
LECTURE NOTES ON

THERMODYNAMICS

Joseph M. Powers

Department of Aerospace and Mechanical Engineering
University of Notre Dame

Notre Dame, Indiana 46556-5637
USA

updated
27 January 2014, 2:32pm



2

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Contents

Preface 9

1 Introduction 11
1.1 Some semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Historical milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Philosophy of science note . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Some practical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Example to illustrate homework solution style . . . . . . . . . . . . . . . . . 23

2 Some concepts and definitions 29
2.1 Thermodynamic system and control volume . . . . . . . . . . . . . . . . . . 29
2.2 Macroscopic versus microscopic . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Properties and state of a substance . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Processes and cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Fundamental variables and units . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Zeroth law of thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Secondary variables and units . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Properties of a pure substance 43
3.1 The pure substance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Vapor-liquid-solid phase equilibrium . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Independent properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Thermal equations of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Ideal gas law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Non-ideal thermal equations of state . . . . . . . . . . . . . . . . . . 61

3.4.2.1 van der Waals . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2.2 Redlich-Kwong . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.3 Compressibility factor . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.4 Tabular thermal equations of state . . . . . . . . . . . . . . . . . . . 64

3.4.4.1 Saturated liquid-vapor water, temperature tables . . . . . . 65
3.4.4.2 Saturated liquid-vapor water, pressure tables . . . . . . . . 67
3.4.4.3 Superheated water tables . . . . . . . . . . . . . . . . . . . 68
3.4.4.4 Compressed liquid water tables . . . . . . . . . . . . . . . . 69

3



4 CONTENTS

3.4.4.5 Saturated water, solid-vapor . . . . . . . . . . . . . . . . . . 69
3.4.4.6 Tables for other materials . . . . . . . . . . . . . . . . . . . 70
3.4.4.7 Linear interpolation of tabular data . . . . . . . . . . . . . . 70

3.4.4.7.1 Single interpolation . . . . . . . . . . . . . . . . . . 71
3.4.4.7.2 Double interpolation . . . . . . . . . . . . . . . . . 73

4 Work and heat 79
4.1 Mathematical preliminaries: exact differentials . . . . . . . . . . . . . . . . . 79

4.1.1 Partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.2 Total derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2 Work for a simple compressible substance . . . . . . . . . . . . . . . 84
4.2.3 Other forms of work . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 The first law of thermodynamics 105
5.1 Representations of the first law . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.1 Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1.2 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Specific internal energy for general materials . . . . . . . . . . . . . . . . . . 115
5.3 Specific enthalpy for general materials . . . . . . . . . . . . . . . . . . . . . 116
5.4 Specific heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5 Caloric equations of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.1 Ideal Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.1.1 Calorically perfect . . . . . . . . . . . . . . . . . . . . . . . 121
5.5.1.2 Calorically imperfect . . . . . . . . . . . . . . . . . . . . . . 123

5.5.2 Liquids and solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.5.3 General materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6 Time-dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7 Final comments on conservation . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 First law analysis for a control volume 143
6.1 Detailed derivations of control volume equations . . . . . . . . . . . . . . . . 144

6.1.1 Relevant mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.1.1.1 Fundamental theorem of calculus . . . . . . . . . . . . . . . 145
6.1.1.2 Divergence theorem . . . . . . . . . . . . . . . . . . . . . . 145
6.1.1.3 Leibniz’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.1.1.4 General transport theorem . . . . . . . . . . . . . . . . . . . 150
6.1.1.5 Reynolds transport theorem . . . . . . . . . . . . . . . . . . 151
6.1.1.6 Fixed (control) volumes . . . . . . . . . . . . . . . . . . . . 152

6.1.2 Conservation axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.1.2.1 Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


CONTENTS 5

6.1.2.2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.1.2.2.1 Total energy term . . . . . . . . . . . . . . . . . . 157
6.1.2.2.2 Work term . . . . . . . . . . . . . . . . . . . . . . 157
6.1.2.2.3 Heat transfer term . . . . . . . . . . . . . . . . . . 158
6.1.2.2.4 The first law of thermodynamics . . . . . . . . . . 159

6.2 Mass conservation in brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3 Energy conservation in brief . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4 Some devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4.1 Throttling device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.4.2 Nozzles and diffusers . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.4.3 Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.4.4 Pumps and compressors . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.4.5 Heat exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.5 Introduction to the Rankine cycle . . . . . . . . . . . . . . . . . . . . . . . . 178
6.6 Preview: equations of continuum mechanics . . . . . . . . . . . . . . . . . . 188

6.6.1 Full set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.6.2 Static solids equations . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.6.3 Incompressible fluid mechanics equations . . . . . . . . . . . . . . . . 189
6.6.4 Compressible fluid mechanics equations . . . . . . . . . . . . . . . . . 190
6.6.5 Heat transfer in incompressible static solids . . . . . . . . . . . . . . 190

7 The second law of thermodynamics 191
7.1 Statements of the second law . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.1.1 Entropy-based statement . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.1.2 Clausius statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.1.3 Kelvin-Planck statement . . . . . . . . . . . . . . . . . . . . . . . . . 194
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Preface

These are lecture notes for AME 20231, Thermodynamics, a sophomore-level undergraduate
course taught in the Department of Aerospace and Mechanical Engineering at the University
of Notre Dame. The objective of the course is to survey practical and theoretical problems
in classical thermodynamics. The emphasis is on the axiomatic approach to equilibrium
thermodynamics and its application to practical devices. However, there are some brief
appeals to the non-equilibrium and molecular underpinnings of thermodynamics.

The notes draw often on the text specified for the course, Borgnakke and Sonntag’s
(BS) Fundamentals of Thermodynamics, Seventh Edition, John Wiley, Hoboken, NJ, 2009,
especially Chapters 1-12, 14, and 17. In general the nomenclature of BS is used, and much of
the notes follow a similar structure as the text. Some example problems have been directly
taken from BS and other texts; specific citations are given where appropriate.

These notes emphasize problem-solving and rigorous development of the underlying clas-
sical theory; the student should call on other reference materials to fill some of the gaps.
It should also be remembered that practice is essential to the learning process; the student
would do well to apply the techniques presented here by working many problems.

An unusual aspect of the notes is the inclusion of accompanying text and figures related
to the history of classical thermodynamics. Where possible, citations of original work are
provided; most citations are linked directly to the original source material via click-able
text. Additionally, an extensive annotated bibliography is provided. This is an attempt
to fill gaps in most modern undergraduate texts, which at best provide small guidance to
original thermodynamics scholarship.

The notes and course data can be found at http://www.nd.edu/∼powers/ame.20231.
At this stage, anyone is free to make copies for their own use. I would be happy to hear
about suggestions for improvement. Thanks to many of the students, past and present,
whose diligence in identifying dozens of errors has been useful.

Joseph M. Powers
powers@nd.edu

http://www.nd.edu/∼powers

Notre Dame, Indiana; USA
CC© BY:© $\© =© 27 January 2014

The content of this book is licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0.
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Chapter 1

Introduction

Read BS, Chapter 1

1.1 Some semantics

We introduce here classical thermodynamics. The word “thermo-dynamic,” used first by
Thomson (later Lord Kelvin),1 has Greek origin, and is translated2 as the combination of

• θǫ́ρµη, therme: heat, and

• δύναµις, dynamis: power.

An image of Thomson and his 1849 first use of the word is given in Fig. 1.1.

Figure 1.1: William Thomson (Lord Kelvin) (1824-1907), Ulster-born Scottish scientist; im-
age from http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Thomson.html

and image giving the first use of “thermo-dynamic” extracted from his 1849 work.

1W. Thomson (later Kelvin), 1849, “An account of Carnot’s theory of the motive power of heat; with
numerical results deduced from Regnault’s experiments on steam,” Transactions of the Royal Society of

Edinburgh, 16:541-574. See also C. W. Smith, 1977, “William Thomson and the creation of thermodynamics:
1840-1855,” Archive for History of Exact Sciences, 16(3): 231-288.

2All Greek spellings and etymologies are drawn from the Oxford English Dictionary, 2nd edition, 1989.
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12 CHAPTER 1. INTRODUCTION

The modifier “classical” is used to connote a description in which quantum mechanical
effects, the molecular nature of matter, and the statistical nature of molecular behavior
are not considered in any detail. These effects will not be completely ignored; however,
they will be lumped into simple averaged models which are valid on the macroscale. As an
example, for ordinary gases, our classical thermodynamics will be valid for systems whose
characteristic length scale is larger than the mean free path between molecular collisions.
For air at atmospheric density, this about 0.1 µm (1 µm = 10−6 m).

Additionally, “classical” also connotes a description in which the effects of finite time-
dependency are ignored. In this sense, thermodynamics resembles the field of statics from
Newtonian mechanics. Recall Newton’s second law of motion, m d2x/dt2 =

∑
F, where m

is the mass, x is the position vector, t is time, and F is the force vector. In the statics limit
where

∑
F = 0, inertial effects are ignored, as is time-dependency. Now, a Newtonian would

consider dynamics to imply motion, and so would consider thermodynamics to imply the
time-dependent motion of heat. So a Newtonian would be more inclined to call the subject
of these notes “thermostatics.” However, if we return to the earlier Greek translation of
dynamics as power, we are actually truer to the classical connotation of thermodynamics.
For the fundamental interplay of thermodynamics is that between so-called thermal energy
(as might be thought of when considering heat) and mechanical energy (as might be thought
of when considering power, a work rate). More formally, adopting the language of BS (p. 13),
we will take the definition

• thermodynamics: the science that deals with heat and work and those properties of
matter that relate to heat and work.

One of the main goals of these notes will be to formalize the relationship between heat, work,
and energy.

We close this section by noting that the concept of energy has evolved through time, but
has ancient origins. The word itself had its first recorded use by Aristotle.3 His portrait,
along with an image of the relevant section of an 1818 translation of his work, is depicted in
Figs. 1.2. In the Greek, the word

,
ǫνǫ́ργǫια, “energeia,” connotes activity or operation. While

the word was known to Aristotle, its modern usage was not; it was the English polymath
Thomas Young who first used the word “energy,” consistent with any sort of modern usage,
in this case kinetic energy.4 A portrait of Young and an image of his text defining energy,
in actuality kinetic energy, in modern terms are shown in Fig. 1.3.

3Aristotle, ∼335 BC, The Rhetoric, Poetic, and Nicomachean Ethics, Book III, Ch. XI, English transla-
tion by T. Taylor, 1818, Black, London, see pp. 242-243.

4 T. Young, 1807, Lectures on Natural Philosophy, William Savage, London, p. 52.
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1.1. SOME SEMANTICS 13

Figure 1.2: Aristotle (384 BC-322 BC), Greek philosopher who gives the first recorded use
of the word “energy” and whose method of logic permeates classical thermodynamics; image
from http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Aristotle.html

and an image of Aristotle’s usage of the word “energy” from his Nicomachean Ethics.

Figure 1.3: Thomas Young (1773-1829), English natural philosopher; image from
http://en.wikipedia.org/wiki/Thomas Young (scientist), and a reproduction of his
more modern 1807 definition of (kinetic) energy.
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Finally, though she did not use the word “energy,” the notion of what is now known as
kinetic energy being related to the square of velocity was first advanced by du Châtelet,5

pictured in Fig. 1.4.

Figure 1.4: Gabrielle Émilie Le Tonnelier de Breteuil, marquise du Châtelet (1706-1749),
French physicist; image from http://en.wikipedia.org/wiki/Emilie du Chatelet.

1.2 Historical milestones

Thermodynamics has a long history; unfortunately, it was not blessed with the crispness of
development that mechanics realized with Newton. In fact, its growth is filled with false
steps, errors, and debate which continues to this day. Truesdell6 and Müller7,8 summarize
the development in their idiosyncratic histories. Some of the milestones of its development
are given here:

• first century AD: Hero of Alexandria documents many early thermal engines.

• 1593: Galileo develops a water thermometer.

• 1650: Otto von Guericke designs and builds the first vacuum pump.

• 1662: Robert Boyle develops his law for isothermal ideal gases.

5É. du Châtelet, 1740, Institutions de Physique, Chez Prault, Paris.
6C. Truesdell, 1980, The Tragicomical History of Thermodynamics, 1822-1854, Springer, New York.
7I. Müller, 2007, A History of Thermodynamics: the Doctrine of Energy and Entropy, Springer, Berlin.
8I. Müller and W. H. Müller, 2009, Fundamentals of Thermodynamics and Applications with Historical

Annotations and Many Citations from Avogadro to Zermelo, Springer, Berlin.
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• 1679: Denis Papin develops his steam digester, forerunner to the steam engine.

• 1698: Thomas Savery patents an early steam engine.

• 1710: Thomas Newcomen creates a more practical steam engine.

• 1760s: Joseph Black develops calorimetry.

• 1780s: James Watt improves the steam engine.

• 1798: Benjamin Thompson (Count Rumford) considers the mechanical equivalent of
heat from cannon boring experiments.

• 1824: Nicolas Lèonard Sadi Carnot discusses idealized heat engines.

• 1840: Germain Henri Hess considers an early version of the first law of thermodynamics
for work-free chemical reactions.

• 1840s: Julius Robert von Mayer relates heat and work.

• 1840s: James Prescott Joule relates heat and work.

• 1847: Hermann von Helmholtz publishes his theory of energy conservation.

• 1848: William Thomson (Lord Kelvin) postulates an absolute zero of temperature.

• 1850: Rudolf Julius Emanuel Clausius formalizes the second law of thermodynamics.

• 1865: Clausius introduces the concept of entropy.

• 1871: James Clerk Maxwell develops the Maxwell relations.

• 1870s: Josiah Willard Gibbs further formalizes mathematical thermodynamics.

• 1870s: Maxwell and Ludwig Boltzmann develop statistical thermodynamics.

• 1889: Gibbs develops statistical mechanics, giving underlying foundations for classical
and statistical thermodynamics.

Much development continued in the twentieth century, with pioneering work by Nobel lau-
reates:

• Jacobus Henricus van’t Hoff (1901),

• Johannes van der Waals (1910),

• Heike Kamerlingh Onnes (1913),

• Max Planck (1918),
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• Walther Nernst (1920),

• Albert Einstein (1921),

• Erwin Schrödinger (1933),

• Enrico Fermi (1938),

• Percy Bridgman (1946),

• Lars Onsager (1968),

• Ilya Prigogine (1977), and

• Kenneth Wilson (1982).

Note that Sir Isaac Newton also considered the subject matter of thermodynamics. Much
of his work is concerned with energy; however, his theories are most appropriate only for
mechanical energy. The notion that thermal energy existed and that it could be equivalent
to mechanical energy was not part of Newtonian mechanics. Note however, that temperature
was known to Newton, as was Boyle’s law. However, when he tried to apply his theories to
problems of thermodynamics, such as calculation of the speed of sound in air, they notably
failed. The reason for the failure required consideration of the yet-to-be-developed second
law of thermodynamics.

1.3 Philosophy of science note

As with science in general, thermodynamics is based on empirical observation. Moreover, it
is important that those observations be repeatable. A few postulates, also known as axioms,
will serve as the foundation of our science. Following Occam’s razor,9 we shall seek as few
axioms as possible to describe this behavior. We will supplement these axioms with some
necessary definitions to describe nature. Then we shall use our reason to deduce from the
axioms and definitions certain theorems of engineering relevance.

This approach, which has its foundations in Aristotelian methods, is not unlike the
approach taken by Euclid to geometry, Aquinas to theology, or Newton to mechanics. A
depiction of Euclid is given in Fig. 1.5. Consider for example that Euclid defined certain
entities such as points, lines, and planes, then adopted certain axioms such as parallel lines do
not meet at infinity, and went on to prove a variety of theorems. Classical thermodynamics
follows the same approach. Concepts such as system and process are defined, and axioms,
known as the laws of thermodynamics, are proposed in such a way that the minimum amount
of theory is able to explain the maximum amount of data.

Now, in some sense science can never be formally proved; it can only be disproved.
We retain our axioms as long as they are useful. When faced with empirical facts that

9from William of Occam, (c. 1288-c. 1348) English Franciscan friar and philosopher.
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Figure 1.5: Euclid of Alexandria (∼ 325 BC- ∼265 BC), Greek mathematician whose rational
exposition of geometry formed a model for how to present classical thermodynamics; image
from http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Euclid.html.

unambiguously contradict our axioms, we are required to throw away our axioms and develop
new ones. For example, in physics, the Michelson-Morely experiment forced Einstein to
abandon the axioms of Euclid, Newton, and Clausius for his theory of general relativity. It
turns out that we can still use these axioms, as long as we are considering problems in which
the speed of our reference frame is far less than the speed of light. In an example from
biology that is the topic of a popular science book,10 it was believed that all swans were
white. This working hypothesis was perfectly acceptable until 1697, when a black swan was
discovered in Australia. Thus, the “theory” (though it is not a highly profound theory) that
all swans were white was unambiguously discredited. It will be briefly seen in this course
that non-classical thermodynamics actually has a deep relation to probability and statistics
and information, a topic which transcends thermodynamics.

1.4 Some practical applications

It turns out that the classical approach to thermodynamics has had success in guiding the
engineering of devices. People have been building mechanical devices based on thermal
energy inputs for centuries, without the benefit of a cleanly enunciated theory. Famously,
Hero of Alexandria, perhaps the first recognized thermal engineer, documented a variety of
devices. These include an early steam engine,11 the æolipile, a device to use fire to open
doors, pumps, and many others. Hero and a nineteenth century rendition of his steam engine
are shown in Fig. 1.6. While Hero’s contributions are a matter of some speculation inspired
by ancient artistry, the much later works of Denis Papin (1647-1712) are more certain. Papin
invented the so-called steam digester, which anticipated both the pressure cooker and the

10N. N. Taleb, 2007, The Black Swan: The Impact of the Highly Improbable, Random House, New York.
11P. Keyser, 1990, “A new look at Heron’s steam engine,” Archive for History of Exact Sciences, 44(2):

107-124.
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Figure 1.6: Hero of Alexandria (10-70 AD), Greek engineer and mathematician who devised
some early ways to convert thermal energy into mechanical energy, and his æolipile; images
from http://en.wikipedia.org/wiki/Hero of Alexandria.

steam engine. The device used steam power to lift a weight. Depictions of Papin and his
device are found in Fig. 1.7. Significant improvements were led by James Watt (1736-1819)

Figure 1.7: French-born inventor Denis Papin (1647-1712) and his steam digester; images
from http://en.wikipedia.org/wiki/Denis Papin.

of Scotland. An image of Watt and one of his engines is shown in Fig. 1.8.
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a)                                                          b)

Figure 1.8: a) Scottish engineer James Watt (1736-1819); image from
http://en.wikipedia.org/wiki/James Watt, b) Sketch of one of Watt’s steam en-
gines; image from W. J. M. Rankine, 1859, A Manual of the Steam Engine and Other Prime
Movers, First Edition, Griffin, London.
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These engines were adopted for transportation. In 1807, the American engineer Robert
Fulton (1765-1815) was the first to use steam power in a commercial nautical vessel, the
Clermont, which was powered by a Boulton and Watt steam engine. Soon after, in 1811
in Scotland, the first European commercial steam vessel, the Comet, embarked. We have
a sketch of the Comet and its steam power plant in Fig. 1.9. On land, steam power soon

Figure 1.9: Sketch of the Comet and its steam engine; image from W. J. M. Rankine, 1859,
A Manual of the Steam Engine and Other Prime Movers, First Edition, Griffin, London.

enabled efficient rail transportation. A famous early steam locomotive was the English
engineer Robert Stephenson’s (1803-1859) Rocket, sketched in Fig. 1.10.

Figure 1.10: Sketch of the Rocket; image from W. J. M. Rankine, 1859, A Manual of the
Steam Engine and Other Prime Movers, First Edition, Griffin, London.
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The effect of steam power, a contribution driven by engineers, on the development of
the world remains remarkable. It is what is commonly known as a disruptive technology as
its widespread adoption displaced other well-established technologies. While it is difficult to
quantify historical pronouncements, it is likely that the effect on the world was even more
profound than the introduction of networked computers in the late twentieth century. In
short, steam power was the linchpin for the industrial revolution. Steam power replaced
animal power as a prime mover throughout much of the world and, where implemented,
enabled rapid development of broad economic segments: mining, manufacturing, land and
sea transportation, among others. Large scale population movements ensued as opportunities
in urban manufacturing centers made industrial work more appealing than agricultural work.
Certainly, changes precipitated by the advent of steam power were contributing factors in
widespread social unrest in the nineteenth century, ranging from labor strife to war between
nation states.

The text of BS has an introduction to some more modern devices, listed here:

• simple steam power plant,

• fuel cells,

• vapor-compression refrigeration cycle,

• air separation plant,

• the gas turbine, and

• the chemical rocket engine.

As an example, the main power plant of the University of Notre Dame, depicted in Fig. 1.11,
is based on a steam power cycle which will be a topic of study in this course. Additionally,
one might consider the following topics to have thermodynamic relevance:

• gasoline and Diesel engines,

• the weather,

• cooking,

• heating, ventilation, air conditioning, and refrigeration (HVAC&R), or

• materials processing (metals, polymers, etc.).
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Figure 1.11: University of Notre Dame Power Plant; image from Matt Cashore, University
of Notre Dame.
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1.5 Example to illustrate homework solution style

Proper technical communication is important for engineering. Here is an example of how
one might construct a homework solution. We take an example involving mechanical energy
from introductory physics:

Example 1.1
A mass of m = 1 kg is initially at rest and is dropped from a height of y = yo = 10 m above the

ground, where gravitational acceleration g = 9.81 m/s2. Neglect drag forces. Find the time to reach
the ground, the kinetic energy as a function of time, and the potential energy as a function of time.
Plot key results.

The scenario is sketched in Fig. 1.12. The principle governing the motion of the body is Newton’s

g = 9.81 m/s2

m = 1 kg

y
o
 = 10 m

y = 0 m

y

Figure 1.12: Sketch of problem for particle motion in a gravitational field.

second law, embodied in a second order differential equation. The only force is the gravitational force
acting in the negative y direction. This gives the equation

m
d2y

dt2
= −mg. (1.1)

Note the mass m cancels here, giving
d2y

dt2
= −g. (1.2)

Integrate once to get
dy

dt
= −gt + C1, (1.3)

where C1 is a constant. Integrate a second time to get

y(t) = −1

2
gt2 + C1t + C2. (1.4)

We need two initial conditions for this second order ordinary differential equation. At time t = 0, we
know from the problem statement that

y(0) = yo,
dy

dt
(0) = 0. (1.5)
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Applying the first initial condition, we get

yo = −1

2
g(0)2 + C1(0) + C2 = C2. (1.6)

Thus, we have

y(t) = −1

2
gt2 + C1t + yo. (1.7)

Apply the second initial condition to get

0 = −g(0) + C1 = C1. (1.8)

Thus, we have

y(t) = −1

2
gt2 + yo. (1.9)

For the velocity, we get
dy

dt
= −gt. (1.10)

When the mass reaches the ground, y = 0. Solving for the time when y = 0, we get

0 = −1

2
gt2 + yo, (1.11)

1

2
gt2 = yo, (1.12)

t = ±
√

2yo

g
. (1.13)

We are considering t going forward, so we take the positive root, giving

t =

√
2yo

g
, (1.14)

=

√

2(10 m)

9.81 m
s2

, (1.15)

= 1.43 s. (1.16)

The kinetic energy, KE, is

KE =
1

2
m

(
dy

dt

)2

, (1.17)

=
1

2
mg2t2. (1.18)

The gravitational potential energy, PE, is

PE = mgy, (1.19)

= mgyo −
1

2
mg2t2. (1.20)

Note that
KE + PE = mgyo, (1.21)

which is a constant. Thus, mechanical energy is conserved here! By conserved, we mean it does not
change.
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Numerically, we have for y(t), KE(t), and PE(t),

y(t) = −1

2

(

9.81
m

s2

)

t2 + (10 m), (1.22)

= −
(

4.904
m

s2

)

t2 + (10 m), (1.23)

KE(t) =
1

2
(1 kg)

(

−
(

9.81
m

s2

)

t
)2

, (1.24)

=

(

48.12
kg m2

s4

)

t2, (1.25)

=

(

48.12
kg m2

s4

J

kg m2/s2

)

t2, (1.26)

=

(

48.12
J

s2

)

t2, (1.27)

PE(t) = (1 kg)
(

9.81
m

s2

)

(10 m) − 1

2
(1 kg)

(

9.81
m

s2

)2

t2, (1.28)

= (98.1 J) −
(

48.12
J

s2

)

t2. (1.29)

The position as a function of time is plotted in Fig. 1.13. The kinetic, potential, and total mechanical

0.4 0.8 1.2
�t (s)

2

4

6

8

10

y(m)� �

Figure 1.13: Position versus time for particle accelerating in a gravitational field with no
drag force.

energies as functions of time are plotted in Fig. 1.14. One can tell by inspection that as potential energy
decreases, kinetic energy increases just as much, rendering the total mechanical energy to be constant.

If we include drag forces, the total mechanical energy is not constant; in fact, it dissipates with
time. We will omit the details, but if we include a simple drag force proportional to the particle velocity,
we get the equations

m
d2y

dt2
= −c

dy

dt
− mg, y(0) = yo,

dy

dt
(t = 0) = 0. (1.30)

Skipping the details of calculation, if we take c = 0.1 N s/m, and all other parameters as before, we
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Figure 1.14: KE(t), PE(t) and total mechanical energy for a particle accelerating in a
gravitational field with no drag force.

find

y(t) = (991 m) − (981 m) exp

( −t

10 s

)

−
(

98.1
1

s

)

t, (1.31)

KE(t) + PE(t) = (14533.5 J) + (4811.8 J) exp

( −t

20 s

)

− (19247.2 J) exp

( −t

10 s

)

−
(

962.361
1

s

)

t.

(1.32)

The kinetic, potential, and total mechanical energies as functions of time are plotted in Fig. 1.15.
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Figure 1.15: KE(t), PE(t) and total mechanical energy for a particle accelerating in a
gravitational field in the presence of a drag force.
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When drag forces are included, we begin with the same amount of total mechanical energy and
potential energy. At the end of the calculation, we have the same amount of potential energy (zero), but
less kinetic energy and less total mechanical energy. Where did this energy go? In fact, it is transformed
into another form of energy, thermal energy, which is not accounted for in Newtonian mechanics. When
we properly account for thermal energy, we will again impose a conservation of total energy, one of the
main topics of this course, to be considered at the outset of Chapter 5.

We close with an image of Sir Isaac Newton in Fig. 1.16, who began to study issues
related to thermodynamics, and whose scientific methods imbue its development.

Figure 1.16: English genius Sir Isaac Newton (1643-1727), in a
1702 portrait by Sir Godfrey Kneller, whose classical mechanics
broadly influenced the development of thermodynamics; image from
http://commons.wikimedia.org/wiki/File:Sir Isaac Newton by Sir Godfrey Kneller, Bt.jpg.
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Chapter 2

Some concepts and definitions

Read BS, Chapter 2

2.1 Thermodynamic system and control volume

We take the following definitions:

• Thermodynamic system: a quantity of fixed mass under investigation,

• Surroundings: everything external to the system,

• System boundary: interface separating system and surroundings, and

• Universe: combination of system and surroundings.

The system, surroundings, system-boundary for a universe are shown for a potato-shaped
system in Fig. 2.1. We allow two important interactions between the system and its sur-
roundings:

• heat can cross into the system (our potato can get hot), and

• work can cross out of the system (our potato can expand).

Now, the system boundaries can change, for example the potato might expand on heating,
but we can still distinguish the system and the surroundings. We now define an

• isolated system: a system which is not influenced by its surroundings.

Note that a potato with thick and inelastic skin will be isolated. We distinguish the system,
which has constant mass, but possible variable volume, from the

• Control Volume: fixed volume over which mass can pass in and out of its boundary.

The control volume is bounded by the

29
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system

surroundings

system boundaryheat in

work out

universe

Figure 2.1: Sketch of a universe composed of a system, its surroundings, and the system
boundary.

• Control Surface: boundary of the control volume.

The mass within a control volume may or may not be constant. If there is fluid flow in
and out there may or may not be accumulation of mass within the control volume. We will
mainly study cases in which there is no accumulation, but this need not be the case. A
sketch contrasting scenarios in which a fluid is compressed in which the system approach
would be used against those where the control volume approach would be used is shown in
Fig. 2.2. In summary,

• system → fixed mass, closed, and

• control volume → potentially variable mass, open.

2.2 Macroscopic versus microscopic

In principle, we could solve for the forces acting on every molecule and use Newton’s laws
to determine the behavior of systems. This is difficult for even modestly sized systems.

• If we had a volume of 1 m3 of gas at atmospheric pressure and temperature, we would
find that it was composed of 2.4 × 1025 molecules.

• We would need six equations of motion for each molecule, three for x, y, z, position,
and three for u, v, w velocity. This would require then a total of 1.4 × 1026 differential
equations to solve simultaneously.
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piston-cylinder                                     compressor

system approach control volume approach

system

flow in flow out
control
volume

Figure 2.2: Comparison of system (fixed mass) and control volume (fixed volume) approaches
in thermodynamics for two common scenarios: piston-cylinder compression (left) and com-
pression in a flow device whose details are not shown (right).

