8. Ondas

Constantes

Velocidade do som no ar: $v_{\text{som}} = 344 \,\text{m/s}$ Velocidade da luz no vácuo $c = 3 \times 10^8 \,\text{m/s}$

8.1. Considere uma corda de comprimento L e densidade linear $\mu = m/L$, onde m é a massa da corda. Partindo da equação de Newton para o movimento de uma pequena porção da corda com comprimento dx, demonstre que, no caso de haver ondas transversais de pequena amplitude a propagar-se na corda, as oscilações dos pontos da corda relativamente à posição de equilíbrio podem ser dadas por:

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2} \,,$$

onde $y=y(x,t),\,v=\sqrt{T_x/\mu}$ é a velocidade de propagação da onda na corda e T_x é a tensão aplicada ao longo do eixo dos xx.

- 8.2. Na extremidade de uma corda suficientemente longa é imposta uma perturbação com frequência $f=5\,\mathrm{Hz}$ que provoca uma onda de amplitude $A=12\,\mathrm{cm}$ e velocidade de propagação $v=20\,\mathrm{m/s}$. A densidade linear da corda é $\mu=5\times10^{-2}\,\mathrm{kg/m}$.
 - a) Determine a frequência angular, ω , e o número de onda, k, bem como a expressão para a onda que se propaga na corda.
 - b) Qual a tensão a que está sujeita a corda?
 - c) (*) Qual a potência que deverá ser transmitida à corda para que se consiga manter a corda a vibrar como indicado anteriormente? Se quiséssemos aumentar a frequência num factor de 10, em quanto teríamos que aumentar a potência? Sugestão: Comece por demonstrar que a energia de cada pequeno segmento de corda com comprimento Δx e massa Δm está relacionada com a energia cinética máxima desse segmento ($E_{\rm c,max}$) e é dada por

$$E_{c,\text{max}} = \frac{1}{2} \Delta m \left(\frac{\partial y(x,t)}{\partial t} \right)_{\text{max}}^{2}$$
$$= \frac{1}{2} \mu dx A^{2} \omega^{2}.$$

8.3. Um sinal sonoro é emitido por um par de colunas iguais colocadas a uma distância de $2D=3\,\mathrm{m}$. Um ouvinte está a uma distância de $r=8\,\mathrm{m}$ do centro da linha que une as duas colunas e à mesma distância de ambas as colunas. As colunas estão ligadas a um mesmo amplificador.

Se o ouvinte se deslocar $x=35\,\mathrm{cm}$ na direcção paralela à linha que une as duas colunas o som anula-se. Qual a frequência do som emitido pelas colunas?

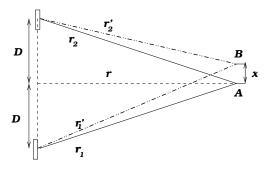


Figura 8.1.: Sobreposição de ondas emitidas por um mesmo amplificador

Sugestão: Considere que a ondas sonoras recebidas pelo ouvinte e emitidas pelas colunas 1 e 2 podem ser dadas, respectivamente, por $\Phi_1 = A \sin(kr_1 - \omega t)$ e $\Phi_2 = A \sin(kr_2 - \omega t)$ e calcule a resultante da sobreposição das duas ondas $\Phi = \Phi_1(r_1, t) + \Phi_2(r_2, t)$, onde r_1 e r_2 são as distâncias indicadas na figura 8.1.

- 8.4. Duas ondas $\Phi_1(x,t) = 4\sin(3x-2t)$ cm e $\Phi_2(x,t) = 4\sin(3x+2t)$ cm, propagam-se numa corda de comprimento L que tem as extremidades fixas.
 - a) Qual a resultante da sobreposição das duas ondas na corda?
 - b) Qual a amplitude de oscilação para o ponto x = 2 cm?
 - c) Qual a equação de movimento para o ponto $x = 2 \,\mathrm{cm}$?
 - d) Determine as coordenadas x na corda para as quais a amplitude de oscilação é máxima.
 - e) Determine as coordenadas na corda para as quais a amplitude do movimento é sempre zero.
- 8.5. Numa corda presa em ambas as extremidades e com comprimento $L=1,5\,\mathrm{m},$ consigo produzir um som com uma frequência fundamental de $f=264\,\mathrm{Hz}.$
 - a) Qual o comprimento de onda da harmónica fundamental, f_1 ?
 - b) Calcule a expressão para as frequências possíveis na corda (f_n) .

