
3^a Série de Problemas de Electromagnetismo

(Problemas Classificáveis para entregar até ao fim do 2ª Semestre de 2002/2003)

Problema 1

Considere o circuito da figura seguinte,onde a barra \overline{ab} oscila (sem atrito) segundo a lei $x(t) = 0.35 (1 - \cos{(\omega t)})$ (m). A indução magnética é dada pela expressão $\vec{B} = 5 \times 10^{-12} \cos{(\omega t)} \vec{e}_z$ (T), com $\omega = 2\pi \times 50 \left(\frac{rad}{s}\right)$ e a resistência $R = 0.2 (\Omega)$.

Calcule o valor da corrente I(t) nos instantes t=0 e $t=\frac{\pi}{2\omega}$, e indique os respectivos sentidos.

Problema 2

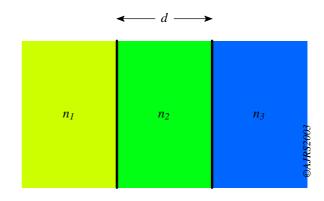
Dada uma onda e.m. plana, no vazio, cujo campo eléctrico é $\vec{\mathbf{E}} = \vec{\mathbf{E}}_o e^{i(\omega t - k\vec{u}\cdot\vec{r})}$, onde $|\vec{u}| = 1$:

- (a) Mostre que as equaçõesde Maxwell implicam que o campo é transversal;
- (b) Se \vec{E} vier dado por

$$E_{x} = -E_{o} \operatorname{Sin}\left(\omega t - k\left(\frac{\sqrt{2}}{2}y - \frac{\sqrt{2}}{2}z\right)\right)$$

$$E_{y} = E_{o} \operatorname{Cos}\left(\omega t - k\left(\frac{\sqrt{2}}{2}y - \frac{\sqrt{2}}{2}z\right)\right)$$

$$E_{z} = E_{o} \operatorname{Cos}\left(\omega t - k\left(\frac{\sqrt{2}}{2}y - \frac{\sqrt{2}}{2}z\right)\right)$$


com $E_o = 0.001 \left(\frac{V}{m}\right)$ e $\omega = 2\pi \times 10^6 \left(\frac{rad}{s}\right)$, calcule o comprimento de onda λ , indique a direcção e sentido da onda e descreva a sua polarização (incluindo a helicidade). Justifique.

Se a onda incidir normalmente sobre a superfície plana de um meio com $\varepsilon_r = 2.25$, determine as amplitudes das componentes E_x'' , E_y'' e E_z'' da onda reflectida.

Problema 3

Considere uma onda electromagnética plana, passando através de três meios dielétricos, com índices de refração n_1 , n_2 e n_3 , separados por superfícies planas e paralelas.

A onda incide normalmente. Mostre que se $n_2 = \sqrt{n_1 \, n_3}$ e $d = \frac{\lambda_2}{4}$, então o coeficiente de reflexão $\mathcal{R} = 0$. Esta propriedade é usada, por exemplo, para optimizar a qualidade dos binóculos.

Problema 4

A constante solar $G_s=1.353\left(\frac{\mathrm{kW}}{m^2}\right)$ representa a potência (máxima) por unidade de área da radiação solar incidente à superfície da atmosfera terrestre. Sabendo que os diâmetros do Sol e da Terra são respectivamente $D_s=1.39\times10^6~\mathrm{Km}$ e $D_T=1.29\times10^4~\mathrm{Km}$, e a distância média Terra–Sol $d_{\mathrm{TS}}=1.5\times10^8~\mathrm{Km}$

- (a) Estime a potência total emitida pelo Sol.
- (b) Estime a intensidade do campo eléctrico da radiação solar à superfície da Terra.
- (b) Compare com a intensidade do campo de um feixe laser que foca 1 (W) numa superfície de $1 mm^2$.