• Even with our largest computers, this is impossible today. Note most desktop com-
puters only can store roughly 109 bytes of data in Random Access Memory (RAM).

• We can however model the average behavior of the molecules statistically.

• We can also use simple empirical relations which can be formally proved to capture
the statistical nature of the flow. This will be our approach.

• classical thermodynamics will treat macroscopic effects only and ignore individual
molecular effects. For example molecules bouncing off a wall exchange momentum
with the wall and induce pressure. We could use Newtonian mechanics for each par-
ticle collision to calculate the net force on the wall. Instead our approach amounts to
considering the average over space and time of the net effect of millions of collisions on
a wall.

We will in fact assume that matter can be modelled as a

• Continuum: the limit in which discrete changes from molecule to molecule can be
ignored and distances and times over which we are concerned are much larger than
those of the molecular scale. This will enable the use of calculus in our continuum
thermodynamics.

The continuum theory can break down in important applications where the length and time
scales are of comparable magnitude to molecular time scales. Important applications where
the continuum assumption breaks down include

• rarefied gas dynamics of the outer atmosphere (relevant for low orbit space vehicles),
and
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• nano-scale heat transfer (relevant in cooling of computer chips).

To get some idea of the scales involved, we note that for air at atmospheric pressure and
temperature that the time and distance between molecular collisions provide the limits of
the continuum. Under these conditions, we find for air

• length > 0.1 µm, and

• time > 0.1 ns,

will be sufficient to use the continuum assumption. For denser gases, these cutoff scales are
smaller. For lighter gases, these cutoff scales are larger. Details of collision theory can be
found in advanced texts such as that of Vincenti and Kruger.1 They show for air that the
mean free path λ is well modeled by the following equation:

λ =
M√

2πNρd2
. (2.1)

Here, M is the molecular mass, N is Avogadro’s number, and d is the molecular diameter.

Example 2.1
Find the variation of mean free path with density for air.

We turn to Vincenti and Kruger for numerical parameter values, which are seen to be M =
28.9 kg/kmole, N = 6.02252 × 1023 molecule/mole, d = 3.7 × 10−10 m. Thus,

λ =

(

28.9 kg
kmole

) (
1 kmole

1000 mole

)

√
2π
(
6.02252 × 1023 molecule

mole

)
ρ (3.7 × 10−10 m)

2 , (2.2)

=
7.8895 × 10−8 kg

molecule m2

ρ
. (2.3)

Note that the unit molecule is not really a dimension, but really is literally a “unit,” which may well
be thought of as dimensionless. Thus, we can safely say

λ =
7.8895 × 10−8 kg

m2

ρ
. (2.4)

A plot of the variation of mean free path λ as a function of ρ is given in Fig. 2.3. Vincenti and Kruger
go on to consider an atmosphere with density of ρ = 1.288 kg/m3. For this density

λ =
7.8895 × 10−8 kg

m2

1.288 kg
m3

, (2.5)

= 6.125 × 10−8 m, (2.6)

= 6.125 × 10−2µm. (2.7)

1W. G. Vincenti and C. H. Kruger, 1965, Introduction to Physical Gas Dynamics, John Wiley, New York,
pp. 12-26.
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Figure 2.3: Mean free path length, λ, as a function of density, ρ, for air.

Vincenti and Kruger also show the mean molecular speed under these conditions is roughly c = 500 m/s,
so the mean time between collisions, τ , is

τ ∼ λ

c
=

6.125 × 10−8 m

500 m
s

= 1.225 × 10−10 s. (2.8)

2.3 Properties and state of a substance

We define

• Phase: a quantity of matter that is homogeneous throughout, and

• Phase Boundaries: interfaces between different phases.

An example of a single phase is ice. Another single phase is liquid water. A glass of ice
water is a two-phase mixture with the phase boundaries at the edge of each ice cube.

We next define (circularly)

• State: condition described by observable macroscopic properties, and

• Property: quantity which only depends on the state of the system and is independent
of the history of the system.

Examples of properties include temperature and pressure. Two states are equivalent if they
have the same properties. So if state 1 is defined by temperature T1 and pressure P1, and
state 2 is defined is by temperature T2 and P2, state 1 is equivalent to state 2 iff (that is, if
and only if) T1 = T2 and P1 = P2.

There are two important classes of properties we consider in thermodynamics:
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• Extensive Property: a property which depends on the mass (or the extent) of the
system, example extensive properties include mass, total volume, total energy, and

• Intensive Property: a property which is independent of the mass of the system.
Example intensive properties include temperature and pressure.

In general, if you cut a system in half and re-measure its properties, intensive properties
remain unchanged, while extensive properties are cut in half. Properties are defined for
systems which are in

• Equilibrium: state in which no spontaneous changes are observed with respect to
time.

We actually never totally achieve equilibrium, we only approximate it. It takes infinite time
to achieve final equilibrium. In this class we will mainly be concerned with two types of
equilibrium:

• Mechanical equilibrium: characterized by equal pressure, and

• Thermal equilibrium: characterized by equal temperature.

A third type of equilibrium is chemical equilibrium, which we will not consider here, and is
characterized by equal chemical potentials.

A difficult conceptual challenge of thermodynamics is to reckon with two systems initially
at their own equilibria, to bring them into contact so that they find a new equilibria. How to
do this without consideration of time can be difficult. Another branch of thermodynamics,
which we will consider only briefly in this course is

• Non-equilibrium thermodynamics: branch of thermodynamics which considers
systems often far from equilibrium and the time-dynamics of their path to equilibrium.

We will go to great effort to construct a thermodynamics which is generally not burdened
with time. Occasionally we will bring time into our problems. Unfortunately, ignoring time
occasionally requires some mental contortions, as seen in the next section.

2.4 Processes and cycles

Often systems undergo a

• Change of State: implies one or more properties of the system has changed.

How these properties would change outside of time is curiously outside the framework of
equilibrium thermodynamics! The best way to think of them is that the changes are slow
relative to the underlying molecular time scales. Fortunately, this will allow us to do a wide
variety of problems of engineering relevance.

We also define a
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• Process: a succession of changes of state.

We assume our processes are all sufficiently slow such that each stage of the process is near
equilibrium. Certain common processes are given special names, based on the Greek

,
ι
′

σoς,
isos, meaning “equal”:

• isothermal: constant temperature,

• isobaric: constant pressure, and

• isochoric: constant volume.

An important notion in thermodynamics is that of a

• cycle: series of processes which returns to the original state.

The cycle is a thermodynamic “round trip.”

2.5 Fundamental variables and units

We will mainly use the Système International (SI) units in this course. Occasionally, we
will use the English Engineering system of units. As found in US National Institute of
Standards and Technology (NIST) documents, the important fundamental base SI units,
and corresponding English units are

• mass:

– kilogram (kg): a mass equal to the mass of the international prototype of the
kilogram (a platinum-iridium bar stored in Paris), roughly equal to the mass of
one liter of water at standard temperature and pressure, and

– pound mass: (lbm),

• length:

– meter (m): the length of the path traveled by light in vacuum during a time
interval of 1/299792458 of a second, and

– foot (ft),

• time:

– second: (s) the duration of 9192631770 periods of the radiation corresponding to
the transition between the two hyperfine levels of the ground state of the cesium
133 atom, and

– second: (s) English time units are identical to those of SI,
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• temperature: an equilibrium property which roughly measures how hot or cold an
object is. Note our senses are poor judges of temperature. Consider snow and air in
thermal equilibrium at 20 ◦F . Usually, it is possible to keep your bare hands warm
for many hours at 20 ◦F if you are otherwise dressed warmly. However, if you place
your bare hand in a snow bank you for a few minutes, you have a danger of frostbite.
Yet both are at the same temperature. Why the difference in sense? Our bodies
actually have more sensitivity to heat fluxes instead of temperature; heat leaves our
body more rapidly when in contact with high density objects like snow relative to that
of low density objects like air. More fundamental than common units such as ◦F are
so-called absolute temperature units:

– Kelvin: (K) the fraction 1/273.16 of the thermodynamic temperature of the
triple point of water, and

– Rankine: (◦R).

2.6 Zeroth law of thermodynamics

In this class we are taking the axiomatic approach. Recall that an axiom cannot be proven.
It is a statement whose truth can be ascertained only by comparison with experiment.
The axiom can be disproved by a single negative experiment. The so-called zeroth law of
thermodynamics is the axiom which is probably most fundamental. It was formalized after
the so-called first and second laws, and so it is called the zeroth law. Perhaps if a more
fundamental axiom were discovered, it would be called the −1st law of thermodynamics?

• Zeroth law of thermodynamics: When two bodies have equality of temperature
with a third body, then they have equality of temperature.

The origins of the zeroth law are murky. Sommerfeld2 attributes the notion to R. H. Fowler
in a 1931 review of a thermodynamics book. Fowler and Guggenheim explicitly introduce
the term “zeroth law of thermodynamics” later.3 The equivalent statement in mathematical
logic is that if x = y and x = z, then y = z; this is in fact equivalent to the first of Euclid’s
common notions: things that are equal to the same thing are also equal to each other.

Definition of the zeroth law enables the use of a thermometer as a measurement device.
A scale however needs to be defined. The old metric temperature scale, Celsius (◦C), was
defined so that

• 0 ◦C is the freezing point of water, and

• 100 ◦C is the boiling point of water.

2A. Sommerfeld, 1956, Thermodynamics and Statistical Mechanics, Lectures on Theoretical Physics,
Vol. V, Academic Press, New York, p. 1.

3R. Fowler and E. A. Guggenheim, 1939, Statistical Thermodynamics: A Version of Statistical Mechanics

for Students of Physics and Chemistry, Cambridge University Press, Cambridge, p. 56.
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These quantities varied with pressure however, so that different values would be obtained
on top of a mountain versus down in the valley, and so this is not a good standard. The
modern Celsius scale is defined to be nearly the same, but has

• 0.01 ◦C as the so-called triple point of water, and

• −273.15 ◦C as absolute zero in K.

The triple point of water is defined at the state where three phase of water (solid, liquid, and
gas) are observed to co-exist. The transformation between the absolute Kelvin scale and the
Celsius scale is given by

K = ◦C + 273.15. (2.9)

The English equivalents are degrees Fahrenheit (◦F ) for relative temperature and degrees
Rankine (◦R) for absolute temperature. The conversions are

T (◦R) = 1.8T (K), T (◦F ) = 1.8T (◦C) + 32, T (◦F ) = T (◦R) − 459.67. (2.10)

2.7 Secondary variables and units

Many units can be derived from the base units. Some important units for thermodynamics
include

• Force: This unit is defined from Newton’s second law, m d2y/dt2 =
∑
F .

– Newton: (N), 1 N = 1 kg m
s2 , and

– pound force: (lbf).

Force is straightforward in SI units. It is more confusing in English units, where the
so-called gravitational constant gc is often introduced. In SI units, gc = 1. However in
English units, the law for force is better stated as

1

gc

m
d2y

dt2
=
∑

F. (2.11)

Moreover, a gravitational body force is better stated as mg/gc in English units. Now,
1 lbf is induced by a mass of 1 lbm in places where local gravitational acceleration is
g = 32.1740 ft/s2. Let us consider two important types of problems
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– acceleration of a particle in a uniform gravitational field: Here the only force
acting on the particle is the body force, −mg/gc, and Eq. (2.11) reduces to

1

gc

m
d2y

dt2
= −mg

gc

, (2.12)

d2y

dt2
= −g, (2.13)

dy

dt
= −gt+ C1, (2.14)

y = −1

2
gt2 + C1t+ C2. (2.15)

Note that gc plays no role whatsoever in determining the position of the particle.

– static force balance: Here one wants to determine the force necessary to hold
a particle stationary in a uniform gravitational field. In such a problem the
acceleration is zero, but there are two forces, the gravitational force −mg/gc, and
the counter-balancing force which we will call F . Eq. (2.11) reduces to

1

gc

m
d2y

dt2
︸︷︷︸

=0

= F − mg

gc

, (2.16)

0 = F − mg

gc

, (2.17)

F =
mg

gc

. (2.18)

If we are at a location where g = 32.1740 ft/s2, we can consider the counter-balancing
force necessary to hold 1 lbm stationary, via Eq. (2.18):

F = 1 lbf =
(1 lbm)

(
32.1740 ft

s2

)

gc

. (2.19)

Thus,

gc = 32.1740
lbm ft

lbf s2
. (2.20)

Example 2.2

If the local gravitational acceleration is 32.0 ft/s2, what is the weight W of an object with mass
of m = 1000 lbm.

W = F =
1

gc
mg =

1

32.1740 lbm ft
lbf s2

(1000 lbm)

(

32.0
ft

s2

)

= 994.59 lbf. (2.21)
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• Energy: roughly speaking, the ability to do work, found from the product of force
and distance.

– Joule: (J), 1 J = 1 (N m), and

– foot-pound force: (ft lbf).

• Specific Volume: the volume per unit mass, known as v = V/m.

–
(

m3

kg

)

, and

–
(

ft3

lbm

)

.

• Density: the mass per unit volume, the inverse of specific volume ρ = m/V .

–
(

kg
m3

)
, and

–
(

lbm
ft3

)

.

Note also that

v =
1

ρ
, ρ =

1

v
. (2.22)

• Pressure: the limA→0 F/A where A is the cross-sectional area and F is the compo-
nent of force acting normal to that area. In thermodynamics, we are almost always
concerned with the absolute pressure as opposed to the gauge pressure. Most common
pressure gauges do not measure the absolute pressure; instead they measure the differ-
ence between the absolute pressure and the atmospheric pressure. The two are related
via the formula

Pgauge = Pabsolute − Patm. (2.23)

We nearly always interpret P as an absolute pressure, so we could also say

Pgauge = P − Patm. (2.24)

– Pascal: (Pa), 1 Pa = 1 N/m2; note other common units are 1 bar = 105 Pa,
1 atm = 1.01325 × 105 Pa = 101.325 kPa = 0.101325 MPa, and

– (psia): 1 psia = 1 lbf/in2. 1 atm = 14.696 psia. The a denotes the “absolute”
pressure as opposed to the “gauge” pressure. The units psig refer to a gauge
pressure.
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Figure 2.4: Blaise Pascal (1623-1662), French scientist and philoso-
pher who considered manometry, among other diverse topics; image from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Pascal.html.

The SI unit is named after Blaise Pascal, see Fig. 2.4, the French polymath who
conducted early scientific experiments with manometers, a common measuring device
for pressure, see Fig. 2.5. There are a variety of styles of manometers. Here, a pipe
containing fluid at pressure P and density ρ has a small tube with cross sectional area
A connecting it to the outside atmosphere at a different pressure Patm. The length H is
easily measured. The gravitational acceleration is g and is in the negative y direction.
Because P > Patm, the manometer fluid is pushed up. However, it finds a mechanical
equilibrium where the weight of the manometer fluid balances the net force induced
by the pressure differential.

The figure includes a cutaway with a free body diagram. The interior fluid exerts a
positive force of PA on the manometer fluid in the cutaway. The atmosphere exerts
another force of PatmA in the negative direction. The third force is the weight of the
fluid: mg. Thus, Newton’s second law tells us

m
d2y

dt2
︸︷︷︸

=0

= PA− PatmA−mg. (2.25)

Now, we are concerned with cases which are static, in which case the acceleration
d2y/dt2 = 0. Thus, we require a force balance, i.e. mechanical equilibrium, which is
achieved when

0 = PA− PatmA−mg, (2.26)

PA = PatmA+mg. (2.27)
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P
atm

Hg

PA

P
atm

A 

fluid at P, ρ

A

mg = ρVg = ρAHg

y

Figure 2.5: Manometer sketch.

Now, mg = ρV g, where V is the volume of the fluid in the cutaway. Obviously from
the geometry, we have V = AH, so mg = ρAHg. Thus,

PA = PatmA+ ρAHg, (2.28)

P = Patm + ρgH. (2.29)

Or
∆P = P − Patm = Pgauge = ρgH. (2.30)

Example 2.3
A manometer gives a reading of H = 2 ft in a region where local g = 32.2 ft/s2. The working

fluid has specific volume v = 0.0164 ft3/lbm. The atmospheric pressure is Patm = 14.42 lbf/in2 =
14.42 psia. Find the fluid pressure.

We know that in the SI system.

P = Patm + ρgH. (2.31)

In terms of specific volume, recalling that ρ = 1/v, we have

P = Patm +
gH

v
. (2.32)

The challenge here is really the English units. A fair way to approach English units is to replace g by
g/gc in every formula. Thus, in English units, we have

P = Patm +
1

v

g

gc
H. (2.33)

So our fluid pressure is

P = 14.42
lbf

in2
+

1

0.0164 ft3

lbm

(

32.2 ft
s2

32.1740 lbm ft
lbf s2

)

(2 ft)

(
1 ft

12 in

)2

= 15.27
lbf

in2
= 15.27 psia. (2.34)
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Chapter 3

Properties of a pure substance

Read BS, Chapter 3

3.1 The pure substance

We define a

• Pure substance: a material with homogeneous and invariable composition.

To elaborate,

• Pure substances can have multiple phases: an ice-water mixture is still a pure sub-
stance.

• An air-steam mixture is not a pure substance.

• Air, being composed of a mixture of N2, O2, and other gases, is formally not a pure
substance. However, experience shows that we can often treat air as a pure substance
with little error.

3.2 Vapor-liquid-solid phase equilibrium

Often we find that different phases of pure substances can exist in equilibrium with one
another. Let us consider an important gedankenexperiment (Latin-German for “thought
experiment”) in which we boil water. Ordinary water boiling is shown in Fig. 3.1. However,
this ordinary experiment has constraints which are too loose. Most importantly, the mass
of water leaks into the atmosphere; thus, the water vapor and the air become a mixture and
no longer a pure substance.

Let us instead consider a more controlled piston-cylinder arrangement. Inside the cylin-
der, we begin with pure liquid water at T = 20 ◦C. The piston is free to move in the cylinder,
but it is tightly sealed, so no water can escape. On the other side of the piston is a constant
pressure atmosphere, which we take to be at P = 100 kPa = 0.1 MPa = 105 Pa = 1 bar.

43
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Figure 3.1: Water boiling isobarically in an open environment.

We slowly add heat to the cylinder, and observe a variety of interesting phenomena. A sketch
of what we observe is given in Fig. 3.2. We notice the following behavior:

P = 100 kPa

liquid water
   T = 20 oC

P = 100 kPa

liquid water
T > 20 oC

P = 100 kPa

saturated
liquid water
T = 99.62 oC

P = 100 kPa

liquid,
T = 99.62 oC

P = 100 kPa

saturated
water vapor
T = 99.62 oC

Q

P = 100 kPa

water vapor
T > 99.62 oC

Q Q Q Q

vapor,
T=99.62 oC

Figure 3.2: Sketch of experiment in which heat is added isobarically to water in a closed
piston-cylinder arrangement.

• The pressure remains at a constant value of 100 kPa. This is an isobaric process.

• The total volume increases slightly as heat is added to the liquid.

• The temperature of the liquid increases significantly as heat is added to the liquid.

• At a special value of temperature, observed to be T = 99.62 ◦C, we have all liquid, but
cannot add any more heat and retain all liquid. We will call this state the saturated
liquid state. We call T = 99.62 ◦C the saturation temperature at P = 100 kPa. As we
continue to add heat,
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– The temperature remains constant (this is isothermal now as well as isobaric).

– The total volume continues to increase.

– We notice two phases present: liquid and vapor, with a distinct phase boundary.
The liquid is dense relative to the vapor. That is ρf > ρg, where f denotes fluid
or liquid and g denotes gas or vapor. Thus, vg > vf .

– As more heat is added, more vapor appears, all while P = 100 kPa and T =
99.62 ◦C.

– At a certain volume, we have all vapor and no liquid, still at P = 100 kPa,
T = 99.62 ◦C. We call this state the saturated vapor state.

• As heat is added, we find both the temperature and the volume rise, with the pressure
remaining constant. The water remains in the all vapor state.

We have just boiled water! We sketch this process in the temperature-specific volume plane,
that is, the T − v plane, in Fig. 3.3. Note that the mass m of the water is constant in this

v

T

two-phase
mixture

v
f

v
g

P 

=
 1
00

 k
P
a 
(i
so

ba
r)

saturated
liquid saturated

vapor

Figure 3.3: Isobar in the T − v plane for our thought experiment in which heat is added
isobarically to water in a piston-cylinder arrangement.

problem, so the extensive V is strictly proportional to specific volume, v = V/m.
We next repeat this experiment at lower pressure (such as might exist on a mountain

top) and at a higher pressure (such as might exist in a valley below sea level). For moderate
pressures, we find qualitatively the exact same type of behavior. The liquid gets hotter,
turns into vapor isothermally, and then the vapor gets hotter as the heat is added. However,
we note the following important facts:

• The saturation temperature (that is the boiling point) increases as pressure increases,
as long as the pressure increase is not too high.
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• As pressure increases vf becomes closer to vg.

• Above a critical pressure, P = Pc = 22.089 MPa, there is no phase change ob-
served!1 At the critical pressure, the temperature takes on a critical temperature of
Tc = 374.14 ◦C. At the critical pressure and temperature, the specific volume takes the
value vf = vg = vc = 0.003155 m3/kg.

We see how the boiling point changes with pressure by plotting the saturation pressure
as a function of saturation temperature in the T − P plane in Fig. 3.4. This is the so-called
vapor pressure curve. Here, we focus on liquid-vapor mixtures and keep T high enough to

T

P

superheated
vapor

compressed
liquid

critical
point

T
c

P
c

va
por 

pre
ssu

re 
cu

rv
e

Figure 3.4: Saturation pressure versus saturation temperature sketch.

prevent freezing. Note the curve terminates abruptly at the critical point.
We adopt the following nomenclature:

• saturated liquid: the material is at Tsat and is all liquid.

• saturated vapor: the material is at Tsat and is all vapor.

• compressed (subcooled) liquid: the material is liquid with T < Tsat.

• superheated vapor: the material is vapor with T > Tsat.

• two-phase mixture: the material is composed of co-existing liquid and vapor with
both at Tsat.

1This behavior may have first been carefully documented by T. Andrews, 1869, “The Bakerian lecture:
on the continuity of the gaseous and liquid states of matter,” Philosophical Transactions of the Royal Society

of London, 159: 575-590.
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For two-phase mixtures, we define a new property to characterize the relative concentra-
tions of liquid and vapor. We define the

• quality= x: as the ratio of the mass of the mixture which is vapor (vap) to the total
mixture mass:

x =
mvap

mtotal

. (3.1)

We can also take the total mass to be the sum of the liquid and vapor masses:

mtotal = mliq +mvap. (3.2)

So
x =

mvap

mliq +mvap

. (3.3)

There are two important limits to remember:

• x = 0: corresponds to mvap = 0. This is the all liquid limit.

• x = 1: corresponds to mvap = mtotal. This is the all gas limit.

We must have
0 ≤ x ≤ 1. (3.4)

We sketch water’s T − v plane again for a wide variety of isobars in Fig. 3.5. We sketch

v

T

saturated 
vapor linesaturated 

liquid line

superheated
vapor

two-phase
mixture

co
m
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critical
point

P = 0.1 MPa

P
c
 = 22.089 MPa

P = 10 MPa

P = 1 MPa

P = 40 MPa

Tc = 374.14 oC

T= 99.62 oC

v
c
 = 0.003155 m3/kg

Figure 3.5: Sketch of T − v plane for water for a variety of isobars.

water’s P − v plane for a wide variety of isotherms in Fig. 3.6. We can perform a similar
thought experiment for ice. We can start with ice at P = 100 kPa and add heat to it. We

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


48 CHAPTER 3. PROPERTIES OF A PURE SUBSTANCE
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Figure 3.6: Sketch of P − v plane for water for a variety of isotherms.

observe the ice’s temperature rise until T = Tsat ∼ 0 ◦C. At that temperature, the ice begins
to melt and the temperature remains constant until all the ice is melted. At this point the
liquid temperature begins to rise. If we continued to add heat, we would boil the water.

We note if we perform this experiment for P < 0.6113 kPa the ice in fact goes directly
to vapor. It is said to have undergone sublimation. There exists a second important point
where ice being heated isobarically can transform into either liquid or gas. This is the so-
called triple point. At the triple point we find the saturation pressure and temperature are
Ptp = 0.6113 kPa and Ttp = 0.01 ◦C, respectively. It is better described as a triple line,
because in the P −v−T space we will study, it appears as a line with constant P and T , but
variable v. In the P −T projected plane of the P − v−T volume, it projects as a point. We
sketch water’s P − T plane again for a wider range to include the vapor-liquid-solid phase
behavior in Fig. 3.7.

These characteristics apply to all pure substances. For example, nitrogen has a triple
point and a critical point. Table A.2 in BS lists critical constants for many materials. Note
also that phase transitions can occur within solid phases. This involves a re-arrangement of
the crystal structure. This has important implications for material science, but will not be
considered in detail in this course.

3.3 Independent properties

Let us define a

• Simple compressible substance: a material that can be worked upon by pressure
forces.
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Figure 3.7: Sketch of P − T plane for water.

Note we neglect electric, magnetic, and chemical work modes. While this is indeed restrictive,
it will be important for many mechanical engineering applications. The following important
statement can be proved (but will not be so here):

• For a simple compressible substance, two independent intensive thermodynamic prop-
erties define the state of the system.

Consider the implications for

• superheated vapor: If we consider P , T , and v, this states that we must allow one of the
variables to be functions of the other two. We could have P = P (T, v), v = v(T, P ),
or T = T (P, v). All are acceptable.

• two-phase mixture: If we have a two-phase mixture, our experiments show that P and
T are not independent. In this case, we need another property to characterize the
system. That property is the quality, x. So for two-phase mixtures, we might have
v = v(T, x), for example.

3.4 Thermal equations of state

Here, we will describe some of the many different ways to capture the relation between two
independent properties and a third dependent property for a simple compressible substance.
We will focus on a so-called
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• Thermal equation of state: an equation which gives the pressure as a function
of two independent state variables. An example is the general form:

P = P (T, v). (3.5)

We will progress from simple thermal equations of state to more complex.

3.4.1 Ideal gas law

For many gases, especially at low density and far from the critical point, it is possible to
write a simple thermal equation of state which accurately describes the relation between
pressure, volume, and temperature. Such equations were developed in the 1600s and early
1800s based entirely on macroscopic empirical observation. In the late 1800s, statistical
mechanics provided a stronger theoretical foundation for them, but we will not consider that
here.

Let us start with the most important equation of state:

• Ideal gas law: This equation, which is a combination of Boyle’s law,2 Charles’ law,3

and Avogadro’s law,4 is most fundamentally stated as

PV = nRT. (3.6)

On the continent, Boyle’s law is sometimes known as Mariotte’s law after Edme Mariotte
(1620-1684), but Boyle published it fourteen years earlier.5 A reproduction of Boyle’s data
is given in Fig. 3.8.6 The data in (V, 1/P ) space is fit well by a straight line with intercept
at the origin; that is 1/P = KV , where K is a constant. Thus, PV = C, where C = 1/K is
a constant.

2R. Boyle, 1662, New Experiments Physico-Mechanical, Touching the Air: Whereunto is Added A Defence

of the Authors Explication of the Experiments, Against the Obiections of Franciscus Linus and Thomas

Hobbes, H. Hall, Oxford. There exists a 1725 text modified from the 1662 original in The Philosophical

Works of Robert Boyle, Vol. 2, P. Shaw, ed., Innis, Osborn, and Longman, London. Boyle’s law holds that
PV is constant in an isothermal process.

3attributed to J. A. C. Charles by J. L. Gay-Lussac, 1802, “Recherches sur la dilatation des gaz des
vapeurs,” Annales de Chimie, 43(1): 137-175. Charles’ law holds that V/T is constant for ideal gases
undergoing isobaric processes. Additionally, Guillaume Amontons (1663-1705) performed some of the early
experimentation which led to Charles’ law. John Dalton (1766-1844) is said to have also written on a version
of Charles’ Law in 1801.

4A. Avogadro, 1811, “Essai d’une manière de déterminer les masses relatives des molécules élémentaires
des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons,” Journal de Physique,

de Chimie et d’Historie Naturelle, 73:58-76. Here, Avogadro hypothesized that “equal volumes of ideal or
perfect gases, at the same temperature and pressure, contain the same number of particles, or molecules.”

5C. Webster, 1965, “The discovery of Boyle’s law, and the concept of the elasticity of air in the seventeenth
century,” Archive for History of Exact Sciences, 2(6): 441-502. Also described here is how Henry Power
(1623-1668) and Richard Towneley (1629-1707) did important preliminary work which helped Boyle formulate
his law.