- c) Calcule as frequências das duas harmónicas seguintes, f_2 e f_3 .
- d) Determine a localização dos nodos correspondentes a f_1 , f_2 e f_3 .
- e) Qual a velocidade de propagação das ondas na corda quando o som produzido tem a frequência f_1 ?
- f) Qual a tensão nas extremidades da corda sabendo que a densidade linear é $\mu=0,007\,\mathrm{kg/m}$.
- g) Qual a frequência da vibração que passa para o ar? Qual o comprimento de onda do som no ar? Considere a velocidade do som $v_{\rm som}=340\,{\rm m/s}$.
- 8.6. Um raio de luz incide com um ângulo de 20° na face de uma placa de vidro com faces paralelas. A espessura da placa é de 2 cm. O vidro tem um índice de refração n=1,5 para essa radiação.
 - a) Qual o ângulo, em relação à normal, com que o feixe de luz sai do outro lado da placa de vidro? Faça um esquema.
 - b) Se o ângulo de incidência da luz sobre a superfície fosse de 80°, qual seria o trajecto do feixe de luz?
- 8.7. Um feixe de luz branca incide sobre um placa de vidro fazendo um ângulo de $80^{\rm o}$ com a superfície. Sabendo que o índice de refracção desse vidro para a luz vermelha é $n_{\rm vermelho}=1,5885$ e para a luz azul é $n_{\rm vermelho}=1,5982$, determine a dispersão angular dessas duas cores quando o feixe atravessa a placa de vidro. Faça um esquema.
- 8.8. Uma onda plana incide sobre uma superfície com duas fendas que distam $d=0,03\,\mathrm{mm}$. Num ecran a uma distância $D=1,2\,\mathrm{m}$ formase um padrão de interferência. Qual a relação entre a posição dos máximos, (y_{max}) , e o comprimento de onda (λ) da onda plana?
- 8.9. Duas fendas estreitas são iluminadas pela luz amarela de sódio $\lambda=589\,\mathrm{nm}$. Num ecran a um metro de distância formam-se riscas espaçadas de 1 cm.
 - a) Qual a distância entre as fendas?
 - b) Qual seria o espaçamento entre as riscas formadas no ecran se as mesmas fendas fossem iluminadas com luz vermelha de comprimento de onda $\lambda=650\,\mathrm{nm}$?
- 8.10. Faz-se incidir um feixe de luz branca sobre duas fendas e um segundo feixe (semelhante ao primeiro) sobre um prisma, por forma a comparar o que acontece ao feixe de luz em cada caso. Considere que cada feixe é composto por radiação que, na zona do visível, tem comprimento de onda entre 350 nanómetros (violeta) e 700 nanómetros

(vermelha). Analise o que se observa em cada caso e responda às perguntas seguintes.

- a) Para o primeiro caso observa-se um padrão de interferência na parede em frente. Sabendo que as duas fendas distam $d=6\times 10^{-6}$ m, indique a largura angular do máximo de 1ª ordem que sai das fendas. Para isso determine o ângulo $\theta_{\text{max},350}$ (relativo ao máximo central) para o máximo de 1ª ordem correspondente à radiação violeta e $\theta_{\text{max},700}$ para o máximo de 1ª ordem correspondente à radiação vermelha.
- b) No segundo caso o feixe de luz incide perpendicularmente sobre uma das superfícies do prisma, atravessando-o e incidindo com um ângulo de 30° numa outra face. Sabendo que o índice de refracção depende do comprimento de onda ($n_{\text{vermelho},700} = 1,48$ e $n_{\text{violeta},350} = 1,50$), calcule a largura angular do feixe que sai do prisma (largura angular do arco-íris).
- c) Compare os resultados das alíneas anteriores, fazendo um esquema para a imagem que se observa na parede no primeiro caso (com as duas fendas) e para o segundo caso (com o prisma).
- 8.11. Um feixe de luz de uma lâmpada de hidrogénio faz-se passar através de duas fendas que distam $d=41\times 10^{-6}\,\mathrm{m}$. A luz incide posteriormente sobre um ecran a 2,5 m de distância. Os espectro visível do hidrogénio compreende radiação com os seguintes comprimentos de onda:

Risca	λ/nm	Cor
H_{α}	656,3	vermelho
H_{eta}	$485,\!8$	verde
H_{γ}	434,0	azul
H_{δ}	410,0	violeta

