choque uma velocidade horizontal de $10\,\mathrm{m/s}$. A colisão contra a parede deu-se a $2\,\mathrm{m}$ de altura do chão e após a colisão a bola cai a $4\,\mathrm{m}$ de distância da parede.
 - a) Calcule o tempo que a bola demora a atingir o chão.
 - b) Calcule as componentes da velocidade da bola após a colisão contra a parede.
 - c) calcule a perda de energia cinética no choque.
- 5.9. Um neutrão a uma velocidade de 2 700 m/s colide frontalmente com um núcleo de azoto em repouso. Em resultado dessa colisão o neutrão é absorvido. Qual a velocidade final do novo núcleo assim formado?
- 5.10. Uma granada cai verticalmente e explode em dois fragmentos iguais quando se encontra a 3000 m de altura. No instante da explosão a velocidade é de $\vec{v}_0 = -60\vec{e_y}$ m/s. Após a explosão um dos fragmentos adquire uma velocidade $\vec{v}_1 = 80\vec{e_y}$ m/s. Determine:
 - a) A velocidade e a posição de cada um dos fragmentos no instante após a explosão;
 - b) A velocidade e a posição de cada um dos fragmentos 10 segundos após a explosão;
 - c) A velocidade do centro de massa no instante da explosão;

- d) A velocidade e a posição do centro de massa 10 segundos após a explosão:
- e) O momento linear total do sistema no referencial do centro de massa.
- f) Como é a variação por unidade de tempo do sistema (constituído pelos dois fragmentos) no referencial de laboratório, em que a granada estava em queda livre antes de explodir.
- 5.11. Num dia de chuva intensa em que a altura das nuvens em relação ao solo era de 500 metros, mediram-se várias grandezas para caracterizar essa chuva, obtendo-se:
 - caudal de água: $c = 5 \times 10^{-3} \, \text{lm}^{-2} \text{s}^{-1}$:
 - velocidade das gotas de água: $v = 5 \,\mathrm{m/s}$;
 - massa média das gotas de água: $m = 65 \times 10^{-3}$ kg.
 - a) Qual seria a velocidade das gotas de água se não houvesse atrito do ar?
 - b) Qual o trabalho realizado pelas forças de atrito sobre uma gota de chuva? Calcule o valor médio da força de atrito que actua numa gota de chuva.
 - c) Foi colocada uma balança com dinamómetro à chuva. O prato da balança tem uma área de $0,4\,\mathrm{m}^2$. Quantas gotas de chuva caem por unidade de tempo no prato da balança? Que "peso" indica a balança, assumindo que as gotas que caem no prato escorrem de imediato para fora? Sugestão: Calcule o momento transferido à balança por colisão de cada gota de chuva e o número de colisões por segundo. Tente perceber a origem da força que actua na balança e que aparenta ser o "peso".
- 5.12. Uma nave desloca-se a $3\times 10^3\,\mathrm{m/s}$ relativamente à Terra. Quando os motores são ligados libertam combustível a uma velocidade de $5\times 10^3\,\mathrm{m/s}$ relativamente ao foguetão.
 - a) Qual a velocidade relativamente à Terra quando a massa se reduziu a metade?
 - b) Qual a propulsão se queimar combustível a uma taxa de 80 kg/s?
- 5.13. A massa de um foguetão é no instante inicial $M_i=1,7\times10^6\,\mathrm{kg}$. Considere que em cada motor a taxa de libertação de combustíveis líquidos é de $470\,\mathrm{kg/s}$, a velocidade de saída dos combustíveis é $v_{\mathrm{e,liq}}=3\,600\,\mathrm{m/s}$.
 - a) Qual a propulsão quando tem três motores accionados?

5. Momento Linear

- b) Qual a resultantes das forças que actuam no foguetão nesta fase? A 0,5 s antes do lançamento dá-se a ignição dos combustíveis sólidos. Estes combustíveis escapam-se com uma velocidade $v_{\rm e,sol}=3\,300\,{\rm m/s}$ a uma taxa de $4\,000\,{\rm kg/s}$. O foguetão tem 2 motores a combustíveis sólidos.
 - a) Quais as forças que actuam no foguetão no momento do lançamento?
 - b) Qual a aceleração no momento de lançamento a que são submetidos os astronautas?
 - c) Ao fim de 100 segundos a massa do foguetão reduziu-se a metade. Qual a aceleração do sistema nesse instante?