6see J. B. West, 1999, “The original presentation of Boyle’s law, Journal of Applied Physiology, 98(1):
31-39.
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Figure 3.8: a) Boyle’s 1662 data to validate his law (PV is constant for an isothermal
process), b) plot of Boyle’s data: V (column A) versus reciprocal of P (reciprocal of column
D), demonstrating its near linearity.
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Depictions of Boyle, Charles, and Avogadro are given in Fig. 3.9. The ideal gas law was

a)                                b) c)

Figure 3.9: b) Robert Boyle (1627-1691), Irish scientist who developed an important special
case of the ideal gas law. Image from http://en.wikipedia.org/wiki/Robert Boyle, c)
Jacques Alexandre César Charles (1746-1823), French scientist credited in 1802 by Joseph
Louis Gay-Lussac (1778-1850) for developing an important special case of the ideal gas
law in the 1780s. Image from http://en.wikipedia.org/wiki/Jacques Charles,
a) Lorenzo Romano Amedeo Carlo Avogadro di Quarengna e di Cerroto
(1776-1856), Italian physicist, nobleman, and revolutionary. Image from
http://en.wikipedia.org/wiki/Amedeo Avogadro.

first stated in the form roughly equivalent to Eq. (3.6) by Clapeyron,7 depicted in Fig. 3.10.

It is critical that the temperature here be the absolute temperature. For the original
argument, see Thomson.8 Here, n is the number of moles. Recall there are N = 6.02214179×
1023 molecules in amole, where N is Avogadro’s number. AlsoR is the universal gas constant.
From experiment, it is determined to be

R = 8.314472
kJ

kmole K
. (3.7)

In this class the over bar notation will denote an intensive property on a per mole basis.
Intensive properties without over bars will be on a per mass basis. Recall the mass-basis

7É. Clapeyron, 1834, “Mémoire sur la puissance motrice de la chaleur,” Journal de l’École Polytechnique,
14: 153-190.

8W. Thomson, 1848, “On an absolute thermometric scale founded on Carnot’s theory of the motive power
of heat and calculated from Regnault’s observations, Proceedings of the Cambridge Philosophical Society,
1(5): 66-71.
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Figure 3.10: Benôıt Paul Émile Clapeyron (1799-1824), French engineer and
physicist who furthered the development of thermodynamics. Image from
http://en.wikipedia.org/wiki/Emile Clapeyron.

specific volume is v = V/m. Let us define the mole-based specific volume as

v =
V

n
. (3.8)

Thus, the ideal gas law can be represented in terms of intensive properties as

P
V

n
︸︷︷︸

=v

= RT, (3.9)

Pv = RT. (3.10)

There are other ways to write the ideal gas law. Recall the molecular mass M is the
mass in g of a mole of substance. More common in engineering, it is the mass in kg of a
kmole of substance. These numbers are the same! From chemistry, for example, we know
the molecular mass of O2 is 32 g/mole = 32 kg/kmole. Symbolically, we can say that

M =
m

n
. (3.11)

Now, take the ideal gas law and divide by m:

PV = nRT, (3.12)

P
V

m
︸︷︷︸

=v

=
n

m
︸︷︷︸

=1/M

RT, (3.13)

Pv =
R

M
︸︷︷︸

≡R

T. (3.14)

Now, let us define

R ≡ R

M
. (3.15)
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Let’s check the units:

[R] =
kJ

kmole K

kmole

kg
=

kJ

kg K
. (3.16)

We have actually just lost some universality. Recall R is independent of material. But since
each different gas has a different M , then each gas will have its own R. These values for
various gases are tabulated in Table A.5 of BS.

With this definition, the ideal gas law becomes

Pv = RT. (3.17)

This is the form we will use most often in this class. Note the useful fact that

Pv

T
= R. (3.18)

Thus, if an ideal gas undergoes a process going from state 1 to state 2, we can safely say

P1v1

T1

=
P2v2

T2

. (3.19)

Example 3.1
Find R for air.

We can model air as a mixture of N2 and O2. Its average molecular mass is known from Table A.5
of BS to be M = 28.97 kg/kmole. So R for air is

R =
R

M
=

8.3145 kJ
kmole K

28.97 kg
kmole

= 0.287
kJ

kg K
. (3.20)

Consider some notions from algebra and geometry. The function f(x, y) = 0 describes a
curve in the x− y plane. In special cases, we can solve for y to get the form y = y(x). The
function f(x, y, z) = 0 describes a surface in the x− y − z volume. In special cases, we can
solve for z to get z = z(x, y) to describe the surface in the x− y − z volume.

Example 3.2
Analyze the surface described by f(x, y, z) = z2 − x2 − y2 = 0.

Here, we can solve for z exactly to get

z = ±
√

x2 + y2. (3.21)

This surface is plotted in Fig. 3.11. We can also get three two-dimensional projections of this surface
in the x − y plane, the y − z plane, and the x − z plane. Orthographic projections of this surface are
plotted in Fig. 3.12.
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Figure 3.11: The surface z2 − x2 − y2 = 0.

-1 0 1 2
-2

-1

0

1

2

x

y

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

x y

zz

iso-z contours

iso-y
contours

iso-x
contours

-2

Figure 3.12: Contours of constant x, y and z in orthographic projection planes of the surface
z2 − x2 − y2 = 0.
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For the x − y plane we consider

zo = ±
√

x2 + y2. (3.22)

for various values of zo. This yields a family of circles in this plane. For the y − z plane, we consider

xo = ±
√

z2 − y2. (3.23)

This gives a family of hyperbolas. For real xo, we require z2 ≥ y2. For the z − x plane, we consider

yo = ±
√

z2 − x2. (3.24)

This gives a similar family of hyperbolas. For real yo, we require z2 ≥ x2.

Similarly, the ideal gas equation P (v, T ) = RT/v describes a surface in the P − v − T
volume. A surface for air is shown in Fig. 3.13. Often, it is easier to understand the behavior

100200
300

400
500

T(K)

1
2

3
4

5
v (m3/kg)

0

100

200

P(kPa)

Figure 3.13: Thermodynamic surface for air modeled as an ideal gas.

of the thermodynamic surfaces by projection into various thermodynamic planes and plotting
various iso-contours. Let us do this for an ideal gas.

• isobars:

– Consider curves in the T − v plane on which P is constant. Thus, for the ideal
gas, we consider

T =

(
P

R

)

︸ ︷︷ ︸

slope

v. (3.25)

If we insist that P is constant, this gives the equation of an isobar in the T − v
plane. Moreover, for the ideal gas, we see that in the T − v plane isobars are
straight lines with slope P/R. The slope is always positive since P > 0 and
R > 0. So if the pressure is high, the slope is positive and steep. If the pressure
is low, the slope is positive and shallow.
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– Consider curves in the P − v plane in which P is constant. Thus, we consider

P = constant, (3.26)

which are straight horizontal lines in the P − v plane.

– Consider curves in the P − T plane in which P is a constant. Thus, we consider

P = constant, (3.27)

which are straight horizontal lines in the P − v plane.

Isobars in various planes are shown in Fig. 3.14.

v v T

T P PP
high

P
low

P
high

P
low

P
high

P
low

Figure 3.14: Isobars for an ideal gas in T − v, P − v, and P − T planes.

• isotherms

– Consider curves in the T − v plane on which T is constant. Thus, for the ideal
gas, we have

T = constant (3.28)

These are straight horizontal lines in the T − v plane.

– Consider curves in the P − v plane on which T is a constant. Thus, for the ideal
gas, we have

P = (RT )
1

v
. (3.29)

These are hyperbolas in the P − v plane.

– Consider curves in the P − T plane on which T is a constant. Thus, for the ideal
gas, we have

T = constant. (3.30)

These are straight vertical lines in the P − T plane.

Isotherms in various planes are shown in Fig. 3.15.
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Figure 3.15: Isotherms for an ideal gas in T − v, P − v, and P − T planes.

• isochores

– Consider curves in the T − v plane on which v is constant. Thus, for the ideal
gas, we have

v = constant (3.31)

These are straight vertical lines in the T − v plane.

– Consider curves in the P − v plane on which v is a constant. Thus, for the ideal
gas, we have

v = constant. (3.32)

These are straight vertical lines in the P − v plane.

– Consider curves in the P − T plane on which v is a constant. Thus, for the ideal
gas, we have

P =

(
R

v

)

︸ ︷︷ ︸

constant

T. (3.33)

These are straight lines in the P − T plane with slope R/v. Since R > 0 and
v > 0, the slope is always positive. For large v, the slope is shallow. For small v,
the slope is steep.

Isochores in various planes are shown in Fig. 3.16.

Example 3.3
Given air in a cylinder with stops and a frictionless piston with area A = 0.2 m2, stop height of

1 m, and total height of 2 m, at initial state P1 = 200 kPa and T1 = 500 ◦C with cooling, find

• the temperature when the piston reaches the stops, and

• the pressure if the cooling continues to T = 20 ◦C.

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


3.4. THERMAL EQUATIONS OF STATE 59

v v T

T P Pv
high

v
low

v
high

v
lowv

high
v

low

Figure 3.16: Isochores for an ideal gas in T − v, P − v, and P − T planes.
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Figure 3.17: Sketch for example problem of cooling air.

The initial state along with a free body diagram is sketched in Fig. 3.17.

We have three distinct states:

• state 1: initial state

• state 2: piston reaches the stops

• state 3: final state, where T = 20◦C.

At the initial state, the total volume is

V1 = A((1 m) + (1 m)) = (0.2 m2)(2 m) = 0.4 m3. (3.34)

We also know that P1 = 200 kPa. For use of the ideal gas law, we must use absolute temperature. So

T1 = 500 + 273.15 = 773.15 K. (3.35)
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Now, use the ideal gas law to get v1:

v1 =
RT1

P1
=

(

0.287 kJ
kg K

)

(773.15 K)

200 kPa
= 1.10947

m3

kg
. (3.36)

Let us check the units:
kJ

kg K

K

kPa

kPa
kN
m2

kN m

kJ
=

m3

kg
.

As long as we employ kJ for energy and kPa for pressure, we will have few problems with units.
Now, the mass of the air, m, is constant in this problem. Since we have V1 and v1, we can get m:

m =
V1

v1
=

0.4 m3

1.10947 m3

kg

= 0.360532 kg. (3.37)

Now, as long as the piston does not touch the stops, it will be in a force balance giving PatmA = PA.
So our atmosphere must be at Patm = 200 kPa. As the air cools, its temperature will go down. Since
Pv = RT , as temperature goes down with constant P , we expect the volume to decrease. Just when
the piston hits the stops, the stops still exert no force on the piston, so

P2 = P1 = 200 kPa. (3.38)

Now

V2 = A(1 m) = (0.2 m2)(1 m) = 0.2 m3. (3.39)

So

v2 =
V2

m
=

0.2 m3

0.360532 kg
= 0.554735

m3

kg
. (3.40)

Use the ideal gas law to get T2:

T2 =
P2v2

R
=

(200 kPa)
(

0.55735 m3

kg

)

0.287 kJ
kg K

= 386.575 K. (3.41)

Now, after the piston reaches the stops, the volume is constant. So the process from 2 to 3 is
isochoric, and

V3 = V2 = 0.2 m3. (3.42)

Thus

v3 = v2 = 0.554735
m3

kg
. (3.43)

So

P3 =
RT3

v3
=

(

0.287 kJ
kg K

)

(20 + 273.15) K)

0.554735 m3

kg

= 151.665 kPa. (3.44)

We generate Table 3.1 to summarize the problem. It is usually useful to include sketches of the
process in the various thermodynamic planes. This process is sketched in each of the relevant planes
in Fig. 3.18.
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Table 3.1: Numerical values for ideal gas cooling example

variable units state 1 state 2 state 3
T K 773.15 386.575 293.15
P kPa 200 200 151.665

v m3

kg
1.10947 0.554735 0.554735

V m3 0.4 0.2 0.2

v(m3/kg)                                   v(m3/kg)                                    T(K)  

T(K)                                      P(kPa)                                     P(kPa)

200  -                                                            200  

151.6  -                                                         151.6  -

773  -

386  -

293  -

1

2

3

12

3

12

3
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Figure 3.18: Sketch of T − v, P − v, and P − T planes for air-cooling example problem.

3.4.2 Non-ideal thermal equations of state

The ideal gas law is not a good predictor of the P − v − T behavior of gases when

• the gas has high enough density that molecular interaction forces become large and
the molecules occupy a significant portion of the volume; this happens near the vapor
dome typically, or

• the temperature is high enough to induce molecular dissociation (e.g. N2 + N2 ⇌

2N +N2)

One alternative is a corrected thermal equation of state.

3.4.2.1 van der Waals

For the van der Waals9 equation of state, which will be studied in more detail in Sec. 11.6,
one has

P =
RT

v − b
− a

v2
, (3.45)

9J. D. van der Waals, 1873, Over de Continuiteit van den Gas -en Vloeistoftoestand, Ph.D. Dissertation,
U. Leiden; see also J. D. van der Waals, 1910, Nobel Lecture.
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with

a =
27

64
R2T

2
c

Pc

, b =
1

8
R
Tc

Pc

. (3.46)

A depiction of van der Waals is given in Fig. 3.19.

Figure 3.19: Johannes Diderik van der Waals (1837-1923), Dutch physicist
and Nobel laureate who developed a corrected state equation. Image from
http://en.wikipedia.org/wiki/Johannes Diderik van der Waals.

3.4.2.2 Redlich-Kwong

For the Redlich-Kwong10 equation of state, one has

P =
RT

v − b
− a

v(v + b)
√
T
, (3.47)

with

a = (0.42748)
R2T

5/2
c

Pc

, b = (0.08664)
RTc

Pc

. (3.48)

3.4.3 Compressibility factor

In some cases, more detail is needed to capture the behavior of the gas, especially near the
vapor dome. Another commonly used approach to capturing this behavior is to define the

• Compressibility factor: the deviation from ideality of a gas as measured by

Z =
Pv

RT
. (3.49)
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Figure 3.20: Sketch of compressibility chart for N2.

For ideal gases, Pv = RT , so Z = 1. Experiments show the behavior of real gases, and this
can be presented in graphical form, as shown for N2 in Fig. 3.20. Note

• for all T , Z → 1 as P → 0. Thus, one has ideal gas behavior at low pressure

• for T > 300 K, Z ∼ 1 for P < 10 MPa.

• Hold at P = 4 MPa and decrease temperature from 300 K; we see Z decrease below
unity. Now

Z =
Pv

RT
=

P

ρRT
, ρ =

P

ZRT
. (3.50)

Since Z < 1, the density ρ is higher than we would find for an ideal gas with Z = 1.
Thus, in this region, there is an attractive force between molecules.

• For P > 30 MPa, we find Z > 1. Thus, a repulsive force exists in this regime. The
forces are complicated.

Note that generalized compressibility charts have been developed for general gases. These
are based on the so-called reduced pressures and temperatures, Pr and Tr, where

Pr =
P

Pc

, Tr =
T

Tc

. (3.51)

10O. Redlich and J. N. S. Kwong, 1949, “On the thermodynamics of solutions. V. an equation of state.
fugacities of gaseous solutions,” Chemical Reviews, 44(1): 233-244.
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The reduced pressure and temperature are dimensionless. Values with the c subscript are the
critical constants for the individual gases. Appendix D of BS gives generalized compressibility
charts.

3.4.4 Tabular thermal equations of state

Often equations are too inaccurate for engineering purposes. This is generally because we
may be interested in behavior under a vapor dome. Consider that the surface for steam is
well represented by that shown in Fig. 3.21.

Figure 3.21: P − v − T surface for H2O, showing solid, liquid, and vapor phases.

In such cases, one should use tables to find a third property, given two independent
properties. We can say that the thermal equation of state is actually embodied in the
tabular data.

We lay down some rules of thumb for this class:

• If steam, use the tables.

• If air or most other gas, use the ideal gas law, but check if the pressure is high or
the properties are near the vapor dome, in which case use compressibility charts or
non-ideal state equations.

Let us look at how the tables are organized.
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3.4.4.1 Saturated liquid-vapor water, temperature tables

For water, the most important table is the saturated steam table. One should go to such
tables first. If the water is a two-phase mixture, tables of this type must be used as the
equation of state. Recall, for two-phase mixtures, pressure and temperature are not inde-
pendent thermodynamic variables. Two properties still determine the state, but quality x is
now important. So for two-phase mixtures we allow

• T = T (v, x),

• P = P (v, x), or

• v = v(T, x),

for example. But P 6= P (T, v) as for ideal gases.
Consider the structure of saturation tables, as shown in Table 3.2, extracted from BS’s

Table B.1.1. Data from the steam tables is sketched in Fig. 3.22. We have the notation:

Specific Volume, m3

kg

Temp. Press. Sat. Liquid Evap. Sat. Vapor
◦C kPa vf vfg vg

0.01 0.6113 0.001000 206.131 206.132
5 0.8721 0.001000 147.117 147.118

10 1.2276 0.001000 106.376 106.377
15 1.705 0.001001 77.924 77.925

...
...

...
...

...
35 5.628 0.001006 25.2148 25.2158
40 7.384 0.001008 19.5219 19.5229

...
...

...
...

...
374.1 22089 0.003155 0 0.00315

Table 3.2: Saturated liquid-vapor water tables, temperature entry, from BS, Table B.1.1.

• f : saturated liquid,

• g: saturated vapor,

• vf : specific volume of saturated liquid, and

• vg: specific volume of saturated vapor.

Note for liquid-vapor mixtures, this table begins at the triple point temperature 0.01 ◦C and
ends at the critical temperature 374.1 ◦C. At P = Pc and T = Tc, we have vf = vg. Note
that

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


66 CHAPTER 3. PROPERTIES OF A PURE SUBSTANCE

v(m3/kg )

T(
o
C)

compressed
liquid

superheated
vapor

15 oC

v
f
=0.001000 m3/kg        v

g
 =77.925 m3/kg

v
fg
 = 77.924 m3/kg

f g

Figure 3.22: Vapor dome for H2O with data for vf , vg, and vfg at T = 15◦C.

• vf ≃ constant

• vg decreases with increasing T

We define vfg as
vfg ≡ vg − vf . (3.52)

Recall the quality x is

x =
mvap

mtotal

.

Consider a mass of fluid m in total volume V . We must have

V = Vliq + Vvap, (3.53)

m = mliq +mvap. (3.54)

Now, use the definition of specific volume and analyze to get

mv = mliqvf +mvapvg, (3.55)

v =
mliq

m
vf +

mvap

m
vg, (3.56)

v =
m−mvap

m
vf +

mvap

m
vg, (3.57)

v = (1 − x)vf + xvg, (3.58)

v = vf + x (vg − vf )
︸ ︷︷ ︸

=vfg

. (3.59)
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We get the final important results:

v = vf + xvfg. (3.60)

x =
v − vf

vfg

. (3.61)

3.4.4.2 Saturated liquid-vapor water, pressure tables

Sometimes we are given the pressure of the mixture, and a saturation table based on the
pressure is more useful. An example of a portion of such a table is shown in Table 3.3.

Specific Volume, m3

kg

Press. Temp. Sat. Liquid Evap. Sat. Vapor
kPa ◦C vf vfg vg

0.6113 0.01 0.001000 206.131 206.132
1.0 6.98 0.001000 129.20702 129.20802
1.5 13.03 0.001001 87.97913 87.98013
2.0 17.50 0.001001 67.00285 67.00385

...
...

...
...

...
22089 374.1 0.003155 0 0.00315

Table 3.3: Saturated water tables, pressure entry from BS, Table B.1.2.

Example 3.4
Given a vessel with V = 0.4 m3 filled with m = 2 kg of H2O at P = 600 kPa, find

• the volume and mass of liquid, and

• the volume and mass of vapor.

The problem is sketched in Fig. 3.23. While the problem statement suggests we have a two-phase
mixture, that is not certain until one examines the tables. First, calculate the specific volume of the
water:

v =
V

m
=

0.4 m3

2 kg
= 0.2

m3

kg
. (3.62)

Next go to the saturated water tables with pressure entry to see if the water is a two-phase mixture.
We find at P = 600 kPa that

vf = 0.001101
m3

kg
, vg = 0.31567

m3

kg
. (3.63)
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liquid water

water vapor

P = 600 kPa
m = 2 kg
V = 0.4 m3

Figure 3.23: Schematic for liquid-vapor mixture example problem.

Now, for our mixture, we see that vf < v < vg, so we have a two-phase mixture. Now, apply Eq. (3.61)
to find the quality.

x =
v − vf

vfg
=

v − vf

vg − vf
=

0.2 m3

kg − 0.001101 m3

kg

0.31567 m3

kg − 0.001101 m3

kg

= 0.632291. (3.64)

Now, from Eq. (3.1), we have x = mvap/mtotal, so

mvap = xmtot = 0.632291(2 kg) = 1.26458 kg. (3.65)

Now, for the liquid mass we have

mliq = mtotal − mvap = (2 kg) − (1.26458 kg) = 0.735419 kg. (3.66)

Most of the mass is vapor, but the fraction that is liquid is large.
Now, let us calculate the volumes.

Vvap = mvapvg = (1.26458 kg)

(

0.31567
m3

kg

)

= 0.39919 m3, (3.67)

Vliq = mliqvf = (0.735419 kg)

(

0.001101
m3

kg

)

= 0.000809696 m3. (3.68)

The volume is nearly entirely vapor.

3.4.4.3 Superheated water tables

The superheat regime is topologically similar to an ideal gas. For a superheated vapor,
the quality x is meaningless, and we can once again allow pressure and temperature to be
independent. Thus, we can have v = v(T, P ). And the tables are in fact structured to give
v(T, P ) most directly. An example of a portion of such a table is shown in Table 3.4. This
portion of the superheated tables focuses on a single isobar, P = 10 kPa. At that pressure,
the saturation temperature is 45.81 ◦C, indicated in parentheses. As long as T > 45.81 ◦C,
we can use this table for P = 10 kPa water. And for various values of T > 45.81 ◦C, we
find other properties, such as specific volume v, and properties we have not yet focused on,
internal energy u, enthalpy h, and entropy s.
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Temp. v u h s
◦C m3

kg
kJ
kg

kJ
kg

kJ
kg K

P = 10 kPa (45.81 ◦C)

Sat. 14.67355 2437.89 2584.63 8.1501
50 14.86920 2443.87 2592.56 8.1749

100 17.19561 2515.50 2687.46 8.4479
150 19.51251 2587.86 2782.99 8.6881

...
...

...
...

...

Table 3.4: Superheated water tables, from BS, Table B.1.3.

3.4.4.4 Compressed liquid water tables

Liquids truly have properties which vary with both T and P . To capture such variation,
we can use compressed liquid tables as an equation of state. An example for water is given
in Table 3.5. If compressed liquid tables do not exist, it is usually safe enough to assume

Temp. v u h s
◦C m3

kg
kJ
kg

kJ
kg

kJ
kg K

P = 500 kPa (151.86 ◦C)

Sat. 0.001093 639.66 640.21 1.8606
0.01 0.000999 0.01 0.51 0.0000

20 0.001002 83.91 84.41 0.2965
40 0.001008 167.47 167.98 0.5722

...
...

...
...

...

Table 3.5: Compressed liquid water tables, from BS, Table B.1.4.

properties are those for x = 0 saturated liquid at the appropriate temperature.

3.4.4.5 Saturated water, solid-vapor

Other types of saturation can exist. For example, below the triple point temperature, one
can have solid water in equilibrium with water vapor. The process where ice transforms
directly to water vapor is known as sublimation. Saturation tables for ice-vapor equilibrium
exist as well. For example, consider the structure of saturation tables, as shown in Table
3.6, extracted from BS’s Table B.1.5.
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Specific Volume, m3

kg

Temp. Press. Sat. Solid Evap. Sat. Vapor
◦C kPa vi vig vg

0.01 0.6113 0.0010908 206.152 206.153
0 0.6108 0.0010908 206.314 206.315

-2 0.5177 0.0010905 241.662 241.663
-4 0.4376 0.0010901 283.798 283.799
...

...
...

...
...

Table 3.6: Saturated solid-vapor water tables, temperature entry, from BS, Table B.1.5.

3.4.4.6 Tables for other materials

For many materials similar tables exist, e.g., ammonia, NH3. Consider the ammonia satura-
tion tables, as shown in Table 3.7, extracted from BS’s Table B.2.1. One also has tables for

Specific Volume, m3

kg

Temp. Press. Sat. Liquid Evap. Sat. Vapor
◦C kPa vf vfg vg

-50 40.9 0.001424 2.62557 2.62700
-45 54.5 0.001437 2.00489 2.00632
-40 71.7 0.001450 1.55111 1.55256
-35 93.2 0.001463 1.21466 1.21613

...
...

...
...

...
132.3 11333.2 0.004255 0 0.004255

Table 3.7: Saturated liquid-vapor ammonia tables, temperature entry, from BS, Table B.2.1.

superheated ammonia vapor. An example of a portion of such a table is shown in Table 3.8.
Other tables in BS, include those for carbon dioxide, CO2, a modern refrigerant, R-410a,11

another common refrigerant, R-134a,12 diatomic nitrogen, N2, and methane, CH4.

3.4.4.7 Linear interpolation of tabular data

• interpolation is often required when exact values are not tabulated.

11a common cooling fluid invented in 1991, a near-azeotropic mixture of difluoromethane and pentafluo-
roethane.

12a cooling fluid which became common in the 1990s, 1,1,1,2-tetrafluoroethane.
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Temp. v u h s
◦C m3

kg
kJ
kg

kJ
kg

kJ
kg K

P = 50 kPa (−46.53 ◦C)

Sat. 2.1752 1269.6 1378.3 6.0839
-30 2.3448 1296.2 1413.4 6.2333
-20 2.4463 1312.3 1434.6 6.3187
-10 2.5471 1328.4 1455.7 6.4006

...
...

...
...

...

Table 3.8: Superheated ammonia tables, from BS, Table B.2.2.

• in this course we will primarily use linear interpolations.

• use extrapolations only if there is no other choice.

• occasionally double interpolations will be necessary.

3.4.4.7.1 Single interpolation The most common interpolation is the single interpo-
lation of variables. We give an example here.

Example 3.5
Given water at T = 36.7 ◦C, with v = 10 m3/kg, find the pressure and the quality if a two-phase

mixture.

A wise first step is to go to the saturated tables. We check Table B.1.1 from BS and find there are
no values at T = 36.7 ◦C. So we must create our own personal steam table values at this temperature,
just to determine if where we are on the thermodynamic surface. We list the important part of the
saturated water liquid-vapor tables in Table 3.9.

We seek to get appropriate values for P , vf , vfg, and vg at T = 36.7 ◦C. Let us find P first. The
essence of linear interpolation is to fit known data to a straight line, then use the formula of that line to
predict intermediate values of variables of interest. We know values of P at T = 35 ◦C and T = 40 ◦C.
In fact we have two points: (T1, P1) = (35 ◦C, 5.628 kPa), and (T2, P2) = (40 ◦C, 7.384 kPa). This lets
us fit a line using the familiar point-slope formula:

P − P1 =

(
P2 − P1

T2 − T1

)

︸ ︷︷ ︸

slope

(T − T1). (3.69)

We could have used the other point. Note when T = T1, that P = P1. Also, when T = T2, P = P2.
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Specific Volume, m3

kg

Temp. Press. Sat. Liquid Evap. Sat. Vapor
◦C kPa vf vfg vg

...
...

...
...

...
35 5.628 0.001006 25.2148 25.2158

36.7 ? ? ? ?
40 7.384 0.001008 19.5219 19.5229

...
...

...
...

...

Table 3.9: Relevant portion of saturated liquid-vapor water tables, temperature entry, from
BS, Table B.1.1.

Substituting numbers, we get

P =

(
(7.384 kPa) − (5.628 kPa)

(40 ◦C) − (35 ◦C)

)

(T − (35 ◦C)) + (5.628 kPa), (3.70)

=

(

0.3512
kPa
◦C

)

(T − (35 ◦C)) + (5.628 kPa), (3.71)

=

(

0.3512
kPa
◦C

)

((36.7 ◦C) − (35 ◦C)) + (5.628 kPa), (3.72)

= 6.225 kPa. (3.73)

The interpolation is sketched is sketched in Fig. 3.24.

T (o
C )

P (kPa)

35                  36.7      40

7.384

6.225

5.628
1

2

Figure 3.24: Sketch of linear interpolation to find P when T = 36.7 ◦C, v = 10 m3/kg for
water.

Now, we need to interpolate for vf and vg as well. Let us apply the same technique. For vf , we
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have

vf −
(

0.001006
m3

kg

)

=





(

0.001008 m3

kg

)

−
(

0.001006 m3

kg

)

(40 ◦C) − (35 ◦C)



 (T − (35 ◦C)). (3.74)

When T = 36.7 ◦C, we get

vf = 0.00100668
m3

kg
. (3.75)

For vg, we get

vg −
(

25.2158
m3

kg

)

=





(

19.5229 m3

kg

)

−
(

25.2158 m3

kg

)

(40 ◦C) − (35 ◦C)



 (T − (35 ◦C)). (3.76)

When T = 36.7 ◦C, we get

vg = 23.2802
m3

kg
. (3.77)

Knowing vf and vg, we do not need to interpolate for vfg. We can simply use the definition:

vfg = vg − vf =

(

23.2802
m3

kg

)

−
(

0.00100668
m3

kg

)

= 23.2792
m3

kg
. (3.78)

Now, v = 10 m3/kg. Since at T = 36.7◦C, we have vf < v < vg, we have a two-phase mixture.
Let us get the quality. From Eq. (3.61), we have

x =
v − vf

vfg
=

(

10 m3

kg

)

−
(

0.00100668 m3

kg

)

23.2792 m3

kg

= 0.429525. (3.79)

Thus

x =
mvap

mtot
= 0.429525. (3.80)

3.4.4.7.2 Double interpolation Sometimes, we need to do extra linear interpolations.
Say we are given superheated water with vo and To and we are asked to find Po. But neither
vo nor To are listed in the tables. Then we need to do a multi-step procedure.