- a) Justifique por que motivo a luz que passa pelas duas fendas dá origem à formação de máximos e mínimos de intensidade luminosa no ecran.
- b) Calcule:
 - a que distância do ponto central se encontra o máximo de 1^a ordem para a luz violeta de $\lambda_{H_{\delta}} = 410\,\mathrm{nm}$ e para a luz azul de $\lambda_{\mathrm{H}_{\gamma}} = 434,0\,\mathrm{nm}$;
 - a que distância do ponto central se encontra o mínimo de intensidade para a risca violeta e a risca de côr azul.
- c) Qual a distância mínima a que o ecran deve estar para que se consiga distinguir a luz azul da luz ultravioleta.
- d) Conseguindo distinguir a luz azul da luz violeta conseguirá distinguir a luz vermelha da luz violeta? Justifique.

- 8.12. Num ecran situado a uma distância $L=1,2\,\mathrm{m}$ de um sistema de fenda dupla forma-se um padrão de interferência da luz que passa pelas fendas. A distância entre as fendas é $d=0,03\,\mathrm{mm}$. O máximo de segunda ordem, m=2, dista 4,5 cm do máximo central.
 - a) Determine o comprimento de onda da radiação que incide nas fendas.
 - b) Determine a distância no ecran entre dois máximos consecutivos
- 8.13. Uma fonte de luz emite radiação com comprimentos de onda $\lambda_1 = 430\,\mathrm{nm}$ e $\lambda_2 = 510\,\mathrm{nm}$. Esta fonte é usada numa experiência de interferência com fendas duplas. Calcule a distância no ecran a que se encontram os máximos de 3^{a} ordem.
- 8.14. Uma bola de sabão é iluminada com luz, cujo comprimento de onda no vácuo é $\lambda = 600\,\mathrm{nm}$. O índice de refracção da água com sabão é igual ao da água, n=1,33.
 - a) Calcule a espessura mínima que deverá ter uma bola de sabão para que se obtenha interferência construtiva da luz reflectida. A interferência verifica-se entre a luz reflectida na superfície da bola de sabão e a luz reflectida no interior da bola.
 - b) Haverá interferência construtiva se a película da bola de sabão tiver uma espessura que seja o dobro da calculada na alínea anterior? Justifique.
- 8.15. Um feixe monocromático de luz de um laser de hélio-néon, de comprimento de onda $\lambda=632,8\,\mathrm{nm}$ incide sobre uma rede de difracção com 6000 fendas por centímetro.
 - a) Determine os ângulos a que se observam os máximos de 1^a e 2^a ordens.
 - b) Determine se é possível observar o máximo de 3ª ordem.
- 8.16. Luz de comprimento de onda $\lambda=589\,\mathrm{nm}$ é usada para iluminar um objecto que se pretende observar ao microscópio. A objectiva do microscópio tem uma abertura com diâmetro $d=0,9\,\mathrm{cm}$. Calcule o menor ângulo que se consegue resolver.
 - Se em vez desta radiação for usada luz visível, qual o menor ângulo que se consegue resolver. Considere que a radiação visível com o menor comprimento de onda corresponde a luz violeta com $\lambda_{\text{violeta}} = 400 \, \text{nm}$.
- 8.17. A intensidade de um som é frequentemente referida em unidades de decibel (dB). A relação entre o valor da intensidade do som em dB e em W/m^2 é dada por

$$I(dB) = 10 \log_{10} \left(\frac{I(W/m^2)}{10^{-12}} \right) ,$$

8. Ondas

onde $I(W/m^2)$ é a intensidade do som medida em unidades de W/m^2 . Como pode facilmente verificar, nesta escala considera-se que o valor de $I_{\rm o}=10^{-12}\,{\rm W/m^2}$ define o "zero da escala".

- a) A que corresponde uma intensidade de som de $I=1W/m^2$ na escala de dB?
- b) Num concerto dos Green Flying Dinossaurs, quando um dos GFD sobrevoa o palco suspenso do tecto, uma fonte sonora pontual emite um efeito acústico com uma potência $P_{\rm emitida}=100\,{\rm W}.$ Determine a que distância do palco a intensidade deste som é igual a 90 dB, limite a partir do qual se devem utilizar de protectores auditivos para evitar lesões irreversíveis do aparelho auditivo?