• Go to the tables and for the given To and vo, estimate approximately the value of Po

by visual examination.

• For a nearby value of P = P1, get a linear interpolation of the form T = T (v, P1). Use
this to get T1 = T (vo, P1).

• For a different nearby value of P = P2, get another linear interpolation of the form
T = T (v, P2). Use this to get T2 = T (vo, P2). We now have two points (T1, P1) and
(T2, P2), both valid at v = vo.
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• Use the two points (T1, P1), (T2, P2) to develop a third interpolation P = P (T, vo).
Estimate Po by Po = P (To, vo).

Example 3.6
Consider m = 1 kg of H2O initially at T1 = 110 ◦C, x1 = 0.9. The H2O is heated until T2 = 200 ◦C.

As sketched in Fig. 3.25, the H2O is confined in a piston-cylinder arrangement, where the piston

PA

PatmAFs=k(y-y
1
)

water

free body diagram

Figure 3.25: Sketch of piston-cylinder arrangement.

is constrained by a linear spring with dP/dv = 40 kPa/m3/kg. At the initial state, the spring is
unstretched. Find the final pressure.

While this problem seems straightforward, there are many challenges. Let us first consider what
we know about the initial state. Since we have a numerical value for x1, we know state 1 is a two-phase
mixture. From the tables, we find that

P1 = 143.3 kPa, vf1 = 0.001052
m3

kg
, vg1 = 1.2101

m3

kg
, vfg1 = 1.20909

m3

kg
. (3.81)

We can then calculate v1 for the mixture:

v1 = vf1 + x1vfg1 =

(

0.001052
m3

kg

)

+ (0.9)

(

1.20909
m3

kg

)

= 1.08923
m3

kg
. (3.82)

We now know everything we need about state 1.
At state 2, we only know one intensive thermodynamic property, the temperature, T2 = 200 ◦C.

• To get a second, and thus define the final state, we will need to bring in information about the process.

Now, we will need to consider a force balance on the piston. Newton’s second law for the piston says

mpiston
d2y

dt2
=
∑

Fy. (3.83)

From our free body diagram, we note three major forces:

• force due to the interior pressure from the water,

• force due to the exterior pressure from the atmosphere,
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• force due to the linear spring, which we call Fs = k(y − y1) where k is the spring constant, y is the
position of the piston, and y1 is the initial position of the piston. Note that Fs = 0 when y = y1.

We write this as

mpiston
d2y

dt2
= PA − PatmA − k(y − y1). (3.84)

Now, in classical thermodynamics, we make the assumption that the inertia of the piston is so small
that we can neglect its effect. We are really requiring that a force balance exist for all time. Thus,
even though the piston will move, and perhaps accelerate, its acceleration will be so small that it can
be neglected relative to the forces in play. We thus take

∣
∣
∣
∣
mpiston

d2y

dt2

∣
∣
∣
∣
≪ |Fs|, |PatmA|, |PA|. (3.85)

With this assumption, we have

0 ≃ PA − PatmA − k(y − y1). (3.86)

Solve for P , the water pressure, to get

P = Patm +
k

A
(y − y1). (3.87)

Now, V = Ay and V1 = Ay1, so we can say

P = Patm +
k

A2
(V − V1). (3.88)

Let us use the fact that V = mv and V1 = mv1 to rewrite as

P = Patm +
km

A2
(v − v1). (3.89)

This equation is highlighted because it provides an algebraic relationship between two intensive thermo-

dynamic properties, P and v, and such a tactic will be useful for many future problems. Using numbers
from our problem, with dP/dv = km/A2, we can say

P = (143.3 kPa) +

(

40
kPa
m3

kg

)(

v −
(

1.08923
m3

kg

))

, (3.90)

P = (99.7308 kPa) +

(

40
kPa
m3

kg

)

v.

︸ ︷︷ ︸

linear spring rule

(3.91)

Now, at state 1, we have V = V1 and P = P1 = 143.3 kPa, so we must have Patm = 143.3 kPa for this
problem.

Let us now consider the possibilities for state 2. We are constrained to be on the line in P −v space
given by our force balance, Eq. (3.91). We are also constrained to be on the T = 200 ◦C isotherm,
which is also a curve in P − v space. So let us consider the P − v plane, as sketched in Fig. 3.26. The
isotherms for T1 = 110 ◦C and T2 = 200 ◦C are set in both parts of Fig. 3.26. Since both T1 and T2 are
well below Tc, both isotherms pierce the vapor dome. Our final state has a line in P − v space from the
force balance intersecting the state 2 isotherm. There are two distinct possibilities for the final state:

• for a stiff spring, i.e. large km/A2, our line will intersect the isotherm within the vapor dome, or
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v

P

T
1
=110 oC

T
2
=200 oC

v

P

T
1
  =110 oC

T
2
  =200 oC

km/A2 ~ large

km/A2 ~ small

1

2

1

2

Figure 3.26: Sketch of P − v plane for piston-cylinder-linear spring problem for water.

• for a loose spring, i.e. small km/A2, our line will intersect the isotherm in the superheated vapor
region.

Let us consider the first possibility: state 2 is under the vapor dome. If that is the case, then the
tables tell us that P2 = 1553.8 kPa. At this pressure, Eq. (3.91) gives us v = (1553.8 − 99.7308)/40 =
36.3517 m3/kg. However, at this pressure vg = 0.12736 m3/kg. Since we just found v > vg, our
assumption that the final state was under the dome must be incorrect!

Therefore, let us go to the more difficult case posed by the second possibility: state 2 is a superheated
vapor. In general the intersection of the straight line with the isotherm is difficult. We can use
linearization to assist us. Let us choose a small region of the tables, and locally fit the 200 ◦C isotherm
to a straight line. This will give us a second independent equation in P − v space. We will then solve
two equations in two unknowns for the final state.

Our initial pressure, P1 = 143.3 kPa lies between 100 kPa and 200 kPa. We have values from the
superheat tables at these pressures for v at 200 ◦C. So, we approximate the isotherm by the line

P − (100 kPa) =
(200 kPa) − (100 kPa)

(

1.08034 m3

kg

)

−
(

2.17226 m3

kg

)

(

v −
(

2.17226
m3

kg

))

. (3.92)

P = (298.939 kPa) −
(

91.5818
kPa
m3

kg

)

v.

︸ ︷︷ ︸

linear approximation of isotherm from tabular thermal EOS

(3.93)

We simultaneously solve the two linear equations, Eqs. (3.91, 3.93), and get the unique solution

P2 = 160.289 kPa, v2 = 1.151395
m3

kg
. (3.94)

Since we found 100 kPa < P2 = 160.289 kPa < 200 kPa, we made a good assumption on the final
pressure, and our interpolation values from the tables are acceptable. Lastly, we sketch the process in
the T − v and P − T planes in Fig. 3.27.
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Figure 3.27: Sketch of T − v and P − T planes for piston-cylinder-linear spring problem for
water.
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Chapter 4

Work and heat

Read BS, Chapter 4

In this chapter, we consider work and heat. We will see that these often accompany a
thermodynamic process. We will first consider some general mathematical notions, which
will be pertinent.

4.1 Mathematical preliminaries: exact differentials

Here, we review some notions from calculus of many variables. Recall in thermodynamics,
we are often concerned with functions of two independent variables, e.g. P = P (v, T ), as is
found in an equation of state. Here, let us consider z = z(x, y) for a general analysis.

4.1.1 Partial derivatives

Recall if z = z(x, y), then the partial derivative of z can be taken if one of the variables is
held constant.

Example 4.1
If z =

√

x2 + y2, find the partial of z with respect to x and then with respect to y.

First let us get the derivative with respect to x. We take

∂z

∂x

∣
∣
∣
∣
y

=
x

√

x2 + y2
. (4.1)

Next for the derivative with respect to y, we have

∂z

∂y

∣
∣
∣
∣
x

=
y

√

x2 + y2
. (4.2)
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4.1.2 Total derivative

If z = z(x, y), for every x and y, we have a z. We also have the total differential

dz =
∂z

∂x

∣
∣
∣
∣
y

dx+
∂z

∂y

∣
∣
∣
∣
x

dy. (4.3)

On a particular path C in the x− y plane along which we know y = y(x), we also have the
total derivative

dz

dx
=
∂z

∂x

∣
∣
∣
∣
y

+
∂z

∂y

∣
∣
∣
∣
x

dy

dx
. (4.4)

Now, we can integrate dz along a variety of paths C in the x− y plane. Two paths from z1

to z2 are shown in Fig. 4.1. Integrating Eq. (4.3), we get

x

y

z
1

z
2

path A

path B

Figure 4.1: Sketch of two paths from z1 to z2 in the x− y plane.

∫ 2

1

dz =

∫

C

(

∂z

∂x

∣
∣
∣
∣
y

dx+
∂z

∂y

∣
∣
∣
∣
x

dy

)

. (4.5)

Now, because z = z(x, y), it will not matter which path we choose. The integral is said to
be path-independent

Conversely, if we were given

dz = M(x, y)dx+N(x, y)dy, (4.6)

the associated integrals are path-independent iff z(x, y) can be found by solving.

M =
∂z

∂x

∣
∣
∣
∣
y

, N =
∂z

∂y

∣
∣
∣
∣
x

. (4.7)

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


4.1. MATHEMATICAL PRELIMINARIES: EXACT DIFFERENTIALS 81

One easy way to check this is to form the following two partial derivatives of Eqs. (4.7):

∂M

∂y

∣
∣
∣
∣
x

=
∂2z

∂y∂x
,

∂N

∂x

∣
∣
∣
∣
y

=
∂2z

∂x∂y
. (4.8)

Now, if z(x, y) and all its partial derivatives are continuous and differentiable, it is easy
to prove the order of differentiation does not matter: ∂2z/∂x∂y = ∂2z/∂y∂x. Thus, if
z = z(x, y), we must insist that

∂M

∂y

∣
∣
∣
∣
x

=
∂N

∂x

∣
∣
∣
∣
y

. (4.9)

We define the following:

• exact differential: a differential which yields a path-independent integral.

Example 4.2
If dz = xdx + ydy, is dz exact?

Here,

M =
∂z

∂x

∣
∣
∣
∣
y

= x. (4.10)

Thus

z =
1

2
x2 + f(y). (4.11)

Thus
∂z

∂y

∣
∣
∣
∣
x

=
df

dy
= y. (4.12)

Thus

f(y) =
1

2
y2 + C, (4.13)

and

z(x, y) =
1

2
(x2 + y2) + C. (4.14)

Examine a difference in z:

z2 − z1 =
1

2
(x2

2 − x2
1 + y2

2 − y2
1). (4.15)

Note the constant C drops out and that the difference in z only depends on the end points and not the
path between points 1 and 2. Here, dz is exact.

Note also that
∂M

∂y

∣
∣
∣
∣
x

= 0,
∂N

∂x

∣
∣
∣
∣
y

= 0, (4.16)

thus, our condition for exactness, Eq. (4.9), is satisfied.
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Example 4.3
If dz = ydx − xdy, is dz exact?

Here,

M =
∂z

∂x

∣
∣
∣
∣
y

= y. (4.17)

Thus
z = yx + f(y). (4.18)

So
∂z

∂y

∣
∣
∣
∣
x

= x +
df

dy
= −x. (4.19)

Thus
df

dy
= −2x. (4.20)

But functions of y cannot be functions of x. Therefore, we have generated nonsense. We cannot find
z(x, y)! Thus, z is not a state variable, and dz is inexact. We give a new notation for such differentials:
δz.

If we choose a path, we can still find differences in z. Let us examine the integral of z along two
paths, illustrated in Fig. 4.2.

x

y

1

2

pa
th

 A

p
at

h
 B

, 
  
C

1

path B,   C
2

(x,y)=(1,1)
(x,y)=(0,1)

(x,y)=(0,0)

Figure 4.2: Sketch of two paths in the x− y plane.

• Path A: Integrate from (x, y) = (0, 0) to (x, y) = (1, 1) along the path x = y and find z2 − z1.

On path A, x = y and dx = dy. So eliminate y to get

δz = xdx − xdx = 0. (4.21)

Thus, δz = 0, and z = C after integrations. Thus z2 = z1 = C, and z2 − z1 = 0.
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• Path B: Integrate from (x, y) = (0, 0) to (x, y) = (1, 1) along the path given first by the y-axis from 0
to 1, then by the line y = 1 from x = 0 to x = 1 and find z2 − z1.

We have ∫ 2

1

δz =

∫

C1

ydx − xdy +

∫

C2

ydx − xdy. (4.22)

On C1, we have x = 0, and dx = 0. On C2, we have y = 1 and dy = 0. So we get

∫ 2

1

δz =

∫

C1

y(0) − (0)dy +

∫

C2

(1)dx − x(0) =

∫ 1

0

dx. (4.23)

Thus
z2 − z1 = 1. (4.24)

We chose a different path, and found a different difference in z.

Note also that
∂M

∂y

∣
∣
∣
∣
x

= 1,
∂N

∂x

∣
∣
∣
∣
y

= −1; (4.25)

thus, our condition for exactness, Eq. (4.9), is not satisfied.

4.2 Work

4.2.1 Definitions

From Newtonian mechanics, we know going from state 1 to state 2, that the work 1W2 is
done by a force moving through a distance. The word “work” was first used in this sense by
the French mechanician Gaspard-Gustave Coriolis, depicted in Fig. 4.3. Work is defined as

1W2 =

∫ 2

1

F · dx. (4.26)

In differential form, we have
δW = F · dx. (4.27)

In one-dimensional systems, we have

1W2 =

∫ 2

1

Fdx, (4.28)

δW = Fdx. (4.29)

Note that we have anticipated that the work differential is inexact. This is an important
point, as work integrals will be path-dependent, and work will not be a state variable for a
system. Here, F is a three-dimensional force vector, x is a three-dimensional distance vector,
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Figure 4.3: Gaspard-Gustave Coriolis (1792-1843), French physicist who used to
word “work” to characterize a force acting through a distance. Image from
http://en.wikipedia.org/wiki/Gaspard-Gustave Coriolis.

and · is the dot product operator. Recall that the dot product of two vectors yields a scalar.
The terms F and x are scalar equivalents valid for one-dimensional systems. The units of
force are N , those of distance are m, so the units of work are N m, which have been defined
as Joules (J).

Work is done by a system if the sole effect on the surroundings (i.e. everything external
to the system) could be the raising of a weight. We take the following sign convention:

• + work done by the system,

• − work done on the system.

This sign convention is not universal. Many physicists use precisely the opposite convention.
Probably the reason for this convention is that thermodynamics is a science that was invented
by engineers in the nineteenth century. And those engineers wanted to produce work from
steam engines. Systems doing work were viewed favorably and endowed with a positive sign.

We associate energy with the ability to do work. We define

• Power: the time rate of doing work = δW/dt.

• Specific work: the work per unit mass w = W/m. Because work is path-dependent,
the intensive quantity w is not a thermodynamic state variable.

4.2.2 Work for a simple compressible substance

Consider the scenario sketched in Fig. 4.4. In state 1, we have a material at pressure P
confined in a cylinder of cross-sectional area A. The height of the piston in the cylinder is
x. The pressure force of the material on the piston is just balanced by weights on top of the
piston.
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P

A

x

state 1

P+dP

A

x+dx

state 2

Figure 4.4: Sketch of piston-cylinder arrangement as work is done as the material expands
when weights are removed.

Now, remove one of the weights. We notice a motion of the piston to a new height x+dx.
We let a long time elapse so the system comes to rest at its new equilibrium. We notice
there is a new pressure in the chamber, P + dP sufficient to balance the new weight force.
Obviously work was done as a force acted through a distance. Let us calculate how much
work was done. The differential work is given from Eq. (4.29) as

δW = Fdx. (4.30)

Now, F varies during the process. At state 1, we have F = PA. At state 2, we have
F = (P + dP )A. Let us approximate F by its average value:

F ∼ 1

2
(PA+ (P + dP )A) = PA+

dP

2
A. (4.31)

So

δW =

(

PA+
dP

2
A

)

dx = PAdx+
A

2
dPdx
︸ ︷︷ ︸

∼0

. (4.32)

Let us only retain terms which are differential and neglect the square of differential terms,
so

δW = PAdx. (4.33)
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Now, since Adx = dV , the differential volume, we get the important formula:

δW = PdV. (4.34)

We can integrate this and get the equally important

1W2 =

∫ 2

1

PdV. (4.35)

Note we employ the unusual notation 1W2 to emphasize that the work depends on the path
from state 1 to state 2. We are tempted to write the incorrect form

∫ 2

1
δW = W2 −W1, but

this would imply the work is a state function, which it is not, as shown directly.

Example 4.4
Show that work is path-dependent.

We have δW = PdV. In terms of intensive variables, assuming path-independence, we would have

dw = Pdv. (4.36)

If w were a path-independent property, we could have w = w(P, v), which would admit the exact

dw =
∂w

∂v

∣
∣
∣
∣
P

︸ ︷︷ ︸

=P

dv +
∂w

∂P

∣
∣
∣
∣
v

︸ ︷︷ ︸

=0

dP. (4.37)

Our physics of dw = Pdv + 0dP tells us by comparison that we would need

∂w

∂v

∣
∣
∣
∣
P

= P, and
∂w

∂P

∣
∣
∣
∣
v

= 0. (4.38)

Integrating the first gives
w = Pv + f(P ). (4.39)

Differentiating with respect to P gives

∂w

∂P

∣
∣
∣
∣
v

= v +
df(P )

dP
= 0. (4.40)

Thus
df(P )

dP
= −v. (4.41)

Functions of P cannot be functions of v if P and v are independent. Therefore dw is not exact,

w 6= w(P, v), and
∫ 2

1
Pdv is path-dependent.

We can also see the path-dependence of 1W2 by realizing that 1W2 =
∫ 2

1
PdV represents

the area under a curve in a P − V diagram. Consider two paths, A and B from the same
points 1 to 2 as depicted in the P − V space of Fig. 4.5. The area under the curve defined
by Path A is clearly different from that under the curve defined by Path B. Clearly, the
work 1W2 depends on the path selected, and not simply the end points. Obviously then, to
calculate the work, we will need full information on P (V ) for the process under consideration.

Many processes in thermodynamics are well modeled as a
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V

P

V

P

1
W

2
  = ∫ PdV 

1

2

1

2

1

2

1
W

2
  = ∫ PdV 

1

2

path A

path B
area

A

area
B

Figure 4.5: P − V diagram for work for two different processes connecting the same states.

• Polytropic process: a process which is described well by an equation of the form
PV n = constant = C.

Here, n is known as the polytropic exponent.

Example 4.5
Find the work for a gas undergoing a polytropic process with n 6= 1.

A polytropic process has

P (V ) =
C

V n
. (4.42)

So the work is

1W2 =

∫ 2

1

C

V n
dV = C

∫ 2

1

dV

V n
, (4.43)

=
C

1 − n
V 1−n

∣
∣
2

1
, (4.44)

=
C

1 − n

(
V 1−n

2 − V 1−n
1

)
. (4.45)

Now, C = P1V
n
1 = P2V

n
2 , so

1W2 =
P2V2 − P1V1

1 − n
. (4.46)

Note this formula is singular if n = 1.

Now, if n = 1, we have PV = C, which corresponds to an isothermal process if the
material is also an ideal gas. Note that non-ideal gases can also have PV = C; they just are
not isothermal. We need to be able to analyze polytropic processes with n = 1.
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Example 4.6
Find the work for a gas undergoing a polytropic process with n = 1.

For this process, we have

P (V ) =
C

V
. (4.47)

Therefore the work is

1W2 =

∫ 2

1

C
dV

V
= C ln

V2

V1
. (4.48)

Since P1V1 = C, we can say

1W2 = P1V1 ln
V2

V1
. (4.49)

Example 4.7
Find the work for an isobaric process.

An isobaric process is a polytropic process with n = 0. Thus

P (V ) = C = P1. (4.50)

We also have P2 = P1. The work is

1W2 =

∫ 2

1

P1dV = P1

∫ 2

1

dV = P1(V2 − V1). (4.51)

Example 4.8
Find the work for an isochoric process.

An isochoric process has dV = 0. Thus

1W2 =

∫ 2

1

P dV
︸︷︷︸

=0

= 0. (4.52)

There is no work for an isochoric process. This also corresponds to a polytropic process with n → ∞.
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V

P

1
n=0 (isobaric)

n<1 (polytropic)

n>1 (polytropic)

n=1 (isothermal for ideal gases)

n    ∞ (isochoric) 

1

2

1
W

2
 = ∫ PdV

Figure 4.6: P − V diagram for various polytropic processes.

P

V

1

23

1
W

3
 = ∫ PdV < 0

1

3

Figure 4.7: Sketch of two-step, isothermal-isobaric, compression of an ideal gas.

A family of paths in the P − V plane for a set of polytropic processes of varying n is
shown in Fig. 4.6.

Example 4.9

An ideal gas undergoes a two-step process. Beginning at state 1, it is isothermally compressed
to state 2. Then it is isobarically compressed to state 3. Find the work. The process is sketched in
Fig. 4.7.
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We have

1W3 = 1W2 + 2W3, (4.53)

=

∫ 2

1

PdV +

∫ 3

2

PdV, (4.54)

= mRT1

∫ 2

1

dV

V
+ P2

∫ 3

2

dV, (4.55)

= mRT1 ln
V2

V1
+ P2(V3 − V2), (4.56)

= P1V1 ln
V2

V1
+ P2(V3 − V2). (4.57)

Note that 1W3 < 0, since V2 < V1 and V3 < V2. So work is done on the system in compressing it. Note
also that even though we do not know T , we can solve the problem. This is because work only requires
information about the P -V state of the system and the nature of the process.

Example 4.10
Consider the piston-cylinder arrangement sketched in Fig. 4.8. Here, m = 2 kg of water is initially

water
m = 2 kg
V

1
 = 0.02 m3

T
1
 = 50 

o
C 

Q

water
m = 2 kg
T

3
 = 200 

o
C 

Q

Figure 4.8: Sketch of piston-cylinder arrangement for water heating example.

at V1 = 0.02 m3, T1 = 50 ◦C. When P = 100 kPa, the piston leaves the stops. The water is heated
from its initial state to a final state of 200 ◦C. Find diagrams for the process in the P − T , T − v, and
P − v planes and the work done by the water.

At state 1, we have

v1 =
V1

m
=

0.02 m3

2 kg
= 0.01

m3

kg
. (4.58)
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Go to the saturated water tables, temperature entry. At T1 = 50 ◦C, we find vf = 0.001012 m3/kg
and vg = 12.0318 m3/kg. This gives vfg = 12.0308 m3/kg. Since vf < v1 < vg, we have a two-phase
mixture at the initial state. This fixes P1 = 12.350 kPa.

Now, we have

x1 =
v1 − vf

vfg
=

(

0.01 m3

kg

)

−
(

0.001012 m3

kg

)

12.0308 m3

kg

= 0.000747083. (4.59)

Next, heat at constant volume until

• the piston leaves the stops at P = 100 kPa, or

• the fluid becomes saturated.

We search the saturated water tables and examine the state at P = 100 kPa. We see at that
pressure that vf = 0.001043 m3/kg and vg = 1.69296 m3/kg. So when P reaches 100 kPa, we still
have vf < v < vg, so the water is still a two-phase mixture.

We define then state 2 as the state where P2 = 100 kPa with v2 = v1 = 0.01 m3/kg. From here on
the process is isobaric. It is useful at this stage to consider a sketch of the processes given in Fig. 4.9.
Now, at P2 = 100 kPa, we find that T2 = 99.62 ◦C. And we have v2 = v1 = 0.01 m3/kg. Using vf and

v v T

T P P

1

23

1

2
3

1

2

3

Figure 4.9: Sketch of T − v, P − v, and P − T diagrams.

vg at P = 100 kPa, we find

x2 =
v2 − vf

vfg
=

(

0.01 m3

kg

)

−
(

0.001043 m3

kg

)

1.69296 m3

kg

= 0.00529073. (4.60)

Now, we heat isobarically until T3 = 200 ◦C, with P3 = P2 = 100 kPa. This gives us two properties,
so we know the state. The superheat tables give us v3 = 2.17226 m3/kg.

Now, the final volume is

V3 = mv3 = (2 kg)

(

2.17226
m3

kg

)

= 4.34452 m3. (4.61)

Let us get the work.

1W3 = 1W2
︸︷︷︸

=0

+2W3. (4.62)
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But 1W2 = 0 since this is an isochoric process. So

1W3 = 2W3 =

∫ 3

2

PdV = P2

∫ 3

2

dV = P2(V3 − V2) = P2m(v3 − v2). (4.63)

Substituting numbers, we find

1W3 = (100 kPa)(2 kg)

((

2.17226
m3

kg

)

−
(

0.01
m3

kg

))

= 432.452 kJ. (4.64)

A summary table is given in Table 4.1.

Table 4.1: Numerical values for water heating example

variable units state 1 state 2 state 3
P kPa 12.350 100 100

v m3

kg
0.01 0.01 2.17226

T ◦C 50 99.62 200
x - 0.000747083 0.00529073 -
V m3 0.02 0.02 4.34452

Example 4.11
Measured P − V data for an internal combustion engine is obtained. Estimate the work.

The data is given in Table 4.2. Here, we have N = 6 points. The best way to address this problem

Table 4.2: Values for P and V in an expansion process.

P (bar) V (cm3)
20.0 454
16.1 540
12.2 668
9.9 780
6.0 1175
3.1 1980
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is via numerical integration. We could use a variety of methods like Simpson’s rule. Let us take what
amounts to the trapezoidal method. We will estimate

1W2 =

∫ 2

1

PdV ≃
N−1∑

i=1

P ave
i ∆Vi. (4.65)

Here, we are taking the area of trapezoid i as the product of the base,

∆Vi = Vi+1 − Vi, i = 1, . . . , N − 1, (4.66)

and the average pressure of trapezoid i,

P ave
i =

Pi + Pi+1

2
, i = 1, . . . , N − 1. (4.67)

We can summarize the calculations in Table 4.3. We see

Table 4.3: Tabular calculation of work.

i P V P ave
i ∆Vi P ave

i ∆Vi

bar cm3 bar cm3 bar cm3

1 20.0 454 18.05 86 1552.3
2 16.1 540 14.15 128 1811.20
3 12.2 668 11.05 112 1237.6
4 9.9 780 7.95 395 3140.25
5 6.0 1175 4.55 805 3662.75
6 3.1 1980 - - -

11404.1

1W2 =

∫ 2

1

PdV ≃
N−1∑

i=1

P ave
i ∆Vi = 11404.1 bar cm3. (4.68)

Let us convert to kJ :

(
11404.1 bar cm3

)
(

100 kPa

bar

)(
m3

(100 cm)3

)(
kJ

kPa m3

)

= 1.14 kJ. (4.69)

A sketch of the process is given in Fig. 4.10.

Example 4.12
We are given air in the spring-restrained piston-cylinder arrangement of Fig. 4.11 with P1 =

100 kPa, V1 = 0.002 m3, x1 = 0 m, no force on the piston at state 1, Patm = 100 kPa, and
A = 0.018 m2. The air expands until V2 = 0.003 m3. We know the spring is linear with Fspring = kx
with k = 16.2 kN/m. Find the final pressure of the air and the work done by the air on the piston.
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Figure 4.10: Sketch of P − V diagram.
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Figure 4.11: Sketch of piston-spring problem.

First note here that x is distance and not quality! The free body diagram is sketched in Fig. 4.11.
For the piston to be in mechanical equilibrium, we require

PA = PatmA + kx, (4.70)

P = Patm +
k

A
x. (4.71)

This gives us P (x). So at the initial state, where x1 = 0, we have P1 = Patm = 100 kPa. We also need
V (x):

V (x) = V1 + Ax. (4.72)

Let us eliminate x. From Eq. (4.72), we get

x =
V − V1

A
. (4.73)

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


4.2. WORK 95

Substitute Eq. (4.73) into Eq. (4.71) to get

P = Patm +
k

A

(
V − V1

A

)

, (4.74)

P = Patm +
k

A2
(V − V1). (4.75)

Note, when V = V1, we find P = Patm.
Now, to get the work, we take

1W2 =

∫ 2

1

PdV =

∫ V2

V1

(

Patm +
k

A2
(V − V1)

)

︸ ︷︷ ︸

=P

dV. (4.76)

We integrate this to find

1W2 =

[

PatmV +
k

2A2
(V − V1)

2

]V2

V1

, (4.77)

= Patm(V2 − V1) +
k

2A2



(V2 − V1)
2 − (V1 − V1)

2

︸ ︷︷ ︸

=0



 , (4.78)

= Patm(V2 − V1)
︸ ︷︷ ︸

work done on atmosphere

+
1

2
k

(
V2 − V1

A

)2

︸ ︷︷ ︸

work done on spring

(4.79)

The P − V diagram is sketched in Fig. 4.12. Let us calculate the numerical values.

P

VV
1

V
2

P
1
=P

atm

1

2

1

k/A2

1
W

2
 = ∫ PdV

1

2

Figure 4.12: Sketch of P − V diagram in piston-linear spring problem.

P2 = (100 kPa) +

(

16.2
kN

m

)
1

(0.018 m2)2
(
(0.003 m3) − (0.002 m3)

)
= 150 kPa. (4.80)

1W2 = (100 kPa)((0.003 m3) − (0.002 m3)) +
1

2

(

16.2
kN

m

)(
(0.003 m3) − (0.002 m3)

0.018 m2

)2

, (4.81)

= 0.125 kJ. (4.82)
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Example 4.13
A gas is compressed from state (P1, V1) to (P2, V2) via two different paths, A and B:

• Path A: a polytropic process in which PV n = C.

• Path B: an isobaric compression to (P1, V2) followed by an isochoric compression to (P2, V2).

Determine the work along both paths.

First consider Path A. On Path A, we have

PV n = C = P1V
n
1 = P2V

n
2 . (4.83)

So

P = C
1

V n
. (4.84)

Now, the work is

1W2 =

∫ 2

1

PdV = C

∫ V2

V1

dV

V n
= C

[
V 1−n

1 − n

]V2

V1

= C

(
V 1−n

2 − V 1−n
1

1 − n

)

. (4.85)

Now, using C = P1V
n
1 = P2V

n
2 , we get

1W2 =
P2V2 − P1V1

1 − n
. (4.86)

Now, for Path B, we denote the intermediate state as ∗ and quickly calculate

1W2 =

∫ 2

1

PdV =

∫
∗

1

PdV +

∫ 2

∗

PdV. (4.87)

Now, the ∗ state has V∗ = V2, so

1W2 =

∫ 2

1

PdV =

∫ V2

V1

PdV +

∫ V2

V2

PdV. (4.88)

Now, since the first part of the process is isobaric with P = P1, the first integral is easy. And the
second integral is zero, since the integral has no width. So we get

1W2 = P1

∫ V2

V1

dV = P1(V2 − V1) = P1V2 − P1V1. (4.89)

Note the work for the different paths is different!

P2V2 − P1V1

1 − n
6= P1V2 − P1V1. (4.90)

The two different paths are sketched in the P − V diagrams of Fig. 4.13. In both processes, A and B,
the work is negative. The gas is worked upon; it is thus doing negative work.

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


4.2. WORK 97

P

VV
2

V
1

P
1 1

2

1W2 = ∫  PdV
1

2

P
2

P

VV
2

V
1

P
1 1

2

1W2 = ∫ PdV
1

2

P
2

*

Figure 4.13: Sketch of P − V diagrams for compression on two different paths.

Example 4.14
A spherical balloon contains air at P1 = 150 kPa and is placed in a vacuum. It has an initial

diameter of D1 = 0.3 m. The balloon is heated until its diameter is D2 = 0.4 m. It is known that the
pressure in the balloon is proportional to its diameter. Calculate the work of expansion.

The process is diagrammed in Fig. 4.14. We are told the pressure is proportional to the diameter.

P

VV
1

V
2

P
1 1

2

1
W

2
 = ∫  PdV

1

2

P
2 P~V1/3

state 1

+ heat

state 2

P
1 P

2

vacuum

Figure 4.14: Diagrams for balloon heating problem

For a sphere we have

V =
4

3
π

(
D

2

)3

=
π

6
D3. (4.91)

So

D =

(
6V

π

)1/3

. (4.92)
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Since the volume is proportional to the cube of the diameter, the diameter is proportional to the cube
root of the volume. So the pressure is proportional to the cube root of the volume:

P = kD, (4.93)

P = k

(
6V

π

)1/3

. (4.94)

Here, we have defined the proportionality constant as k. The free body diagram is unusual and is
sketched in Fig. 4.15. Here, we give a sketch only for a sector of the balloon. The interior air pressure

surface
tension

surface
tension

air pressure

atmospheric pressure

net surface
tension
force

surface
net tension
force

net air 
pressure
force

Figure 4.15: Free body diagram for a sector of the spherical balloon surface.

exerts a net upwards force on the balloon surface. The lateral pressure forces cancel each other. The
net upwards force on this sector is balanced by a net downwards force exerted by the surface tension
force of the balloon material.

Let us calculate the work:

1W2 =

∫ 2

1

PdV, (4.95)

= k

(
6

π

)1/3 ∫ V2

V1

V 1/3dV, (4.96)

= k

(
6

π

)1/3(
3

4

)[

V 4/3
]V2

V1

, (4.97)

= k

(
6

π

)1/3(
3

4

)(

V
4/3
2 − V

4/3
1

)

, (4.98)

= k

(
6

π

)1/3(
3

4

)

V
4/3
1

((
V2

V1

)4/3

− 1

)

. (4.99)

Now, we know state 1, so this lets us determine k:

k = P1

(
6V1

π

)
−1/3

(4.100)
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Thus, the work is

1W2 = P1

(
6V1

π

)
−1/3(

6

π

)1/3(
3

4

)

V
4/3
1

((
V2

V1

)4/3

− 1

)

, (4.101)

= P1V1

(
3

4

)((
V2

V1

)4/3

− 1

)

, (4.102)

= P1

(

4

3
π

(
D1

2

)3
)(

3

4

)((
D3

2

D3
1

)4/3

− 1

)

, (4.103)

= P1π

(
D1

2

)3
((

D2

D1

)4

− 1

)

, (4.104)

= (150 kPa)π

(
0.4 m

2

)3
((

0.4 m

0.3 m

)4

− 1

)

, (4.105)

= 3.43612 kJ. (4.106)

4.2.3 Other forms of work

We note that there are other forces besides pressure forces, and those forces can also do
work. Consider

• a stretching wire stretched by tension force T through length change dL. The differ-
ential work is

δW = −TdL. (4.107)

• a surface with surface tension S. The differential work is

δW = −SdA. (4.108)

• a system with electrical work where E is the electrical field strength, q is the particle
charge, and x is the distance:

δW = −qEdx. (4.109)

In total, for materials which are more than simple compressible substances, we have

δW = −PdV − TdL− SdA− qEdx− . . . (4.110)

It can be shown that the more work modes we include, the more independent thermodynamic
variables are necessary to specify the state of the system.

Lastly we note that a gas expanding into a vacuum has 1W2 6=
∫ 2

1
PdV because it is

inherently a non-equilibrium process.
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4.3 Heat

Let us make the following definition:

• Heat: a form of energy transferred across the boundary of a system at a given tem-
perature to another system (or the surroundings) at a different temperature by virtue
of the temperature difference between the two.

We adopt the notion that bodies do not contain heat, but that heat only has relevance as a
type of energy that crosses system boundaries. Note that work is in a similar class; it is not
contained within a system, but can be identified when it crosses system boundaries. We will
make a distinction between heat and work energy transfers.

We also note that when two bodies are at the same temperature, there can be no heat
transferred between the two bodies. The subject of heat transfer considers the details of the
heat transfer process. There are three fundamental classes of heat transfer:

• heat diffusion, also called conduction. Physically this is due to local effects. Bacon is
fried via conduction effects as a culinary example. This is characterized by Fourier’s
law1

q = −k∇T, (4.111)

where q is the heat flux vector with units J/s/m2 = W/m2, k is the thermal conductivity
with units J/s/m/K = W/m/K, and ∇T is the vector representing the gradient of
temperature. Recall that ∇T is a vector pointing in the direction in which T rises
most rapidly. Because of the minus sign, we see then that the thermal energy flows in
the direction of most rapid temperature decrease. This law was developed by Joseph
Fourier, who built an elegant and correct theory of a special case of non-equilibrium
thermodynamics before the laws of equilibrium thermodynamics were formulated, let
alone fully understood. Fourier is depicted in Fig. 4.16.

In one dimension, we get

q = −k
dT

dx
. (4.112)

If we multiply by the local cross-sectional area, we find Q̇ = qA, and

Q̇ = −kA
dT

dx
∼ −kA

Thot − Tcold

L
. (4.113)

Here, Q̇ has units J/s or W (Watts).

1J. B. J. Fourier, 1822, Théorie Analytique de la Chaleur, Chez Firmin Didot, Paris.
1878 English translation.
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Figure 4.16: Jean Baptiste Joseph Fourier (1768-1830), French physicist and math-
ematician who developed a correct theory of heat conduction. Image from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Fourier.html.

• convection. This is actually a version of conduction, albeit enhanced by fluid flow. For
some systems, convective effects are well modeled by Newton’s law of cooling23 :

q = h(Thot − Tcold), (4.114)

Q̇ = qA = hA(Thot − Tcold). (4.115)

Here, h is a constant with units W/m2/K.

• thermal radiation. Physically this is due to remote effects. The earth is heated by
the sun via radiation effects, not conductive energy diffusion. For some systems, the
radiative heat transfer rate is well modeled by

q = σ(T 4
hot − T 4

cold), (4.116)

Q̇ = qA = σA(T 4
hot − T 4

cold). (4.117)

Here, σ is the Stefan-Boltzmann constant, σ = 5.67 × 10−8 W/m2/K4.

We adopt the traditional engineering sign convention for heat:

• + heat enters the system,

• - heat leaves the system.

2Anonymous, 1701, “Scala graduum caloris,” Philosophical Transactions, 270: 824-829; often attributed
to I. Newton.

3J. A. Ruffner, 1963, “Reinterpretation of the genius of Newton’s ‘law of cooling,’ ” Archive for History

of Exact Sciences, 2(2):138-152.
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The sign convention again is motivated by nineteenth century steam engines. Heat had to be
added into a system to get work out of the system. Since engineers were and are concerned
with this problem, this convention is taken.

We define a special kind of process in which Q = 0 as

• Adiabatic: a type of process for which there is no heat transfer.

The word “adiabatic” was first used by Rankine.4 It is from the Greek
,
α διάβατoς: not

to be passed through; in detail,
,
α (not) + διά (through) + βατ óς (passable). An image of

Rankine’s text containing the first use of the word is shown in Fig. 4.17.

Figure 4.17: Image of the first modern use of the word “adiabatic” from Rankine’s 1859 text.

As is work, heat transfer is a path function characterized by inexact differentials. We
take

1Q2 =

∫ 2

1

δQ, (4.118)

Q̇ =
δQ

dt
, (4.119)

q =
Q

m
. (4.120)

Here, q is the specific thermal energy transfer. It has units J/kg. Note q 6= q, where q is the
heat flux with units W/m2. In this thermodynamics course, we will mainly be concerned
with q. In a heat transfer course, q is more important.

4W. J. M. Rankine, 1859, A Manual of the Steam Engine and Other Prime Movers, Griffin, London,
p. 302.
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Now, 1W2 =
∫ 2

1
PdV . We will see in future chapters that there is an equivalent for heat

in that 1Q2 =
∫ 2

1
TdS, where S is the entropy, to be defined later.

We finish with some notes of comparison:

• Q and W as well as q and w are affiliated with transient phenomena; both cross
boundaries when the system changes state.

• Q and W as well as q and w only exist at system boundaries.

• Q and W as well as q and w are both path-dependent, have inexact differentials, and
are not properties of the system.
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Chapter 5

The first law of thermodynamics

Read BS, Chapter 5

Recall in the example problem of Chapter 1, p. 23, we saw that mechanical energy was
conserved for a mass falling under the sole influence of a gravitational force. We took the
mechanical energy to be the sum of the kinetic and potential energy of the system. But
when we included a drag force, we found that mechanical energy was no longer conserved,
but in fact dissipated with time. There was considerable discussion in the 17th and 18th
centuries which pitted advocates of a so-called vis viva (“force of life,” a type of kinetic
energy) against those who argued for the primacy of momentum conservation. Leibniz led
the vis viva camp, and Newton and Descartes led the momentum camp. Both ultimately
are equivalent formulations when analyzed carefully.

In this chapter, we will expand our notion of energy and in so doing recover a new
conservation principle. This new principle, not known to Newton, is the first law of thermo-
dynamics. It takes many equivalent forms, and relies at a minimum on the introduction of
a new type of energy, thermal energy, which is necessary to conserve the total energy.

Thermal energy is actually a macro-scale representation of micro-scale mechanical energy.
Recall that at the micro-scale, molecules are in random motion. This random motion has
kinetic energy associated with it. But we cannot hope to keep track of it all for each
individual particle. So we surrender knowledge of the micro-scale motions, and allow the
temperature to be a measure of the average micro-scale kinetic energy. We can also take the
historical approach and develop the principle of energy conservation without further appeal
to micro-scale arguments. Let us begin that approach here.

5.1 Representations of the first law

There are a variety of ways to represent the first law of thermodynamics, also known as
the principle of conservation of energy. Some of them are not obvious, but have withstood
the scrutiny of detailed experiment. Perhaps the simplest, but also the most obtuse, is the
following.
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5.1.1 Cycle

• First law of thermodynamics: During any cycle, the cyclic integral of heat added
to a system is proportional to the cyclic integral of work done by the system.

If we denote a cyclic integral by
∮

, the mathematical representation of this law is

J

∮

δQ =

∮

δW, (Q in cal, W in J). (5.1)

Here J is a proportionality constant, sometimes known as the mechanical equivalent of heat.
Now, during the development of thermodynamics, Q was measured in cal, where 1 cal rep-
resented the energy necessary to raise 1 g of water 1 ◦C, and W was measured in J which
represented the work done in moving a 1 kg mass against a force of 1 N .

In the now-discredited caloric theory, heat was thought to be a fluid and not explicitly
related to work. This theory began to lose credibility with the experiments conducted in
Bavaria by the colorful American scientist Sir Benjamin Thompson1 (Count Rumford). By
doing work in boring a cannon immersed in water and boiling the water, Thompson was
able to demonstrate that the work of boring was converted into heat. Thompson’s image is
shown in Fig. 5.1a. Thompson’s etching of the cannon used in his experiment is reproduced
in Fig. 5.1b.

In the 1840s there was considerable effort to relate mechanical and thermal energy and
thus measure J. There is some controversy over who first quantified this value. By many
accounts Julius Robert von Mayer achieved the first success in 1842,2 though his exposi-
tion often lacked the mathematical and experimental support that many scientists demand.
Mayer is pictured in Fig. 5.2. Contemporaneously, and with more publicity, Joule spent
considerable effort in carefully measuring J.3,4 He estimated J = 4.41 J/cal, which has since
been corrected to

J = 4.1860
J

cal
. (5.2)

We give a portrait of Joule in Fig. 5.3a. A nineteenth century etching of Joule’s device is
given in Fig. 5.3b. A modern full-scale replica of Joule’s apparatus designed and constructed
by Mr. Leon Hluchota and Prof. Patrick F. Dunn, based upon Joule’s original experimental
display in the Science Museum, London, and in use in undergraduate laboratories at the
University of Notre Dame, is shown in Fig. 5.3c.

1B. Thompson (Count Rumford), 1798, “An inquiry concerning the source of the heat which is excited
by friction,” Philosophical Transactions of the Royal Society of London, 88: 80-102.

2J. R. Mayer, 1842, “Bemerkungen über die Kräfte der unbelebten Natur,” Annalen der Chemie und

Pharmacie, 42: 233-240.
3J. P. Joule, 1845, “On the existence of an equivalent relation between heat and the ordinary forms of

mechanical power,” The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science,
Ser. 3, 27: 205-207.

4J. P. Joule, 1850, “On the mechanical equivalent of heat,” Philosophical Transactions of the Royal So-

ciety of London, 140: 61-82.
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a) b)

Figure 5.1: a) Sir Benjamin Thompson (Count Rumford) (1753-1814) in a 1783 portrait
by Thomas Gainsborough. American scientist whose cannon-boring experiments discredited
the caloric theory. Image from http://en.wikipedia.org/wiki/Benjamin Thompson, b)
Image of cannon from B. Thompson (Count Rumford), 1798, “An inquiry concerning the
source of the heat which is excited by friction,” Philosophical Transactions of the Royal
Society of London, 88: 80-102.

Figure 5.2: Julius Robert von Mayer (1814-1878). German physician and physi-
cist who in 1842 said “Energy can be neither created nor destroyed.” Image from
http://en.wikipedia.org/wiki/Julius Robert von Mayer.
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a)                            b)                                         c)

Figure 5.3: a) James Prescott Joule (1818-1889). English experimen-
talist who demonstrated the mechanical equivalent of heat. Image from
http://en.wikipedia.org/wiki/James Prescott Joule, b) Sketch of Joule’s origi-
nal apparatus, from Harper’s New Monthly Magazine, No. 231, August 1869, c) Operational
full-scale replication of Joule’s experiment to measure the mechanical equivalent of heat at
the University of Notre Dame.

While Joule performed the key experiments, the critical acceptance of the first law is
attributed by many to the work of Hermann von Helmholtz,5 pictured in Fig. 5.4. However,
Truesdell notes that in this work Helmholtz restricts his conservation principle to kinetic
and potential energies.6 The classical theoretical framework for the first law and more was
firmly solidified by Rudolf Clausius.7 Clausius is depicted in Fig. 5.5.

Now, in this class, we will not bother much with the mechanical equivalent of heat, and
simply insist that Q be measured in units of work. When Q has units of J , then J = 1, and
we recover our preferred form of the first law:

∮

δQ =

∮

δW, (Q in J , W in J). (5.3)

5H. Helmholtz, 1847, Über die Erhaltung der Kraft, Reimer, Berlin.
6C. Truesdell, 1980, The Tragicomical History of Thermodynamics 1822-1854, Springer, New York, p. 161.
7R. Clausius, 1850, “Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die

Wärmelehre selbst ableiten lassen,” Annalen der Physik und Chemie 79: 368-397.
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Figure 5.4: Hermann Ludwig Ferdinand von Helmholtz (1821-1894). German physician
and physicist who impacted nearly all of nineteenth century mechanics. Image from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Helmholtz.html.

Figure 5.5: Rudolf Julius Emmanuel Clausius (1822-1888). German theoreti-
cian who systematized classical thermodynamics into a science. Image from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Clausius.html.
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5.1.2 Process

We arrive at an alternate representation of the first law by the following analysis. Consider
the sketch of Fig. 5.6. Now, consider two cycles, each passing through points 1 and 2, albeit

P

V

1

2
A

B

C

Figure 5.6: Sketch of P − V diagram for various combinations of processes forming cyclic
integrals.

via different paths:

• Cycle I: 1 to 2 on Path A followed by 2 to 1 on Path B,

• Cycle II: 1 to 2 on Path A followed by 2 to 1 on Path C.

The only difference between Cycles I and II is they take different return paths. Now, write
the first law

∮
δQ =

∮
δW for Cycle I:

∫ 2

1

δQA +

∫ 1

2

δQB =

∫ 2

1

δWA +

∫ 1

2

δWB, Cycle I. (5.4)

For Cycle II, we have similarly

∫ 2

1

δQA +

∫ 1

2

δQC =

∫ 2

1

δWA +

∫ 1

2

δWC , Cycle II. (5.5)

Now, subtract Eq. (5.5) from Eq. (5.4) to get

∫ 1

2

δQB −
∫ 1

2

δQC =

∫ 1

2

δWB −
∫ 1

2

δWC . (5.6)

Rearrange Eq. (5.6) to get

∫ 1

2

(δQ− δW )B =

∫ 1

2

(δQ− δW )C . (5.7)
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Now, B and C are arbitrary paths; Eq. (5.7) asserts that the integral of δQ− δW from 2 to
1 is path-independent. This is in spite of the fact that both W and, as we will see later, Q
are path-dependent quantities. Therefore, we can deduce that this defines

• energy: a thermodynamic property which is a theoretical construct suggested by the
first law of thermodynamics as something to account for the difference between heat
transfer and work in any process between the same start and end states.

Energy is a new extensive property of the system denoted by E. While we like to think we
have intuition for what constitutes energy, it really is an elusive quantity. Viewed at another
way, the Newtonian mechanical energy is easily visualized in terms of kinetic and potential
energy, but it is not always conserved! Our new energy includes thermal energy, which we
think we can easily feel, so we still have a good intuition for it. So we have generalized
energy so that it is always conserved, at the expense of losing the ability to easily visualize
it.

Recall that properties depend only on the state and not the path taken to arrive at the
state. Let us then take the following definition for the differential of E:

dE = δQ− δW. (5.8)

If we integrate from 1 to 2, we get

∫ 2

1

dE =

∫ 2

1

δQ−
∫ 2

1

δW, (5.9)

yielding
E2 − E1 = 1Q2 − 1W2. (5.10)

Equation (5.10) is the alternate representation of the

• First law of thermodynamics: For a system undergoing a process, the change in
energy is equal to the heat added to the system minus the work done by the system.

Now, we consider E to represent the total energy of the system. It has units of J . It
includes energy which is

• potential,

• kinetic,

• thermal,

• chemical,

• electrical,

• magnetic,
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• etc.

We will find it useful to lump all of the types of energy which are not potential or kinetic
into a single term U , which we call

• internal energy: that portion of total energy E which is not kinetic or potential
energy. It includes thermal, chemical, electric, magnetic, and other forms of energy.

We take U to have units of J . We call the kinetic energy KE and the potential energy PE.
So we take

E
︸︷︷︸

total energy

= U
︸︷︷︸

internal energy

+ KE
︸︷︷︸

kinetic energy

+ PE
︸︷︷︸

potential energy

. (5.11)

In this course we shall mainly be concerned with changes of U which are associated with
changes of the thermal energy of the system. A useful way to think of thermal energy is

• Thermal energy: kinetic energy associated with random motions of molecules at
the microscale.

We can only observe this microscale kinetic energy with great difficulty. We usually have no
hope of having any detailed knowledge of it, and so only consider it in the average. In fact,
the temperature is a measure of the average microscale kinetic energy. We distinguish the
thermal energy from KE, which we take to exist at the observable macroscale.

Each form of energy is an extensive property of the system. Taking differentials of
Eq. (5.11), we get

dE = dU + d(KE) + d(PE). (5.12)

So the first law, dE = δQ− δW , can be written as

dU + d(KE) + d(PE) = δQ− δW. (5.13)

In the next two examples, let us consider two special cases of Eq. (5.13), which are familiar
from Newtonian mechanics.

Example 5.1
Consider a system of mass m for which dU = 0, d(PE) = 0, and δQ = 0. Physically, this

might correspond to a system with constant internal energy, held at constant height, and with no heat
exchanges with its surroundings. For this system, the first law gives a balance between changes in
kinetic energy and work. And let us assume that the system is being accelerated by a horizontal force
F as it acts through a distance in the x direction. Assume there is no friction force. We give a sketch
in Fig. 5.7.

The first law tells us
d(KE) = −δW. (5.14)

Newtonian mechanics tells us
δW = −Fdx. (5.15)
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mF x

Figure 5.7: Sketch of system being accelerated by a force.

The sign is negative because the system is being worked upon. It is not doing work. So we get

d(KE) = Fdx. (5.16)

Newton’s second axiom tells us F = m(d2x/dt2). And since dx/dt = v, we can say F = m(dv/dt), so

d(KE) = m
dv

dt
dx. (5.17)

Note we use v for velocity and distinguish that from v, the specific volume.
Let us divide both sides by dt to get

d(KE)

dt
= m

dv

dt

dx

dt
︸︷︷︸

=v

, (5.18)

d(KE)

dt
= m

dv

dt
v, (5.19)

= mv
dv

dt
, (5.20)

= m
d

dt

(
v2

2

)

, (5.21)

=
d

dt

(

m
v2

2

)

, (5.22)

KE2 − KE1 =
1

2
mv

2
2 −

1

2
mv

2
1. (5.23)

If we take v1 = 0 and define the KE1 as zero at this point, and take 2 to just be a general state, we
get the commonly used

KE =
1

2
mv

2. (5.24)

Note that
d(KE) = mv dv. (5.25)

Example 5.2
Consider a system of mass m for which dU = 0, d(KE) = 0, and δQ = 0. Physically, this might

correspond to a system with constant internal energy, held at constant upward velocity, with no heat
exchanges with its surroundings. For this system, the first law gives a balance between changes in
potential energy and work. And let us assume that the system is being raised at constant velocity v

through distance z against a gravitational force, where the gravitational acceleration g is constant. We
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m z

g

F

mg

v = constant

Figure 5.8: Sketch of system being raised at constant velocity v in a gravitational potential
field, where g is constant.

give a sketch in Fig. 5.8. Newton’s second axiom says that m(d2z/dt2) = F −mg. Now, we are told the
velocity is constant, so the acceleration here is zero, so Newton’s second axiom gives a force balance,
0 = F − mg, thus

F = mg. (5.26)

Now, the first law tells us, when dU = 0, d(KE) = 0, and δQ = 0, that

d(PE) = −δW. (5.27)

Now
δW = −F dz. (5.28)

We have a negative sign since the system is having work done on it by F . Thus

d(PE) = F dz. (5.29)

Since F = mg, we get
d(PE) = mg dz. (5.30)

Integrating, we find
PE2 − PE1 = mg(z2 − z1). (5.31)

If we take PE1 to be zero at z1 = 0, and consider a general z, we get the commonly used

PE = mgz. (5.32)

Note that
d(PE) = mg dz. (5.33)

Now, since dE = dU+d(KE)+d(PE) from Eq. (5.11), we can substitute from Eqs. (5.25,
5.33) to get

dE = dU +mv dv +mg dz. (5.34)

Integrate Eq. (5.34) from state 1 to state 2 to get

E2 − E1 = U2 − U1 +
1

2
m(v2

2 − v2
1) +mg(z2 − z1). (5.35)
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Now, substitute Eq. (5.35) into Eq. (5.10) to obtain

U2 − U1 +
1

2
m(v2

2 − v2
1) +mg(z2 − z1)

︸ ︷︷ ︸

=E2−E1

= 1Q2 − 1W2. (5.36)

Now, if m is a constant, as it will be for a system, we can divide both sides by m to get

u2 − u1 +
1

2

(
v2
2 − v2

1

)
+ g(z2 − z1) = 1q2 − 1w2. (5.37)

Here, we have defined the new intensive variables

• u ≡ U/m, the internal energy per unit mass, also known as the specific internal energy.
It has units kJ/kg. It is an intensive thermodynamic property.

• 1q2 ≡ 1Q2/m, the heat transfer per unit mass. It has units kJ/kg and is not a thermo-
dynamic property.

• 1w2 ≡ 1W2/m, the work per unit mass. It has units kJ/kg and is not a thermodynamic
property.

5.2 Specific internal energy for general materials

Just as P , v, and T are thermodynamic properties, so is u. In fact, it can be considered to
be one of the necessary two properties necessary to define a third. So, for example, if we are
given P and u, we could find v = v(P, u) or T = T (P, u).

More importantly, let us consider the most general form for u; a form where u is a function
of at most two independent thermodynamic variables, say T and v,

u = u(T, v). (5.38)

For materials such as water, u(T, v) is tabulated. Note that the tables must presume a
reference value for energy so as to give it an absolute nature. However, as long as we confine
our thermodynamics to a single substance, differences in energy will be the only quantities
that have relevance in determining physical quantities of interest. That is to say, the reference
state will not be important for single material problems. This is not true for multiple material
problems such as when chemical reactions are present.

Similar to vf and vg, the tables have

• uf : the specific internal energy of a saturated liquid, and

• ug: the specific internal energy of a saturated vapor.
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Also similar to v, we have
ufg = ug − uf . (5.39)

We also get a similar analysis for quality x as for volume. For a two-phase mixture, the total
energy of the mixture is the sum of the energies of the components:

U = Uliq + Uvap, (5.40)

mu = mliquf +mvapug, (5.41)

u =
mliq

m
uf +

mvap

m
ug, (5.42)

u =
m−mvap

m
uf +

mvap

m
ug, (5.43)

u = (1 − x)uf + xug, (5.44)

u = uf + x(ug − uf ), (5.45)

u = uf + xufg. (5.46)

We can solve for x by inverting Eq. (5.46) to get

x =
u− uf

ufg

. (5.47)

Let us consider the heat transfer for an isochoric process in which we also have ∆KE =
∆PE = 0. Because the process is isochoric 1W2 =

∫ 2

1
PdV = 0. So the first law, Eq. (5.36),

reduces to

U2 − U1 = 1Q2, (5.48)

1Q2 = U2 − U1 = ∆U. (5.49)

The change in U gives the heat transfer for isochoric processes.

5.3 Specific enthalpy for general materials

Let us define a new thermodynamic property, enthalpy, in terms of known thermodynamic
properties. The extensive total enthalpy H, and intensive specific enthalpy h are defined as

H ≡ U + PV, (5.50)

h =
H

m
=
U

m
+ P

V

m
. (5.51)

Thus,
h = u+ Pv. (5.52)

Its most important feature is its utility in control volume analysis which will be fully discussed
in Sec. 6.1.2.2.4; its underlying mathematical rationale will be given in Sec. 11.3.
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The first written use of the word “enthalpy” is given by Porter,8 who notes the term was
introduced by the Dutch physicist and Nobel laureate Heike Kamerlingh Onnes (1853-1926).
The word is from the Greek

,
ǫνθάλπǫιν, meaning “to warm in.” We give an image of Porter’s

citation of Onnes’ usage in Fig. 5.9.

Figure 5.9: Image of first known printed use of the word “enthalpy” from Porter, 1922.

Eq. (5.52) is valid for general materials. It will be seen to be useful for many problems,
though in principle, we could get by with u alone just as well. Now, since u, P , and v are
thermodynamic properties, so then is h:

h = h(T, P ). (5.53)

Sometimes tables give h and we need to find u; thus,

u = h− Pv. (5.54)

Similar to u, we can easily show

h = hf + xhfg, x =
h− hf

hfg

. (5.55)

The enthalpy is especially valuable for analyzing isobaric processes. Consider a special
isobaric process in which P1 = P2 = P , ∆KE = ∆PE = 0. Then the first law, Eq. (5.36),
reduces to

U2 − U1 = 1Q2 − 1W2. (5.56)

Since 1W2 =
∫ 2

1
PdV = P (V2 − V1) for the isobaric process, the first law reduces to

U2 − U1 = 1Q2 − P (V2 − V1), (5.57)

U2 − U1 = 1Q2 − P2V2 + P1V1, (5.58)

1Q2 = (U2 + P2V2)
︸ ︷︷ ︸

=H2

− (U1 + P1V1)
︸ ︷︷ ︸

=H1

, (5.59)

1Q2 = H2 −H1 = ∆H. (5.60)

8A. W. Porter, 1922, “The generation and utilisation of cold,” Transactions of the Faraday Society, 18:
139-143.
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The change in H gives the heat transfer for isobaric processes.

5.4 Specific heat capacity

We loosely define the

• Specific heat capacity: the amount of heat needed to raise the temperature of a
unit mass of material by one degree.

The word is a relic of the discredited caloric theory of heat in which heat was thought to be a
fluid which could somehow fill its container. We often simply call it the “specific heat.” We
give the specific heat the symbol c. It has units kJ/kg/K. Its loose mathematical definition
is

c ≃ 1

m

δQ

δT
. (5.61)

We also define the extensive heat capacity as C = δQ/δT , where C has units kJ/K. We
will not use C explicitly from here on.

It turns out that since δQ is path-dependent, so is c. So let us specify two common paths:

• specific heat at constant volume: cv. We determine this on a path which is
isochoric. On such a path, the first law holds that δQ = dU , since δW = 0. So we
take

cv =
1

m

∂U

∂T

∣
∣
∣
∣
v

. (5.62)

Since u = U/m, and we take m to be constant, we get

cv =
∂u

∂T

∣
∣
∣
∣
v

. (5.63)

Now, for general materials u = u(T, v), so we see that

cv = cv(T, v), (5.64)

that is to say, cv(T, v) is itself a thermodynamic property for general materials. It can
vary with two independent variables. We shall see later for some materials it varies
only with T , and for other materials, it is actually a constant.

• specific heat at constant pressure: cP . We determine this on a path which is
isobaric. On such a path, the first law holds that δQ = dH. So we take

cP =
1

m

∂H

∂T

∣
∣
∣
∣
P

. (5.65)
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Since h = H/m, and we take m to be constant, we get

cP =
∂h

∂T

∣
∣
∣
∣
P

. (5.66)

Now, for general materials h = h(T, P ), so we see that

cP = cP (T, P ), (5.67)

that is to say, cP (T, P ) is itself a thermodynamic property for general materials. It can
vary with two independent variables. We shall see later for some materials it varies
only with T , and for other materials, it is actually a constant.

• specific heat for incompressible materials: c. Most liquids and solids under
moderate to low pressure conditions (P < 1 GPa) are well modeled as incompressible.
Thus, in any heating process, there will be little if any associated work of compression.
For such a material, there is no need to distinguish cv and cP , so we simply use c for
the specific heat. We thus take

c(T ) =
du

dT
. (5.68)

Often, especially if the temperature changes are small, we can ignore the temperature
variation of c for incompressible materials and simply take

c =
du

dT
. (5.69)

More rigorous mathematical discussion of specific heat capacity will be given in Sec. 11.4.

5.5 Caloric equations of state

Recall that thermal equations of state are given by P = P (T, v). We also have equations of
state for the energy. We call such a relation a

• Caloric equation of state: an equation which gives the energy as a function of
two independent state variables. An example is the general form:

u = u(T, v). (5.70)

In a later chapter we shall see there are a few restrictions on the form u(T, v) can take. In a
complicated fashion, it is not entirely independent of the thermal state equation P = P (T, v).

One of the more confusing notions to beginning students of thermodynamics is which
forms of energy and specific heat are appropriate for which materials. Here, we discuss them
in more detail, moving from simple to complex.
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5.5.1 Ideal Gases

For ideal gases, we have Pv = RT . Ideal gases can be either calorically perfect or calorically
imperfect. For all ideal gases, be they calorically perfect or calorically imperfect, it will be
proved in Sec. 11.4 that the caloric equation of state takes on a simpler form:

u = u(T ). (5.71)

Now, we can specify h for an ideal gas. From Eq. (5.52), h = u + Pv, and the ideal gas
law, Pv = RT , we get

h = u(T ) +RT. (5.72)

Thus, the enthalpy of an ideal gas is a function of T only:

h = h(T ). (5.73)

Now, for the specific heats of an ideal gas, Eq. (5.63) gives

cv(T, v) =
∂u

∂T

∣
∣
∣
∣
v

=
d

dT
(u(T )) = cv(T ). (5.74)

Separating variables in Eq. (5.74), we can also say for an ideal gas

du = cv(T )dT. (5.75)

For cP , Eq. (5.66) gives

cP (T, P ) =
∂h

∂T

∣
∣
∣
∣
P

=
d

dT
(h(T )) = cP (T ). (5.76)

Separating variables in Eq. (5.76), we get then

dh = cP (T )dT. (5.77)

Now, we can differentiate Eq. (5.72) to get

dh = du+RdT. (5.78)

Now, substitute Eqs. (5.75,5.77) into Eq. (5.78) to get

cP (T )dT = cv(T )dT +RdT, (5.79)

cP (T ) = cv(T ) +R. (5.80)

cP (T ) − cv(T ) = R. (5.81)
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This is sometimes known as Mayer’s relation. Last, let us define the ratio of specific heats,
k, as

k =
cP
cv
. (5.82)

For general materials k = k(T, v). For an ideal gas, we have

k =
cv(T ) +R

cv(T )
= 1 +

R

cv(T )
. (5.83)

So k = k(T ) for an ideal gas. We will see that k(T ) is often nearly constant. Since R > 0
and cv(T ) > 0, we must have k > 1 for an ideal gas. In a later chapter, it will later be seen
this result extends to general gases.

5.5.1.1 Calorically perfect

A calorically perfect ideal gas (CPIG) has constant specific heat. Examples of CPIGs include
noble and monatomic gases (e.g. He, Ne, Ar, O, H, N) over a wide range of temperatures
and pressures, and more complex molecules (e.g. O2, N2, CO2, CH4) over narrower bands
of temperatures and pressures.

For the CPIG, cv is a constant, so

∂u

∂T

∣
∣
∣
∣
v

= cv. (5.84)

But for the ideal gas, u = u(T ), so the partial derivatives become total derivatives and

du

dT
= cv. (5.85)

Integrating, we get the simple caloric equation of state:

u(T ) = uo + cv(T − To), (5.86)

valid for CPIG.

Note that

u = uo + cvT − cvTo, (5.87)

u+ Pv
︸ ︷︷ ︸

=h

= uo + cvT − cvTo + Pv
︸︷︷︸

=RT

, (5.88)

h = uo + cvT − cvTo +RT, (5.89)

h = uo +RTo
︸ ︷︷ ︸

=ho

+ (cv +R)
︸ ︷︷ ︸

=cP

T − (cvTo +RTo)
︸ ︷︷ ︸

=cP To

, (5.90)

h = ho + cPT − cPTo. (5.91)
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So

h(T ) = ho + cP (T − To), (5.92)

valid for CPIG.

For a CPIG,

k =
cP
cv

=
cP
cv

= constant. (5.93)

Example 5.3
Given Ar at P1 = 140 kPa, T1 = 10 ◦C, V1 = 200 ℓ which undergoes a polytropic expansion to

P2 = 700 kPa, T2 = 180 ◦C, find 1Q2

To calculate 1Q2, we will need to invoke the first law: U2−U1 = 1Q2− 1W2. Now, for the CPIG, we
will be able to calculate ∆U from knowledge of ∆T , and we can easily compute 1W2 from its definition

as
∫ 2

1
PdV . This will let us calculate the heat transfer.

Ar is a noble gas. Because it is noble, it is well modeled as a CPIG over a wide range of temperatures.
From Table A.5 in BS, we find the data

M = 39.948
kg

kmole
, R = 0.2081

kJ

kg K
, cv = 0.312

kJ

kg K
. (5.94)

Note that
cv

R
=

0.312 kJ
kg K

0.2081 kJ
kg K

= 1.49928 ∼ 3

2
. (5.95)

This result will be seen to be valid for all monatomic gases, such as He, Ne, H, O, etc.
Also note that

MR =

(

39.948
kg

kmole

)(

0.2081
kJ

kg K

)

= 8.31318
kJ

kmole K
= R. (5.96)

Now, we need to have absolute temperatures. Adding 273.15 to both temperatures, we get

T1 = 283.15 K, T2 = 453.15 K. (5.97)

Also

V1 = (200 ℓ)
0.001 m3

ℓ
= 0.2 m3. (5.98)

Let us compute the mass m. From one incarnation of the ideal gas law, we have

m =
P1V1

RT1
=

(140 kPa)(0.2 m3)
(

0.2081 kJ
kg K

)

(283.15 K)
= 0.475192 kg. (5.99)

Now, at state 2, we have

P2V2 = mRT2, (5.100)

V2 =
mRT2

P2
=

(0.475192 kg)
(

0.2081 kJ
kg K

)

(453.15 K)

700 kPa
= 0.0640155 m3. (5.101)
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Now, for the polytropic process, we have

P1V
n
1 = P2V

n
2 , (5.102)

P1

P2
=

(
V2

V1

)n

, (5.103)

ln

(
P1

P2

)

= ln

(
V2

V1

)n

, (5.104)

ln

(
P1

P2

)

= n ln

(
V2

V1

)

, (5.105)

n =
ln
(

P1

P2

)

ln
(

V2

V1

) , (5.106)

=
ln
(

140 kPa
700 kPa

)

ln
(

0.0640155 m3

0.2 m3

) = 1.41279. (5.107)

We have calculated the work for a polytropic process before. Repeating, we find

1W2 =

∫ 2

1

PdV = P1V
n
1

∫ 2

1

dV

V n
= P1V

n
1

[
V 1−n

1 − n

]V2

V1

=
P1V

n
1

1 − n
(V 1−n

2 − V 1−n
1 ). (5.108)

But since P1V
n
1 = P2V

n
2 , the work reduces to simply

1W2 =
P2V2 − P1V1

1 − n
=

(700 kPa)(0.0640155 m3) − (140 kPa)(0.2 m3)

1 − 1.41279
= −40.7251 kJ. (5.109)

The work is negative, so the gas was worked upon in compression. Now, the first law tells us

U2 − U1 = 1Q2 − 1W2, (5.110)

1Q2 = U2 − U1 + 1W2, (5.111)

= mcv(T2 − T1) + 1W2, (5.112)

= (0.475192 kg)

(

0.312
kJ

kg K

)

((453.15 K) − (283.15 K)) + (−40.7251 kJ) , (5.113)

= −15.5209 kJ. (5.114)

The heat transfer is negative, so heat was lost from the system, even though the temperature went up.
The reason the temperature went up is that the internal energy was raised more by work than it lost
by heat transfer. A plot of this process is given in Fig. 5.10.

5.5.1.2 Calorically imperfect

For calorically imperfect ideal gases (CIIG), e.g. O2 at moderate to high temperatures
(300 K < T < 6000 K):

• u = u(T ),

• cv = cv(T ),
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Figure 5.10: Plot of polytropic compression of Ar.

• h = h(T ),

• cP = cP (T ).

For such temperatures, our assumption of constant cv is not as valid. But for ideal gases,
we can still take cv = cv(T ), so

du

dT
= cv(T ). (5.115)

We can integrate via separation of variables to get

du = cv(T )dT, (5.116)
∫ 2

1

du =

∫ 2

1

cv(T )dT, (5.117)

u2 − u1 =

∫ 2

1

cv(T )dT. (5.118)

We can interpret the difference in u as the area under the curve in a plot of cv(T ) versus T
as plotted in Fig. 5.11. More generally, we could say

u(T ) = uo +

∫ T

To

cv(T̂ )dT̂ , (5.119)

valid for all ideal gases.

Here, T̂ is a dummy variable of integration. Similarly, we could show

h2 − h1 =

∫ T2

T1

cP (T )dT, (5.120)
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Figure 5.11: Relation between u2 −u1 and area under curve in a plot of cv(T ) for calorically
imperfect ideal gas.

and more generally,

h(T ) = ho +

∫ T

To

cP (T̂ )dT̂ , (5.121)

valid for all ideal gases.

Now, cv, cP and R all have units of kJ/kg/K. Let us consider the ratio

cv
R

=
cvM

RM
=

cv

M
R
M

=
cv

R
. (5.122)

The ratio is now in terms of molar specific properties with cv and R having units of
kJ/kmole/K. Note that R is the universal gas constant. A plot of cv/R versus T for a
variety of simple molecules is given in Fig. 5.12. We note some remarkable facts:

• For monatomic gases, such as Ar, O, and H, cv/R = 3/2 for a wide variety of temper-
atures.

• For diatomic gases, such as O2 and H2 for T < 600 K, cv/R ∼ 5/2, and for T > 600 K,
cv/R → 7/2

• For larger molecules such as CO2 or H2O, cv/R is larger still.

What we are seeing actually reflects some fundamental physics. We first note that sta-
tistical thermodynamics proves

• Temperature is a measure of the average translational kinetic energy of a set of molecules.

Now, we consider some features of Fig. 5.12.
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Figure 5.12: cv/R as a function of T for several molecules.

• Monatomic molecules, such as Ar, O or H have three fundamental modes of kinetic
energy: translation in the x, y, and z directions. Each mode contributes 1/2 to cv/R,
which sums to 3/2.

• For diatomic molecules, we summarize the behavior in the sketch given in Fig. 5.13.

– At very low temperatures, diatomic molecules, such asH2 orO2, act like monatomic
molecules.

– At low temperatures, diatomic molecules begin to rotate, and the rotational en-
ergy becomes an important component. In fact when energy is added to diatomic
molecules, some is partitioned to translation and some is partitioned to rota-
tion. There are two non-trivial axes of rotation, each adding 1/2 to cv/R, giving
cv/R ∼ 5/2.

– At higher temperatures, diatomic molecules begin to vibrate as well, and this
energy becomes an important component. There are two vibrational modes, one
for kinetic energy and one for potential energy. Each adds another 1/2 to cv/R,
giving cv/R ∼ 7/2 at high temperature.

– At higher temperatures still, the diatomic molecules begin to dissociate, e.g. O2 +
O2 → 2O +O2.

– At even higher temperatures, its electrons are stripped, and it becomes an ionized
plasma. This is important in engineering applications ranging from welding to
atmospheric re-entry vehicles.
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Figure 5.13: cv/R as a function of T for a model diatomic gas. (Note a real gas would liquefy
in the very low temperature region of the plot! So this model is really for a non-existent gas
that has no liquid-inducing intermolecular forces.)

• For triatomic molecules such as H2O or CO2, there are more modes of motion which
can absorb energy, so the specific heat is higher still.

Feynman9 summarizes the argument that this preference for one type of energy over another
(translation, rotational, vibrational) depending on temperature is surprising to those not
versed in quantum mechanics and violates standard assumptions of classical statistical me-
chanics. In fact, he notes that Maxwell had a hint of the problem as early as 1859, and stated
this concern more directly in 1869. Maxwell summarized those concerns in an 1875 lecture,
transcribed in Nature.10 Feynman argues that the reason for the energy partition observed
in diatomic gases is a “failure of classical physics” and instead is a pure effect of quantum
mechanics; that is to say k = cP (T )/cv(T ) = k(T ) is a non-classical result! Employment of
the theories of quantum and statistical mechanics allows an accounting for the observation
that there is a preference of molecules to exist in lower energy states, and at those states,
the discrete quantization is important. High energy vibrational states are less likely than
translational states at low temperature. At higher temperature, there is a higher probability
that all states are populated, and one recovers results consistent with classical physics.

Let us also recall that cP (T ) − cv(T ) = R; thus, cP (T ) − cv(T ) = R. Let us summarize

9R. P. Feynman, R. B. Leighton, and M. Sands, 1963, The Feynman Lectures on Physics, Volume 1,
Addison-Wesley, Reading, Massachusetts, pp. 40-7–40-10.

10J. C. Maxwell, 1875, “On the dynamical evidence of the molecular constitution of bodies,” Nature,
11(280): 374-377.
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• for monatomic gases,

cv =
3

2
R, (5.123)

cP = cv +R =
5

2
R, (5.124)

cP
cv

= k =
5
2
R

3
2
R

=
5

3
= 1.6667. (5.125)

• for diatomic gases at moderate temperature, 50 K < T < 600 K,

cv =
5

2
R, (5.126)

cP = cv +R =
7

2
R, (5.127)

cP
cv

= k =
7
2
R

5
2
R

=
7

5
= 1.4. (5.128)

To summarize, usually the most problematic case is whether or not specific heats vary
with temperature in ideal gases. For low temperatures, the specific heat is well modeled as a
constant; here the internal energy change is strictly proportional to the temperature change.
For moderate to high temperatures, a temperature-variation of the specific heat is observed.
Changes in internal energy are no longer strictly proportional to changes in temperature.
The behavior is analogous to solid mechanics. At low strain ǫ, stress σ is proportional to
strain, and the constant of proportionality is the modulus of elasticity E. For high strains,
the linearity is lost; we could say the elastic modulus becomes a function of strain. We give
a sketch in Fig. 5.14 of the comparison to solid mechanics

σ

ε T

u

E c
v

lower E
higher c

v

calorically
perfect 
region

calorically 
imperfect
region

elastic
region

plastic
region

1 1

Figure 5.14: Sketch of comparison of stress-strain behavior in solids with ideal gas internal
energy-temperature behavior.

There are four main ways to calculate changes in enthalpy for ideal gases:
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• assumption of constant cP evaluated at 298 K,

• assumption of constant cP evaluated at an intermediate temperature,

• using a known analytic form of cP (T ) in the direct integration of
∫ 2

1
cP (T )dT , or

• estimation using the ideal gas tables.

Example 5.4
Calculate the heat transferred per unit mass to N2 in an isobaric process which starts at T1 = 300 K

and finishes at T2 = 1000 K. Use the four different means of calculating enthalpy changes to estimate
the heat transfer.

The first law on a per mass basis gives

u2 − u1 = 1q2 − 1w2. (5.129)

For an isobaric process, 1w2 =
∫ 2

1
Pdv = P (v2 − v1) = P2v2 − P1v1. So

1q2 = u2 − u1 + P2v2 − P1v1 = h2 − h1 = ∆h =

∫ 2

1

cP (T )dT. (5.130)

• Constant cP at 298 K. From Table A.5 in BS, we find cP = 1.042 kJ/kg/K. Thus, we estimate

∆h = h2 − h1 = cP (T2 − T1) =

(

1.042
kJ

kg K

)

((1000 K) − (300 K)) = 729.4
kJ

kg
. (5.131)

• Constant cP at the average temperature. The average temperature is

Tave =
T1 + T2

2
=

300 K + 1000 K

2
= 650 K. (5.132)

Table A.6 in BS has polynomial curve fits for cP . For N2, we find from Table A.6 that

cP = C0 + C1θ + C2θ
2 + C3θ

3, θ ≡ T

1000 K
. (5.133)

The numbers Co, . . . , C3 actually have units and are designed to yield a value for cP in kJ/kg/K. We
get

cP =

(

1.11
kJ

kg K

)

−
(

0.48
kJ

kg K

)(
T

1000 K

)

+

(

0.96
kJ

kg K

)(
T

1000 K

)2

−
(

0.42
kJ

kg K

)(
T

1000 K

)3

, (5.134)

=

(

1.11
kJ

kg K

)

−
(

0.48
kJ

kg K

)(
650 K

1000 K

)

+

(

0.96
kJ

kg K

)(
650 K

1000 K

)2

−
(

0.42
kJ

kg K

)(
650 K

1000 K

)3

, (5.135)

= 1.08826
kJ

kg K
. (5.136)
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So the improved prediction of the enthalpy change is

∆h = cP (T2 − T1) =

(

1.08826
kJ

kg K

)

((1000 K) − (300 K)) = 761.78
kJ

kg
. (5.137)

• Direct integration. We know

∆h = h2 − h1 =

∫ T2

T1

cP (T )dT. (5.138)

Let us change variables from T to θ. We have θ = T/(1000 K), so dθ = dT/(1000 K), and dT =
(1000 K)dθ. Thus,

∆h =

∫ θ2

θ1

(
C0 + C1θ + C2θ

2 + C3θ
3
)
((1000 K)dθ), (5.139)

= (1000 K)

[

C0θ + C1
θ2

2
+ C2

θ3

3
+ C3

θ4

4

]θ2

θ1

, (5.140)

= (1000 K)

[(

1.11
kJ

kg K

)

θ −
(

0.48
kJ

kg K

)
θ2

2

+

(

0.96
kJ

kg K

)
θ3

3
−
(

0.42
kJ

kg K

)
θ4

4

] 1000 K
1000 K

300 K
1000 K

. (5.141)

The final value is

∆h = 765.81
kJ

kg
. (5.142)

• Use of ideal gas tables. Lastly, we can use the ideal gas tables. For us, Table A.8 of BS is best. We
find h(300 K) = 311.67 kJ/kg and h(1000 K) = 1075.91 kJ/kg. So

∆h = h2 − h1 =

(

1075.91
kJ

kg

)

−
(

311.67
kJ

kg

)

= 764.24
kJ

kg
. (5.143)

5.5.2 Liquids and solids

Most liquids and solids for moderate pressures or below, P < 1 GPa, are well modeled as
incompressible. For such materials, we have caloric equations of state and specific heats of
the form

• u = u(T ),

• c = c(T ).
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For such a material

u(T ) = uo +

∫ T

To

c(T̂ )dT̂ , (5.144)

and
du

dT
= c(T ). (5.145)

Often, we can take a calorically perfect model in which c loses its temperature variation, and
get the commonly used equations

u(T ) = uo + c(T − To), (5.146)

du

dT
= c. (5.147)

Example 5.5
A mass of cast iron of m = 1 kg is heated from T1 = 300 K to T2 = 400 K. Determine the thermal

energy required.

The first law is

U2 − U1 = 1Q2 − 1W2. (5.148)

Incompressible solids have effectively zero work, so

U2 − U1 = 1Q2. (5.149)

On a per mass basis, we have

1Q2 = m(u2 − u1). (5.150)

Now, invoke the caloric equation of state for the solid, u2 − u1 = c(T2 − T1), to get

1Q2 = mc(T2 − T1). (5.151)

For cast iron, Table A.3 of BS tells us c = 0.42 kJ/kg/K, so

1Q2 = (1 kg)

(

0.42
kJ

kg K

)

((400 K) − (300 K)) = 42 kJ. (5.152)

Example 5.6
A tall thermally insulated shaft contains 100 kg of water at its base at 20 ◦C. At the top of the

shaft, at z = 100 m, is a 5 kg mass of aluminum. The mass is dropped to the base, comes to rest, and
comes to equilibrium with the water. Local g = 9.81 m/s2. Find the final temperature.
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We can consider the masses of the water and the aluminum to constitute our combined system.
The combined system is isolated; that is there is no heat or work crossing the system boundary. We
cannot neglect mechanical energy in this problem. So the first law is

E2 − E1 = 1Q2 − 1W2
︸ ︷︷ ︸

=0

, (5.153)

E2 − E1 = 0, (5.154)


U2 + KE2
︸ ︷︷ ︸

=0

+PE2



−



U1 + KE1
︸ ︷︷ ︸

=0

+PE1



 = 0. (5.155)

Now, at the beginning and end of the process neither water nor aluminum is in motion; hence, KE1 =
KE2 = 0. So

(U2 − U1) + (PE2
︸︷︷︸

=0

−PE1) = 0. (5.156)

Now, at state 2, neither mass retains any potential energy, so

U2 − U1 = PE1. (5.157)

Now, U represents an extensive energy of the combined system. And we have two components. The
total is the sum of the parts, which leads to

mwatercwater(T2 − T1) + mAlcAl(T2 − T1) = mAlgH. (5.158)

Solve for T2 and get

T2 = T1 +
mAlgH

mwatercwater + mAlcAl
. (5.159)

Take data for c from Tables A.3,4 of BS and get

T2 = (20 ◦C) +
(5 kg)

(
9.81 m

s2

)
(100 m)

(
kJ

1000 J

)

(100 kg)
(

4.18 kJ
kg K

)

+ (5 kg)
(

0.90 kJ
kg K

) = 20.0116 ◦C. (5.160)

Note because we are dealing with temperature differences, K plays the same role as ◦C, and there is
no need to transform.

5.5.3 General materials

Examples of general materials include water and van der Waals gases. For such materials
we have caloric equations of state and specific heats

• u = u(T, v),

• cv = cv(T, v),

• h = h(T, P ),
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Figure 5.15: Sketch of u = u(T, v), cv = cv(T, v) using a Redlich-Kwong caloric state equation
model for superheated water.

• cP = cP (T, P ).

A sketch of an estimate for u(T, v) and cv(T, v) for superheated water is given in Fig. 5.15.
Here, we selected a Redlich-Kwong model obeying

u(T, v) =

(

2863.75
kJ

kg

)

+

(

1.41
kJ

kg K

)

(T − (673.15 K))

−
(

65.743
kJ

kg

K1/2m3

kg

)((

1.12304
kg

K1/2 m3

)

− 1√
Tv

)

, (5.161)

cv(T, v) =

(

1.41
kJ

kg K

)

+

(

32.8715 kJ
kg

K1/2m3

kg

)

T 3/2v
. (5.162)

This particular model ignores some of the potential temperature variation of cv, but is useful
for illustration purposes. It gives results not unlike those in portions of the steam tables. As
an aside, the Redlich-Kwong thermal equation of state, see p. 62, for superheated water is

P =

(

0.461504 kJ
kg K

)

T

v −
(

0.00117008 m3

kg

) −
43.8287 kJ

kg
K1/2m3

kg

v
(

v +
(

0.00117008 m3

kg

))√
T
. (5.163)

Even more generally, u and h are tabulated for materials such as water.

Example 5.7
Consider water in a fixed total volume of V = 5 m3. Initially there is Vf = 0.05 m3 of liquid water

and Vg = 4.95 m3 of water vapor. The initial pressure is P1 = 100 kPa. Heat is added isochorically
until the saturated vapor state is reached. Determine 1Q2.

A sketch of this process is given in Fig. 5.16. The first law tells us
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Figure 5.16: Sketch of isochoric water heating problem.

U2 − U1 = 1Q2 − 1W2
︸︷︷︸

=0

. (5.164)

Because the process is isochoric, the work is zero. So

1Q2 = U2 − U1, (5.165)

= m(u2 − u1). (5.166)

So, we need to find u1 and u2 from caloric equations of state to solve this problem. Here, however, our
equations reside in tabular form. Let us see what we know. At state 1, we have P1 = 100 kPa. We
need another property to fix state 1. We can get the quality, x1, by the following analysis. First, we
know that state 1 is a two-phase mixture. The saturated water tables tell us

T1 = 99.62 ◦C, vf = 0.001043
m3

kg
, vg = 1.69400

m3

kg
. (5.167)

So we get at state 1

mf =
Vf

vf
=

0.05 m3

0.001043 m3

kg

= 47.9386 kg, (5.168)

mg =
Vg

vg
=

4.95 m3

1.694 m3

kg

= 2.92208 kg. (5.169)

So the total mass is

m = mf + mg = (47.9386 kg) + (2.92208 kg) = 50.8607 kg. (5.170)

So the quality at state 1 is

x1 =
mg

m
=

2.92208 kg

50.8607 kg
= 0.0574526. (5.171)

So we get

v1 =
V

m
=

5 m3

50.8607 kg
= 0.0983077

m3

kg
. (5.172)
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Now, for the internal energy at state 1, we can say

u1 = uf + x1ufg. (5.173)

We find uf and ug from the saturated water tables, Table B.1.2 of BS, giving us

u1 =

(

417.33
kJ

kg

)

+ (0.0574526)

(

2088.72
kJ

kg

)

= 537.332
kJ

kg
. (5.174)

At state 2, we know that v2 = v1 = 0.0983077 m3/kg. We also know that x2 = 1, since we were
told in the problem statement the final state was saturated vapor. We interpolate Table B.1.2 of BS
between P = 2000 kPa and P = 2250 kPa to find

u2 =

(

2600.26
kJ

kg

)

+





(

2601.98 kJ
kg

)

−
(

2600.26 kJ
kg

)

(

0.08875 m3

kg

)

−
(

0.09963 m3

kg

)





×
((

0.0983077
m3

kg

)

−
(

0.09963
m3

kg

))

, (5.175)

= 2600.47
kJ

kg
. (5.176)

So the heat transfer is

1Q2 = m(u2 − u1) = (50.8607 kg)

((

2600.47
kJ

kg

)

−
(

537.332
kJ

kg

))

= 104993 kJ. (5.177)

One could also interpolate for the final pressure and temperature and find them to be P2 = 2030.38 kPa,
and T2 = 213.153 ◦C. Sketches of this process are given in Fig. 5.17.

v v T

T P P

1

2

1

2

1

2

Figure 5.17: Sketches of process of isochoric water heating problem in various planes.

5.6 Time-dependency

We venture gently away from classical thermodynamics into non-equilibrium thermodynam-
ics. Let us admit time t into the differential form of the first law by scaling Eq. (5.13) by dt:

dU

dt
+
d

dt
(KE) +

d

dt
(PE) =

δQ

dt
− δW

dt
. (5.178)
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Since total energy E = U +KE + PE, we could also say

dE

dt
=
δQ

dt
− δW

dt
. (5.179)

Often, we will use the Newtonian “dot” notation for time derivatives. A common form is

dE

dt
= Q̇− Ẇ . (5.180)

In this course, we will often neglect changes inKE and PE, in which case the time-dependent
first law reduces to

dU

dt
= Q̇− Ẇ . (5.181)

Many times in this course, we will treat Q̇ and Ẇ as constants. Problems become more
interesting when they are variable. Such problems are also important. Now, Newton did
consider some thermal problems. In fact Newton’s law of cooling (see Eq. (4.115)) tells us
that Q̇ is proportional to the surface area of a body and the temperature difference between
the body and its environment:

Q̇ = −hA(T − T∞). (5.182)

Note that heat flows into a body when it has a temperature less than its surroundings,
T < T∞. Here, we have the

• Heat transfer coefficient, h, with units W/m2/K.

Note h 6= h. Enthalpy is a different physical quantity with different units. While Eq. (5.182)
is given the elevated name of “law,” one must realize that it is by no means a law of the same
status as the first law of thermodynamics. Rather, it is actually only a useful but fallible
approximation; often h is not a constant but rather a complicated function of the local
material’s state and geometrical configuration. Its nuances are the subject of the discipline
of convective heat transfer.

Example 5.8
Use Newton’s law of cooling along with the first law of thermodynamics and a caloric state equation

to estimate the time necessary to bake a potato. See Fig. 5.18 showing a potato in a modern convection
oven.

Let us describe the potato as a sphere with surface area A, volume V , temperature T , density ρ,
initial temperature To, immersed in an oven at constant T∞. The first law tells us that

dU

dt
= Q̇ − Ẇ . (5.183)

We can take Ẇ = 0 because of incompressibility, so

dU

dt
= Q̇. (5.184)
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Figure 5.18: Unbaked potato in a convection oven, t = 0 min.

Now, the caloric state equation is U = Uo +mc(T −To). Take c constant, so dU/dt = mc(dT/dt); thus,
the first law becomes

mc
dT

dt
= Q̇. (5.185)

Now, invoke Newton’s law of cooling to get

mc
dT

dt
= −hA(T − T∞). (5.186)

Now, m = ρV , so

ρV c
dT

dt
= −hA(T − T∞). (5.187)

So
dT

dt
= − hA

ρcV
(T − T∞). (5.188)

Now, this is a first order ordinary differential equation for T (t). We can separate variables to get

dT

T − T∞

= − hA

ρcV
dt, (5.189)

∫
dT

T − T∞

=

∫

− hA

ρcV
dt, (5.190)

ln(T − T∞) = − hA

ρcV
t + C, (5.191)

T − T∞ = C ′ exp

(

− hA

ρcV
t

)

. (5.192)

Here, C ′ = exp(C) and is also a constant. Now, when t = 0, we have T = To, so

To − T∞ = C ′ exp

(

− hA

ρcV
0

)

, (5.193)

= C ′. (5.194)
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Thus

T (t) = T∞ + (To − T∞) exp

(

− hA

ρcV
t

)

. (5.195)

Notice that T (0) = To and T (∞) = T∞. And notice that when the argument of the exponential is
−1, giving exp(−1) = 0.357, we get a good estimate of the time it takes to get most of the way to
equilibrium. We define this as the time constant, τ of the system. Here, we can get τ via

− hA

ρcV
τ = −1, (5.196)

τ =
ρcV

hA
. (5.197)

So we get fast cooking (small τ) if

• ρ is small (a light potato),

• c is small,

• h is large (the heat transfer rate is fast), or

• A/V is large (the surface to volume ratio is large).

For our potato, let us model it as a sphere of liquid water with R = 0.05 m, ρ = 997 kg/m3, c =
4.18 kJ/kg/K. Let us take h = 0.012 kW/m2/K. Let us take To = 20 ◦C, T∞ = 200 ◦C. For a sphere,
we have the surface to volume ratio of

A

V
=

4πR2

(4/3)πR3
=

3

R
. (5.198)

Our temperature varies with time as

T (t) = T∞ + (To − T∞) exp

(

− 3h

ρcR
t

)

, (5.199)

= (200 ◦C) + ((20 ◦C) − (200 ◦C)) exp



− 3
(
0.012 kW

m2 K

)

(

997 kg
m3

)(

4.18 kJ
kg K

)

(0.05 m)
t



 , (5.200)

T (t) = (200 ◦C) − (180 ◦C) exp

( −t

5788.14 s

)

. (5.201)

The time constant τ = 5788.14 s = 96.469 min. When T = 100 ◦C, the potato is probably cooked
enough. This occurs at

t = 3402.19 s

(
min

60 s

)

= 56.7032 min. (5.202)

If we leave the potato in the oven too long, it will get too hot, and all its water will boil away. Note that
our simple analysis does not account for latent heat and mass loss of vaporization. The temperature
history is plotted in Fig. 5.19.

This example used what is known as the lumped capacitance method for analysis of T (t). In actuality,
T is a function of space and time: T = T (x, y, z, t). It will be shown in later courses that the lumped
capacitance method is valid when the so-called Biot number, Bi, is much less than unity. Biot himself
was an important physicist who played a small role in thermal sciences. He is depicted in Fig. 5.20.
The Biot number for our potato problem is defined as

Bi ≡ hR

k
, (5.203)
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Figure 5.19: Temperature versus time for the potato in the oven.

Figure 5.20: Jean-Baptiste Biot (1774-1862). French physicist, astronomer, and mathemati-
cian. Image from http://en.wikipedia.org/wiki/Jean Baptiste Biot.

where k is the thermal conductivity. For the lumped capacitance to be valid, we need

Bi =
hR

k
≪ 1, thus k ≫ hR. (5.204)

For liquid water, k ∼ 0.006 kW/m/K, so for this problem

Bi =

(
0.012 kW

m2 K

)
(0.05 m)

0.006 kW
m K

= 0.1. (5.205)

This is a small enough Biot number that our lumped capacitance method is acceptable. Physically, if
the thermal conductivity is high relative to the product of h and R, thermal energy diffuses rapidly in
the solid, and internal temperature gradients are small.

The predictions of this theory were tested in a domestic laboratory. The specimen of Fig. 5.18
was subjected to the culinary regimen suggested by the analysis: 57 min at 200 ◦C in a convection
oven. The results can be seen in Fig. 5.21. Qualitative testing by a human subject revealed the potato
induced a high degree of gastronomic satisfaction.
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a) b)

Figure 5.21: a) Baked potato following an oven-based heat transfer process, t = 57 min;
b) the same potato subjected to a routine post-heating, pre-human-ingestion mashing and
seasoning procedure.

5.7 Final comments on conservation

We note the first law is often re-stated as energy is conserved. Let us reconcile this with our
mathematical statement, dE/dt = Q̇−Ẇ . This equation tells us that the total energy E can
change in response to heat and work crossing the system boundary. But conservation implies
that a quantity does not change. We can recover the proper notion of conservation if we
speak of an isolated system, which we recall is one that is not influenced by its surroundings.
So for an isolated system there can, by definition be no work or heat transfer, so

dE

dt
= 0, isolated system. (5.206)

Integrating, we find

E = constant, isolated system. (5.207)

Even more fundamentally, we can say, by its definition, that the mass m of a system is
constant; thus, the mass of an isolated system must also be constant.

This theoretical formulation is often successful in describing nature for a wide variety
of scenarios. However, it does not always succeed. It has been observed to fail for systems
which move at a velocity close to the speed of light. For such systems, not only do energy
and mass conservation principles fail, so do Newton’s laws of mechanics. To realign theory
with observation, it was necessary for Einstein, depicted in Fig. 5.22, to re-formulate a new,
modified set of axioms. In a certain sense the new axioms are simple. For example one
can replace Newton’s second law with the seemingly simpler dv/dt = 0, where v is a new
velocity vector; however, the coordinate axes associated with this vector are complicated.
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Figure 5.22: Albert Einstein (1879-1955), German theoretical physicist who de-
veloped theories that explained data better than those of Newton. Image from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Einstein.html.

Another consequence of Einstein’s reformulation was the remarkable results of mass-energy
equivalence via the famous relation

E = mc2, (5.208)

where c is the speed of light in a vacuum. Another way of viewing Einstein’s contributions
is via a new conservation property: the mass-energy of an isolated system is constant. It is
the conservation of mass-energy that is the key ingredient in both nuclear weapon systems
as well as nuclear power generation.
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Chapter 6

First law analysis for a control volume

Read BS, Chapter 6

Problems in previous chapters have focused on systems. These systems always were com-
posed of the same matter. However, for a wide variety of engineering devices, for example

• flow in pipes,

• jet engines,

• heat exchangers,

• gas turbines,

• pumps,

• furnaces, or

• air conditioners,

a constant flow of new fluid continuously enters and exits the device. In fact, once the fluid
has left the device, we often are not concerned with that fluid, as far as the performance
of the device is concerned. Of course, we might care about the pollution emitted by the
device and the long term fate of expelled particles. Pollution dispersion, in contrast to
pollution-creation, is more a problem of fluid mechanics than thermodynamics.

Analysis of control volumes is slightly more complicated than for systems, and the equa-
tions we will ultimately use are slightly more complex. Unfortunately, the underlying mathe-
matics and physics which lead to the development of our simplified control volume equations
are highly challenging! Worse still, most beginning thermodynamics texts do not expose
the student to all of the many nuances required for the simplification. In this chapter, we
will summarize the key results and refer the student to an appendix for a more rigorous
development.

We will introduce no new axioms in this chapter. We shall simply formulate our mass
and energy conservation axioms for a control volume configuration. A sketch of a generic
apparatus for control volume analysis is given in Fig. 6.1.
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Figure 6.1: Sketch of generic configuration for control volume analysis.

6.1 Detailed derivations of control volume equations

This section will give a summary of the necessary mathematical operations necessary to cast
the conservation of mass and energy principles in a traditional control volume formulation.
The analysis presented has been amalgamated from a variety of sources. Most directly, it
is a specialization of course notes for AME 60635, Intermediate Fluid Mechanics.1 Basic
mathematical foundations are covered well by Kaplan.2 A detailed and readable description,
which has a stronger emphasis on fluid mechanics, is given in the undergraduate text of
Whitaker.3 A rigorous treatment of the development of all equations presented here is
included in the graduate text of Aris.4 Popular mechanical engineering undergraduate fluids
texts have closely related expositions.56 However, despite their detail, these texts have some
minor flaws! The treatment given by BS is not as detailed. This section will use a notation
generally consistent with BS and show in detail how to arrive at its results.

1J. M. Powers, 2012, Lecture Notes on Intermediate Fluid Mechanics, University of Notre Dame,
http://www.nd.edu/∼powers/ame.60635/notes.pdf.

2W. Kaplan, 2003, Advanced Calculus, Fifth Edition, Addison-Wesley, New York.
3S. Whitaker, 1992, Introduction to Fluid Mechanics, Krieger, Malabar, Florida.
4R. Aris, 1962, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Dover, New York.
5F. M. White, 2002, Fluid Mechanics, Fifth Edition, McGraw-Hill, New York.
6R. W. Fox, A. T. McDonald, and P. J. Pritchard, 2003, Introduction to Fluid Mechanics, Sixth Edition,

John Wiley, New York.
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6.1.1 Relevant mathematics

We will use several theorems which are developed in vector calculus. Here, we give short
motivations and presentations. The reader should consult a standard mathematics text for
detailed derivations.

6.1.1.1 Fundamental theorem of calculus

The fundamental theorem of calculus is as follows

∫ x=b

x=a

φ(x) dx =

∫ x=b

x=a

(
dψ

dx

)

dx = ψ(b) − ψ(a). (6.1)

It effectively says that to find the integral of a function φ(x), which is the area under the
curve, it suffices to find a function ψ, whose derivative is φ, i.e. dψ/dx = φ(x), evaluate ψ
at each endpoint, and take the difference to find the area under the curve.

6.1.1.2 Divergence theorem

The divergence theorem, often known as Gauss’s7 theorem, is the analog of the fundamental
theorem of calculus extended to volume integrals. Gauss is depicted in Fig. 6.2. While it is

Figure 6.2: Johann Carl Friedrich Gauss (1777-1855), German mathematician; image from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Gauss.html.

often attributed to Gauss who reported it in 1813, it is said that it was first discovered by
Joseph Louis Lagrange in 1762.8

Let us define the following quantities:

• t→ time,

7Carl Friedrich Gauss, 1777-1855, Brunswick-born German mathematician, considered the founder of
modern mathematics. Worked in astronomy, physics, crystallography, optics, bio-statistics, and mechanics.
Studied and taught at Göttingen.

8http://en.wikipedia.org/wiki/Divergence theorem.
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• x → spatial coordinates,

• Va(t) → arbitrary moving and deforming volume,

• Aa(t) → bounding surface of the arbitrary moving volume,

• n → outer unit normal to moving surface, and

• φ(x, t) → arbitrary vector function of x and t.

The divergence theorem is as follows:

∫

Va(t)

∇ · φ dV =

∫

Aa(t)

φ · n dA. (6.2)

The surface integral is analogous to evaluating the function at the end points in the funda-
mental theorem of calculus.

If φ(x, t) has the form φ(x, t) = cφ(x, t), where c is a constant vector and φ is a scalar
function, then the divergence theorem, Eq. (6.2), reduces to

∫

Va(t)

∇ · (cφ) dV =

∫

Aa(t)

(cφ) · n dA, (6.3)

∫

Va(t)

(

φ∇ · c
︸︷︷︸

=0

+c · ∇φ
)

dV =

∫

Aa(t)

φ (c · n) dA, (6.4)

c ·
∫

Va(t)

∇φ dV = c ·
∫

Aa(t)

φn dA, (6.5)

c ·
(∫

Va(t)

∇φ dV −
∫

Aa(t)

φn dA

)

︸ ︷︷ ︸

=0

= 0. (6.6)

Now, since c is arbitrary, the term in parentheses must be zero. Thus,

∫

Va(t)

∇φ dV =

∫

Aa(t)

φn dA. (6.7)

Note if we take φ to be the scalar of unity (whose gradient must be zero), the divergence
theorem reduces to

∫

Va(t)

∇(1) dV =

∫

Aa(t)

(1)n dA, (6.8)

0 =

∫

Aa(t)

(1)n dA, (6.9)

∫

Aa(t)

n dA = 0. (6.10)
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That is, the unit normal to the surface, integrated over the surface, cancels to zero when the
entire surface is included.

We will use the divergence theorem (6.2) extensively. It allows us to convert sometimes
difficult volume integrals into easier interpreted surface integrals. It is often useful to use
this theorem as a means of toggling back and forth from one form to another.

6.1.1.3 Leibniz’s rule

Leibniz’s9 rule relates time derivatives of integral quantities to a form which distinguishes
changes which are happening within the boundaries to changes due to fluxes through bound-
aries. Leibniz is depicted in Fig. 6.3.

Figure 6.3: Gottfried Wilhelm von Leibniz (1646-1716), German mathe-
matician, philosopher, and polymath who co-invented calculus; image from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Leibniz.html.

Let us consider the scenario sketched in Figure 6.4. Say we have some value of interest,
Φ, which results from an integration of a kernel function φ over Va(t), for instance

Φ =

∫

Va(t)

φ dV. (6.11)

We are often interested in the time derivative of Φ, the calculation of which is complicated
by the fact that the limits of integration are time-dependent. From the definition of the
derivative, we find that

dΦ

dt
=

d

dt

∫

Va(t)

φ dV = lim
∆t→0

∫

Va(t+∆t)
φ(t+ ∆t) dV −

∫

Va(t)
φ(t) dV

∆t
. (6.12)

9Gottfried Wilhelm von Leibniz, 1646-1716, Leipzig-born German philosopher and mathematician. In-
vented calculus independent of Newton and employed a superior notation to that of Newton.

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://www-history.mcs.st-and.ac.uk/~history/Biographies/Leibniz.html
http://creativecommons.org/licenses/by-nc-nd/3.0/


148 CHAPTER 6. FIRST LAW ANALYSIS FOR A CONTROL VOLUME

I

II

A
I

A
II

V
IIV

I

w
I

w
II

V
a

n
IIn

I

V
a
(t) V

a
(t+Δt)

Figure 6.4: Sketch of the motion of an arbitrary volume Va(t). The boundaries of Va(t) move
with velocity w. The outer normal to Va(t) is Aa(t). Here, we focus on just two regions: I,
where the volume is leaving material behind, and II, where the volume is sweeping up new
material.

Now, we have
Va(t+ ∆t) = Va(t) + VII(∆t) − VI(∆t). (6.13)

Here, VII(∆t) is the amount of new volume swept up in time increment ∆t, and VI(∆t) is
the amount of volume abandoned in time increment ∆t. So we can break up the first integral
in the last term of Eq. (6.12) into
∫

Va(t+∆t)

φ(t+ ∆t) dV =

∫

Va(t)

φ(t+ ∆t) dV +

∫

VII(∆t)

φ(t+ ∆t) dV −
∫

VI(∆t)

φ(t+ ∆t) dV,

(6.14)
which gives us then

d

dt

∫

Va(t)

φ dV =

lim
∆t→0

∫

Va(t)
φ(t+ ∆t) dV +

∫

VII(∆t)
φ(t+ ∆t) dV −

∫

VI(∆t)
φ(t+ ∆t) dV −

∫

Va(t)
φ(t) dV

∆t
.(6.15)

Rearranging (6.15) by combining terms with common limits of integration, we get

d

dt

∫

Va(t)

φ dV = lim
∆t→0

∫

Va(t)
(φ(t+ ∆t) − φ(t)) dV

∆t

+ lim
∆t→0

∫

VII(∆t)
φ(t+ ∆t) dV −

∫

VI(∆t)
φ(t+ ∆t) dV

∆t
. (6.16)

Let us now further define
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• w → the velocity vector of points on the moving surface Va(t),

Now, the volume swept up by the moving volume in a given time increment ∆t is

dVII = w · n
︸ ︷︷ ︸

positive

∆t dAII = wII∆t
︸ ︷︷ ︸

distance

dAII , (6.17)

and the volume abandoned is

dVI = w · n
︸ ︷︷ ︸

negative

∆t dAI = − wI∆t
︸ ︷︷ ︸

distance

dAI . (6.18)

Substituting into our definition of the derivative, Eq. (6.16), we get

d

dt

∫

Va(t)

φ dV = lim
∆t→0

∫

Va(t)

(φ(t+ ∆t) − φ(t))

∆t
dV

+ lim
∆t→0

∫

AII(∆t)
φ(t+ ∆t)wII∆t dAII +

∫

AI(∆t)
φ(t+ ∆t)wI∆t dAI

∆t
. (6.19)

Now, we note that

• We can use the definition of the partial derivative to simplify the first term on the right
side of (6.19),

• The time increment ∆t cancels in the area integrals of (6.19), and

• Aa(t) = AI + AII ,

so that
d

dt

∫

Va(t)

φ dV

︸ ︷︷ ︸

total time rate of change

=

∫

Va(t)

∂φ

∂t
dV

︸ ︷︷ ︸

intrinsic change within volume

+

∫

Aa(t)

φw · n dA

︸ ︷︷ ︸

net flux into volume

. (6.20)

This is the three-dimensional scalar version of Leibniz’s rule. Say we have the special case
in which φ = 1; then Leibniz’s rule (6.20) reduces to

d

dt

∫

Va(t)

dV =

∫

Va(t)

∂

∂t
(1)

︸ ︷︷ ︸

=0

dV +

∫

Aa(t)

(1)w · n dA, (6.21)

d

dt
Va(t) =

∫

Aa(t)

w · n dA. (6.22)

This simply says the total volume of the region, which we call Va(t), changes in response to
net motion of the bounding surface.

Leibniz’s rule (6.20) reduces to a more familiar result in the one-dimensional limit. We
can then say

d

dt

∫ x=b(t)

x=a(t)

φ(x, t) dx =

∫ x=b(t)

x=a(t)

∂φ

∂t
dx+

db

dt
φ(b(t), t) − da

dt
φ(a(t), t). (6.23)
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As in the fundamental theorem of calculus (6.1), for the one-dimensional case, we do not have
to evaluate a surface integral; instead, we simply must consider the function at its endpoints.
Here, db/dt and da/dt are the velocities of the bounding surface and are equivalent to w.
The terms φ(b(t), t) and φ(a(t), t) are equivalent to evaluating φ on Aa(t).

We can also apply the divergence theorem (6.2) to Leibniz’s rule (6.20) to convert the
area integral into a volume integral to get

d

dt

∫

Va(t)

φ dV =

∫

Va(t)

∂φ

∂t
dV +

∫

Va(t)

∇ · (φw) dV. (6.24)

Combining the two volume integrals, we get

d

dt

∫

Va(t)

φ dV =

∫

Va(t)

(
∂φ

∂t
+ ∇ · (φw)

)

dV. (6.25)

6.1.1.4 General transport theorem

Let B be an arbitrary extensive thermodynamic property, and β be the corresponding in-
tensive thermodynamic property so that

dB = βdm. (6.26)

The product of a differential amount of mass dm with the intensive property β give a
differential amount of the extensive property. Since

dm = ρdV, (6.27)

where ρ is the mass density and dV is a differential amount of volume, we have

dB = βρdV. (6.28)

If we take the arbitrary φ = ρβ, Leibniz’s rule, Eq. (6.20), becomes our general transport
theorem:

d

dt

∫

Va(t)

ρβ dV =

∫

Va(t)

∂

∂t
(ρβ) dV +

∫

Aa(t)

ρβ (w · n) dA. (6.29)

Applying the divergence theorem, Eq. (6.2), to the general transport theorem, Eq. (6.29),
we find the alternate form

d

dt

∫

Va(t)

ρβ dV =

∫

Va(t)

(
∂

∂t
(ρβ) + ∇ · (ρβw)

)

dV. (6.30)
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Figure 6.5: Osborne Reynolds (1842-1912), Anglo-Irish engineer; image from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Reynolds.html.

6.1.1.5 Reynolds transport theorem

Osborne Reynolds10 made many pioneering contributions to fluid mechanics. He is depicted
in Fig. 6.5. Among other things, he wrote a treatise on the development of conservation
principles in a general sense.11 From this work, and after employing more modern notation,
we arrive at what is now known as the Reynolds transport theorem if we force the arbitrary
velocity of the moving volume to take on the velocity of a fluid particle, i.e. take

w = v. (6.31)

In this case, our arbitrary volume is no longer arbitrary. Instead, it always contains the same
fluid particles. We call this volume a

• material volume, Vm(t): a volume which always contains the same fluid particles.

The proper way to generalize laws of nature which were developed for point masses is to
consider collections of fixed point masses, which will always reside within a material volume.
That said, it is simple to specialize the general transport theorem to obtain the Reynolds
transport theorem. Here, we give two versions, the first using area integrals, and the second
using volume integrals only. In this special case, Eqs. (6.29) and (6.30) become, respectively,

d

dt

∫

Vm(t)

ρβ dV =

∫

Vm(t)

∂

∂t
(ρβ) dV +

∫

Am(t)

ρβ (v · n) dA, (6.32)

10Osborne Reynolds, 1842-1912, Belfast-born British engineer and physicist, educated in mathematics at
Cambridge, first professor of engineering at Owens College, Manchester, did fundamental experimental work
in fluid mechanics and heat transfer.

11O. Reynolds, 1903, Papers on Mechanical and Physical Subjects, Volume III, The Sub-Mechanics of the

Universe, Cambridge, Cambridge.
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d

dt

∫

Vm(t)

ρβ dV =

∫

Vm(t)

(
∂

∂t
(ρβ) + ∇ · (ρβv)

)

dV. (6.33)

The implications of these mathematical statements are summarized in the words of Reynolds:
in Fig. 6.5.

Figure 6.6: Image from Reynolds’ 1903 study, p. 9, giving his key general axiom.

6.1.1.6 Fixed (control) volumes

If we take our arbitrary volume to be fixed in space, it is most often known as a

• control volume: a fixed volume in space.

For control volumes
w = 0. (6.34)

Thus, the arbitrary volume loses its time dependency, so that

Va(t) = V, Aa(t) = A, (6.35)

and the general transport theorem, Eq. (6.29), reduces to

d

dt

∫

V

ρβ dV =

∫

V

∂

∂t
(ρβ) dV. (6.36)

6.1.2 Conservation axioms

A fundamental goal of mechanics is to take the verbal notions which embody the basic
axioms into usable mathematical expressions. First, we must list those axioms. The axioms
themselves are simply principles which have been observed to have wide validity as long as
length scales are sufficiently large to contain many molecules. Many of these axioms can be
applied to molecules as well. The axioms cannot be proven. They are simply statements
which have been useful in describing the universe.

A summary of the axioms in words is as follows
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• Mass conservation principle: The time rate of change of mass of a material region is
zero.

• Linear momenta principle: The time rate of change of the linear momenta of a material
region is equal to the sum of forces acting on the region. This is Euler’s generalization
of Newton’s second law of motion.

• Angular momenta principle: The time rate of change of the angular momenta of a
material region is equal to the sum of the torques acting on the region. This was first
formulated by Euler.

• Energy conservation principle: The time rate of change of energy within a material
region is equal to the rate that energy is received by heat and work interactions. This
is the first law of thermodynamics.

• Entropy inequality: The time rate of change of entropy within a material region is
greater than or equal to the ratio of the rate of heat transferred to the region and the
absolute temperature of the region. This is the second law of thermodynamics.

Here, we shall systematically convert two of these axioms, the mass conservation principle
and the energy conservation principle, into mathematical form.

6.1.2.1 Mass

Mass is an extensive property for which we have

B = m, β = 1. (6.37)

The mass conservation axiom is simple to state mathematically. It is

d

dt
m = 0. (6.38)

A relevant material volume is sketched in Figure 6.7. We can define the mass enclosed within
a material volume based upon the local value of density:

m =

∫

Vm(t)

ρdV. (6.39)

So the mass conservation axiom is

d

dt

∫

Vm(t)

ρdV = 0. (6.40)

Invoking the Reynolds transport theorem (6.32), d
dt

∫

Vm(t)
[ ]dV =

∫

Vm(t)
∂
∂t

[ ]dV +
∫

Am(t)
v ·

n[ ]dA, we get

d

dt

∫

Vm(t)

ρ dV =

∫

Vm(t)

∂ρ

∂t
dV +

∫

Am(t)

ρv · n dA = 0. (6.41)
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ρ dV

dA

w=v

n

Figure 6.7: Sketch of finite material region Vm(t), infinitesimal mass element ρdV , and
infinitesimal surface element dA with unit normal n, and general velocity w equal to fluid
velocity v.

The first equality of Eq. (6.41) is simply a mathematical statement involving definitions;
forcing either of the terms to equal zero is a statement of physics. Now, we invoke the
divergence theorem, Eq. (6.2)

∫

V (t)
∇ · [ ]dV =

∫

A(t)
n · [ ]dA, to convert a surface integral to

a volume integral to get the mass conservation axiom to read as
∫

Vm(t)

∂ρ

∂t
dV +

∫

Vm(t)

∇ · (ρv) dV = 0, (6.42)

∫

Vm(t)

(
∂ρ

∂t
+ ∇ · (ρv)

)

︸ ︷︷ ︸

=0

dV = 0. (6.43)

Now, in an important step, we realize that the only way for this integral, which has absolutely
arbitrary limits of integration, to always be zero, is for the integrand itself to always be zero.
Hence, we have

∂ρ

∂t
+ ∇ · (ρv) = 0. (6.44)

This is the important differential form of the mass conservation principle.
We can get a useful control volume formulation by integrating the mass conservation

principle (6.44) over a fixed volume V :

∫

V

(
∂ρ

∂t
+ ∇ · (ρv)

)

dV =

∫

V

0 dV. (6.45)

Now, the integral of 0 over a fixed domain must be zero. This is equivalent to saying
∫ b

a
0dx = 0, where the area under the curve of 0 has to be zero. So we have

∫

V

(
∂ρ

∂t
+ ∇ · (ρv)

)

dV = 0. (6.46)
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Next apply the divergence theorem (6.2) to (6.46) to get

∫

V

∂ρ

∂t
dV +

∫

A

ρv · n dA = 0. (6.47)

Applying now the result from (6.36) to (6.47), we see for the fixed volume that

d

dt

∫

V

ρ dV +

∫

A

ρv · n dA = 0. (6.48)

We note now that at an inlet to a control volume that v points in an opposite direction to
n, so we have

v · n < 0, at inlets. (6.49)

At exits to a control volume v and n point in the same direction so that

v · n > 0, at exits. (6.50)

If now, we take the simplifying assumption that ρ and v have no spatial variation across
inlets and exits, we get for a control volume with one inlet and one exit that

d

dt

∫

V

ρ dV + ρe|ve|Ae − ρi|vi|Ai = 0. (6.51)

Here, the subscript i denotes inlet, and the subscript e denotes exit. Rearranging (6.51), we
find

d

dt

∫

V

ρ dV = ρi|vi|Ai − ρe|ve|Ae. (6.52)

We now define the mass in the control volume mcv as

mcv =

∫

V

ρ dV. (6.53)

Here, (6.53) is equivalent to the equation on the top of p. 182 of BS. If we make the further
simplifying assumption that ρ does not vary within V , we find that

dmcv

dt
︸ ︷︷ ︸

rate of change of mass

= ρi|vi|Ai
︸ ︷︷ ︸

mass rate in

− ρe|ve|Ae
︸ ︷︷ ︸

mass rate out

. (6.54)

Here, mcv is the mass enclosed in the control volume. If there is no net rate of change of
mass the control volume is in steady state, and we can say that the mass flow in must equal
the mass flow out:

ρi|vi|Ai = ρe|ve|Ae. (6.55)

We define the mass flow rate ṁ as
ṁ = ρ|v|A. (6.56)
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For steady flows with a single entrance and exit, we have

ṁ = constant. (6.57)

For unsteady flows with a single entrance and exit, we can rewrite (6.54) as

dmcv

dt
= ṁi − ṁe. (6.58)

For unsteady flow with many entrances and exits, we can generalize (6.54) as

dmcv

dt
︸ ︷︷ ︸

rate of change of mass

=
∑

ρi|vi|Ai
︸ ︷︷ ︸

mass rate in

−
∑

ρe|ve|Ae
︸ ︷︷ ︸

mass rate out

, (6.59)

dmcv

dt
︸ ︷︷ ︸

rate of change of mass

=
∑

ṁi
︸ ︷︷ ︸

mass rate in

−
∑

ṁe
︸ ︷︷ ︸

mass rate out

. (6.60)

Note that (6.60) is fully equivalent to BS’s Eq. (6.1) (p. 181), but that it actually takes a
good deal of effort to get to this point with rigor! For steady state conditions with many
entrances and exits we can say

∑

ρi|vi|Ai =
∑

ρe|ve|Ae. (6.61)

Thus
∑

ṁi =
∑

ṁe. (6.62)

Here, (6.62) is the same as BS’s (6.9), p. 186.

6.1.2.2 Energy

For energy, we must consider the total energy which includes internal, kinetic, and potential.
Our extensive property B is thus

B = E = U +
1

2
mv · v +mgz. (6.63)

Here, we have assumed the fluid resides in a gravitational potential field in which the gravi-
tational potential energy varies linearly with height z. The corresponding intensive property
β is

β = e = u+
1

2
v · v + gz. (6.64)

We recall the first law of thermodynamics, which states the change of a material volume’s
total energy is equal to the heat transferred to the material volume less the work done by
the material volume. Mathematically, this is stated as Eq. (5.8):

dE = δQ− δW. (6.65)
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We recall the total derivative is used for dE, since energy is a property and has an exact
differential, while both heat transfer and work are not properties and do not have exact
differentials. It is more convenient to express the first law as a rate equation, which we get
by dividing (6.65) by dt to get

dE

dt
=
δQ

dt
− δW

dt
. (6.66)

Recall that the upper case letters denote extensive thermodynamic properties. For example,
E is total energy, inclusive of internal and kinetic and potential12 , with SI units of J . Let us
consider each term in the first law of thermodynamics in detail and then write the equation
in final form.

6.1.2.2.1 Total energy term For a fluid particle, the differential amount of total energy
is

dE = ρβdV = ρ

(

u+
1

2
v · v + gz

)

︸ ︷︷ ︸

β

dV, (6.67)

= ρdV
︸︷︷︸

mass

(

u+
1

2
v · v + gz

)

︸ ︷︷ ︸

internal +kinetic +potential

. (6.68)

6.1.2.2.2 Work term Let us partition the work into work WP done by a pressure force
FP and work done by other sources, which we shall call Wmv, where the subscript “mv”
indicates “material volume.”

W = WP +Wmv. (6.69)

Taking a time derivative, we get

δW

dt
=
δWP

dt
+ Ẇmv. (6.70)

The work done by other sources is often called shaft work and represents inputs of such
devices as compressors, pumps, and turbines. Its modeling is often not rigorous.

Recall that work is done when a force acts through a distance, and a work rate arises when
a force acts through a distance at a particular rate in time (hence, a velocity is involved).
Recall also that it is the dot product of the force vector with the position or velocity that
gives the true work or work rate. In shorthand, we can say that the differential work done
by the pressure force FP is

δWP = FP · dx, (6.71)

δWP

dt
= FP · dx

dt
= FP · v. (6.72)

12Strictly speaking our derivation will only be valid for potentials which are time-independent. This is the
case for ordinary gravitational potentials. The modifications for time-dependent potentials are straightfor-
ward, but require a more nuanced interpretation than space permits here.
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 =       
δW

dt
P .F

P
  v > 0 for expansion

v n
v

v

F
P
 = PAn

Figure 6.8: Sketch of fluid doing work.

Here, W has the SI units of J , and FP has the SI units of N . Now, let us consider the work
done by the pressure force. In a piston-cylinder arrangement in which a fluid exists with
pressure P within the cylinder and the piston is rising with velocity v, the work rate done
by the fluid is positive. We can think of the local stress vector in the fluid as pointing in
the same direction as the fluid is moving at the piston surface, so that the dot product is
positive. Now, we can express the pressure force in terms of the pressure by

FP = PAn. (6.73)

Substituting (6.72) into (6.73), we get

δWP

dt
= PAn · v. (6.74)

It is noted that we have been a little loose distinguishing local areas from global areas. Better
stated, we should say for a material volume that

δWP

dt
=

∫

Am(t)

Pn · v dA. (6.75)

This form allows for P and v to vary with location. This is summarized in the sketch of
Figure 6.8.

6.1.2.2.3 Heat transfer term If we were considering temperature fields with spatial
dependency, we would define a heat flux vector. This approach is absolutely necessary to
describe many real-world devices, and is the focus of a standard undergraduate course in

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


6.1. DETAILED DERIVATIONS OF CONTROL VOLUME EQUATIONS 159

heat transfer. Here, we will take a simplified assumption that the only heat fluxes are easily
specified and are all absorbed into a lumped scalar term we will call Q̇mv. This term has
units of J/s = W in SI. So we have then

δQ

dt
= Q̇mv. (6.76)

6.1.2.2.4 The first law of thermodynamics Putting the words of the first law into
equation form, we get

d

dt

∫

Vm(t)

ρ

(

u+
1

2
v · v + gz

)

dV

︸ ︷︷ ︸

Emv

=
δQ

dt
− δW

dt
. (6.77)

We next introduce our simplification of heat transfer (6.76) and partition of work (6.70)
along with (6.75) into (6.77) to get

d

dt

∫

Vm(t)

ρ

(

u+
1

2
v · v + gz

)

dV = Q̇mv −
(

Ẇmv +

∫

Am(t)

Pn · v dA

)

. (6.78)

Now, we bring the pressure work integral to the right side of (6.78) to get

d

dt

∫

Vm(t)

ρ

(

u+
1

2
v · v + gz

)

dV +

∫

Am(t)

Pn · v dA = Q̇mv − Ẇmv. (6.79)

We next invoke the Reynolds transport theorem (6.32) into (6.79) to expand the derivative
of the first integral so as to obtain

∫

Vm(t)

∂

∂t

(

ρ

(

u+
1

2
v · v + gz

))

dV +

∫

Am(t)

(

ρ

(

u+
1

2
v · v + gz

))

v · n dA

︸ ︷︷ ︸

dEmv/dt

+

∫

Am(t)

Pn · v dA = Q̇mv − Ẇmv. (6.80)

We next note that the two area integrals have the same limits and can be combined to form

∫

Vm(t)

∂

∂t

(

ρ

(

u+
1

2
v · v + gz

))

dV +

∫

Am(t)






ρ






u+

P

ρ
︸ ︷︷ ︸

h

+
1

2
v · v + gz













v · n dA

= Q̇mv − Ẇmv.(6.81)

We recall now the definition of enthalpy h, Eq. (5.52),

h = u+
P

ρ
= u+ Pv. (6.82)
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Invoking (6.82) into (6.81), we get
∫

Vm(t)

∂

∂t

(

ρ

(

u+
1

2
v · v + gz

))

dV +

∫

Am(t)

(

ρ

(

h+
1

2
v · v + gz

))

v · n dA

= Q̇mv − Ẇmv. (6.83)

Next use the divergence theorem (6.2) to rewrite (6.83) as
∫

Vm(t)

∂

∂t

(

ρ

(

u+
1

2
v · v + gz

))

dV +

∫

Vm(t)

∇ ·
(

ρv

(

h+
1

2
v · v + gz

))

dV

= Q̇mv − Ẇmv. (6.84)

Now, for convenience, let us define the specific control volume heat transfer and work qmv

and wmv, each with SI units J/kg such that

Q̇mv =

∫

Vm(t)

∂

∂t
(ρqmv) dV, (6.85)

Ẇmv =

∫

Vm(t)

∂

∂t
(ρwmv) dV, (6.86)

so that by substituting (6.85) and (6.86) into (6.84), we get
∫

Vm(t)

∂

∂t

(

ρ

(

u+
1

2
v · v + gz

))

dV +

∫

Vm(t)

∇ ·
(

ρv

(

h+
1

2
v · v + gz

))

dV

=

∫

Vm(t)

∂

∂t
(ρqmv) dV −

∫

Vm(t)

∂

∂t
(ρwmv) dV. (6.87)

Now, all terms in (6.87) have the same limits of integration, so they can be grouped to form
∫

Vm(t)

(
∂

∂t

(

ρ

(

u+
1

2
v · v + gz

))

+ ∇ ·
(

ρv

(

h+
1

2
v · v + gz

))

− ∂

∂t
(ρqmv) +

∂

∂t
(ρwmv)

)

dV = 0. (6.88)

As with the mass equation, since the integral is zero, in general we must expect the integrand
to be zero, giving us

∂

∂t

(

ρ

(

u+
1

2
v · v + gz

))

+ ∇ ·
(

ρv

(

h+
1

2
v · v + gz

))

− ∂

∂t
(ρqmv) +

∂

∂t
(ρwmv) = 0.

(6.89)

To get the standard control volume form of the equation, we then integrate (6.89) over
a fixed control volume V to get

∫

V

(
∂

∂t

(

ρ

(

u+
1

2
v · v + gz

))

+ ∇ ·
(

ρv

(

h+
1

2
v · v + gz

))

− ∂

∂t
(ρqmv) +

∂

∂t
(ρwmv)

)

dV = 0. (6.90)
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Now, defining the control volume heat transfer rate and work rate, Q̇cv and Ẇcv,

Q̇cv =

∫

V

∂

∂t
(ρqmv) dV, (6.91)

Ẇcv =

∫

V

∂

∂t
(ρwmv) dV, (6.92)

we employ (6.91) and (6.92) in (6.90) to get

∫

V

(
∂

∂t

(

ρ

(

u+
1

2
v · v + gz

))

+ ∇ ·
(

ρv

(

h+
1

2
v · v + gz

)))

dV = Q̇cv − Ẇcv.(6.93)

Applying the divergence theorem (6.2) to (6.93) to convert a portion of the volume integral
into an area integral, and (6.36) to bring the time derivative outside the integral for the fixed
volume, we get

d

dt

∫

V

ρ

(

u+
1

2
v · v + gz

)

dV

︸ ︷︷ ︸

Ecv

+

∫

A

ρv · n
(

h+
1

2
v · v + gz

)

dA = Q̇cv − Ẇcv. (6.94)

We now define the total energy in the control volume as

Ecv =

∫

V

ρ

(

u+
1

2
v · v + gz

)

dV. (6.95)

Next assume that all properties across entrances and exits are uniform so that the area
integral in (6.93) reduces to

∫

A

ρv · n
(

h+
1

2
v · v + gz

)

dA =

∑

ṁe

(

he +
1

2
ve · ve + gze

)

−
∑

ṁi

(

hi +
1

2
vi · vi + gzi

)

. (6.96)

Substituting (6.95) and (6.96) into (6.94), we get

dEcv

dt
+
∑

ṁe

(

he +
1

2
ve · ve + gze

)

−
∑

ṁi

(

hi +
1

2
vi · vi + gzi

)

= Q̇cv − Ẇcv. (6.97)

Rearranging (6.97), we get

dEcv

dt
︸ ︷︷ ︸

rate of CV energy change

= Q̇cv
︸︷︷︸

CV heat transfer rate

− Ẇcv
︸︷︷︸

CV shaft work rate

+
∑

ṁi

(

hi +
1

2
vi · vi + gzi

)

︸ ︷︷ ︸

total enthalpy rate in

−
∑

ṁe

(

he +
1

2
ve · ve + gze

)

︸ ︷︷ ︸

total enthalpy rate out

.(6.98)
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Here, (6.98) is equivalent to BS’s Eq. (6.7), p. 185. Note that the so-called total enthalpy is
often defined as

htot = h+
1

2
v · v + gz. (6.99)

Employing (6.99) in (6.98), we find

dEcv

dt
= Q̇cv − Ẇcv +

∑

ṁihtot,i −
∑

ṁehtot,e. (6.100)

Here, (6.100) is equivalent to BS’s (6.8), p. 185.
If there is a single entrance and exit, we lose the summation, so that (6.98) becomes

dEcv

dt
= Q̇cv − Ẇcv + ṁi

(

hi +
1

2
vi · vi + gzi

)

− ṁe

(

he +
1

2
ve · ve + gze

)

. (6.101)

If the flow is steady, we have dEcv/dt = 0 and ṁi = ṁe = ṁ, so the first law with a single
entrance and exit becomes

0 = Q̇cv − Ẇcv + ṁ

(

hi − he +
1

2
(vi · vi − ve · ve) + g(zi − ze)

)

. (6.102)

Defining the specific control volume heat transfer and work as

q =
Q̇cv

ṁ
, w =

Ẇcv

ṁ
, (6.103)

and substituting (6.103) into (6.102), we get

0 = q − w + hi − he +
1

2
(vi · vi − ve · ve) + g(zi − ze). (6.104)

Now, (6.104) can be rearranged to form BS’s (6.13), p. 187:

q + hi +
1

2
vi · vi + gzi = w + he +

1

2
ve · ve + gze. (6.105)

This looks more like the first law when we rearrange as

(

he +
1

2
ve · ve + gze

)

−
(

hi +
1

2
vi · vi + gzi

)

= q − w. (6.106)

If the flow is adiabatic, steady, has one entrance and one exit, and there is no shaft work,
we find that the total enthalpy must remain constant:

hi +
1

2
vi · vi + gzi = he +

1

2
ve · ve + gze. (6.107)
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6.2 Mass conservation in brief

Here, we summarize the key equations for mass conservation derived in the previous section.
We consider the mass enclosed in a fixed control volume V , Eq. (6.53):

mcv =

∫

V

ρdV. (6.108)

The density ρ can vary throughout V . In this class, we will nearly always take it to be
constant throughout the volume. If ρ is constant throughout V , then it can be brought
outside the integral operator, yielding mcv = ρ

∫

V
dV = ρV. Our control volume will have a

finite number of openings where fluid can enter and exit.
We state mass conservation for a control volume as

dmcv

dt
︸ ︷︷ ︸

rate of change of mass

=
∑

ρi|vi|Ai
︸ ︷︷ ︸

mass rate in

−
∑

ρe|ve|Ae
︸ ︷︷ ︸

mass rate out

, (6.109)

dmcv

dt
︸ ︷︷ ︸

rate of change of mass

=
∑

ṁi
︸ ︷︷ ︸

mass rate in

−
∑

ṁe
︸ ︷︷ ︸

mass rate out

. (6.110)

Equations (6.109, 6.110) were fully developed in the previous section where they appeared
as Eqs. (6.59, 6.60). Here, the fluid at an inlet i has density ρi, velocity vector vi and flows
through cross-sectional area Ai. An analogous set of variables exists at each exit e. Let us
look at the units of the important quantity ρ|v|A:

ρ|v|A→ kg

m3

m

s

m2

1
=
kg

s
. (6.111)

Obviously, it is a rate of mass flow; consequently, we define the mass flow rate as

ṁ ≡ ρ|v|A. (6.112)

Often we will neglect the vector notation and take |v| = v. Equation (6.110) expresses
mathematically the notion of mass conservation for the control volume:

• The time rate of accumulation of mass within the control volume is equal to the net
rate of mass flow into the control volume.

In short
accumulation = in - out.

In the important case in which there is no net accumulation rate, the so-called steady
state limit, we get

dmcv

dt
︸ ︷︷ ︸

=0

=
∑

ṁi −
∑

ṁe. (6.113)
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∑

ṁi =
∑

ṁe. (6.114)

Eq. (6.114) is the same as Eq. (6.62). If there is a single entrance and exit, then we simply
get

ṁi = ṁe = ṁ = constant. (6.115)

Example 6.1
Consider a control volume with three openings. A sketch is given in Fig. 6.9. The system is in a

1

2

3

T
1
 = 200 oC

P
1
 = 7 bar

m
1
 = 40 kg/s

x
3
 = 0

P
3
 = 7 bar

(Av)
3
 = 0.06 m3/s

A
2
 = 25 cm2

T
2 = 40 oC

P
2
 = 7 bar

.

water

Figure 6.9: Sketch for steady state control volume mass conservation example.

steady state, and water is the working fluid. Measurements at the openings shows conditions at each
to be

1. inlet with T1 = 200 ◦C, P1 = 7 bar, ṁ1 = 40 kg/s

2. inlet with A2 = 25 cm2, T2 = 40 ◦C, P2 = 7 bar.

3. exit with x3 = 0, P3 = 7 bar, (Av)3 = 0.06 m3/s.

Find ṁ3, ṁ2 and v2.

Our mass conservation equation is

dmcv

dt
=

∑

ṁi −
∑

ṁe, (6.116)

= ṁ1 + ṁ2 − ṁ3. (6.117)
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Now, because the problem is steady, d/dt = 0. Thus, there is no net accumulation of mass in the
control volume, and we must have

0 = ṁ1 + ṁ2 − ṁ3, (6.118)

ṁ2 = ṁ3 − ṁ1. (6.119)

Now, ṁ = ρvA = Av/v. So

ṁ3 =
(Av)3

v3
. (6.120)

Now, we have two properties at state 3, so we know the state. The water tables thus give us

v3 = vf = 0.001108
m3

kg
. (6.121)

so

ṁ3 =
0.06 m3

s

0.001108 m3

kg

= 54.1516
kg

s
. (6.122)

So

ṁ2 = ṁ3 − ṁ1 =

(

54.1516
kg

s

)

−
(

40
kg

s

)

= 14.1516
kg

s
. (6.123)

Now,

ṁ2 =
A2v2

v2
, (6.124)

v2 =
ṁ2v2

A2
. (6.125)

Now, state 2 is a compressed liquid. Let us estimate v2 by vf at T2 = 40 ◦C. We find this is
v2 = 0.001008 m3/kg. So

v2 =

(

14.1516 kg
s

)(

0.001008 m3

kg

)

(25 cm2)
(

1 m
100 cm

)2 , (6.126)

= 5.70594
m

s
. (6.127)

Example 6.2
A tank is initially empty. A liquid with ρ = 62.4 lbm/ft3 is poured into the tank at a constant

mass flow rate of ṁi = 7 lbm/s. The tank has cross-sectional area A = 0.2 ft2, and the fluid in the
tank has a variable height H(t). There is a hole at the bottom of the tank. The fluid flows out of the
tank at a rate proportional to the fluid height: ṁe = kH, where k = 1.4 lbm/ft/s. Find H(t). A
sketch is given in Fig. 6.10.

Our mass conservation law for the control volume says

dmcv

dt
= ṁi − ṁe. (6.128)
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m
e

.

m
i

.

H

Figure 6.10: Sketch of tank filling problem.

Now, mcv = ρV = ρAH(t). Substituting, we get

d

dt
(ρAH) = ṁi − kH, (6.129)

ρA
dH

dt
= ṁi − kH, (6.130)

dH

dt
=

ṁi

ρA
− k

ρA
H, (6.131)

dH

dt
=

ṁi

ρA

(

1 − k

ṁi
H

)

. (6.132)

The only variable here is H(t). Every other parameter is a known constant. We can separate variables
to get

dH

1 − k
ṁi

H
=

ṁi

ρA
dt, (6.133)

∫
dH

1 − k
ṁi

H
=

∫
ṁi

ρA
dt, (6.134)

−ṁi

k
ln

(

1 − k

ṁi
H

)

=
ṁi

ρA
t + C. (6.135)

Now, when t = 0, we have H = 0, so C = 0 and

− ṁi

k
ln

(

1 − k

ṁi
H

)

=
ṁi

ρA
t, (6.136)

ln

(

1 − k

ṁi
H

)

= − k

ρA
t, (6.137)

1 − k

ṁi
H = exp

(

− k

ρA
t

)

, (6.138)

H =
ṁi

k

(

1 − exp

(

− k

ρA
t

))

. (6.139)

Note

lim
t→∞

H(t) =
ṁi

k
. (6.140)
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Figure 6.11: Plot of H(t) for transient tank filling problem.

In the long time limit, a steady state height is reached where the flow out balances the flow in. If we
increase ṁi, the steady state height increases proportionally.

We also see by inspection that the time constant is

τ =
ρA

k
. (6.141)

This gives an estimate of how long it takes to reach the steady state height.
Substituting numbers, we find

H(t) =

(

7 lbm
s

1.4 lbm
ft s

)

1 − exp



−
1.4 lbm

ft s
(

62.4 lbm
ft3

)

(0.2 ft2)
t







 , (6.142)

H(t) = (5 ft)(1 − exp

(

− t

8.91429 s

)

. (6.143)

The time constant is τ = 8.91429 s; H(∞) is 5 ft. A plot of H(t) is shown in Figure 6.11. Note that
the physics of this problem would be better modeled by ṁe = k

√

H(t), as we shall see later in the
course. However, near the equilibrium state, our linear analysis can be shown to be appropriate. A
better capture of the initial transients would require the indicated modifications, and would necessitate
a numerical solution, rather than the closed form analytic solution given here.

6.3 Energy conservation in brief

We can state the first law of thermodynamics for a control volume as

dEcv

dt
︸ ︷︷ ︸

rate of CV energy change

= Q̇cv
︸︷︷︸

CV heat transfer rate

− Ẇcv
︸︷︷︸

CV shaft work rate

+
∑

ṁi

(

hi +
1

2
v2

i + gzi

)

︸ ︷︷ ︸

total enthalpy rate in

−
∑

ṁe

(

he +
1

2
v2

e + gze

)

︸ ︷︷ ︸

total enthalpy rate out

. (6.144)
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Here, Eq. (6.144) is equivalent Eq. (6.98) and to BS’s Eq. (6.7), p. 185. Note that the
so-called total enthalpy is often defined as

htot = h+
1

2
v2 + gz = u+

1

2
v2 + gz + Pv. (6.145)

Note that in this context, total enthalpy is on a per mass basis. The “total” comes from
summing internal, kinetic, potential, and Pv terms. Employing (6.145) in (6.144), we find

dEcv

dt
= Q̇cv − Ẇcv +

∑

ṁihtot,i −
∑

ṁehtot,e. (6.146)

Here, Eq. (6.146) is equivalent to Eq. (6.100) and to BS’s (6.8), p. 185. Eq. (6.146) expresses
mathematically the notion of energy conservation for the control volume:

• The time rate of accumulation of total energy within the control volume is equal the
rate of heat transfer into the control volume minus the rate of work done leaving the
control volume plus the net rate of total enthalpy entering the control volume.

The new terms here are attributable to total enthalpy entering and exiting the control
volume.

Again, the total enthalpy is the sum of the specific internal energy, the specific kinetic
energy, the specific potential energy and the term Pv. It is easy to imagine that Ecv, which
itself is composed of u, KE, and PE, is affected by the flow of u, KE, and PE into and out
of the control volume. However the term Pv is unusual. It is multiplied by ṁ. Let us check
the units:

ṁPv →
(
kg

s

)(
kN

m2

)(
m3

kg

)

=
kJ

s
= kW. (6.147)

It has the units of power. As shown in detail in the previous section,

• The term ṁPv embedded within the control volume energy equation within htot accounts
for the net work rate done by the fluid as it enters and exits the control surface bounding
the control volume.

• The term Ẇcv represents so-called shaft work and does not include work associated with
the expansion of the working fluid.

If there is a single entrance and exit, we lose the summation, so that (6.144) becomes

dEcv

dt
= Q̇cv − Ẇcv + ṁi

(

hi +
1

2
v2

i + gzi

)

− ṁe

(

he +
1

2
v2

e + gze

)

. (6.148)

If the flow is steady, we have dEcv/dt = 0 and ṁi = ṁe = ṁ, so the first law with a single
entrance and exit becomes

0 = Q̇cv − Ẇcv + ṁ

(

hi − he +
1

2
(v2

i − v2
e) + g(zi − ze)

)

. (6.149)

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


6.4. SOME DEVICES 169

Defining the specific control volume heat transfer and work as

q =
Q̇cv

ṁ
, w =

Ẇcv

ṁ
, (6.150)

and substituting (6.150) into (6.149), we get

0 = q − w + hi − he +
1

2
(v2

i − v2
e) + g(zi − ze). (6.151)

Now, (6.151) can be rearranged to form BS’s (6.13), p. 187:

q + hi +
1

2
v2

i + gzi = w + he +
1

2
v2

e + gze. (6.152)

This looks more like the first law when we rearrange as

(

he +
1

2
v2

e + gze

)

︸ ︷︷ ︸

outlet

=

(

hi +
1

2
v2

i + gzi

)

︸ ︷︷ ︸

inlet

+ q − w
︸ ︷︷ ︸

CV heat and work

. (6.153)

If the flow is adiabatic, steady, has one entrance and one exit, and there is no shaft work,
we find that the total enthalpy must remain constant:

hi +
1

2
v2

i + gzi = he +
1

2
v2

e + gze. (6.154)

6.4 Some devices

Here, we will consider rudiments of control volume analysis for some common engineering
devices.

6.4.1 Throttling device

A flow is throttled when, for example, it flows through a partially open valve. When it does
so, we notice that there can be a significant pressure loss from one side of the partially open
valve to the other. A sketch of a throttling device is given in Fig. 6.12.

We model a throttling device as steady with one entrance and exit, with no control
volume work or heat transfer. We neglect changes in area as well as potential energy. Mass
conservation tells us

dmcv

dt
︸ ︷︷ ︸

=0

= ṁ1 − ṁ2, (6.155)

0 = ṁ1 − ṁ2, (6.156)

ṁ1 = ṁ2 = ṁ. (6.157)
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1 2

Figure 6.12: Sketch of throttling device.

Energy conservation tells us that

dEcv

dt
︸ ︷︷ ︸

=0

= Q̇cv
︸︷︷︸

=0

− Ẇcv
︸︷︷︸

=0

+ṁ1

(

h1 +
v2
1

2
+ gz1

)

− ṁ2

(

h2 +
v2
2

2
+ gz2

)

, (6.158)

0 = ṁ




h1 − h2 +

v2
1

2
− v2

2

2
︸ ︷︷ ︸

∼0

+ gz1 − gz2
︸ ︷︷ ︸

=0




 . (6.159)

Now, in throttling devices there may be a change in velocity due to compressibility effects,
but it is observed to be small when the flow velocity is much less than the speed of sound.
We shall assume here the velocity is small relative to the speed of sound so as to recover
v1 ∼ v2 and thus

h1 = h2. (6.160)

So, we can say that such a throttling device is one in which pressure drops and enthalpy
remains constant.

Example 6.3
Let us throttle steam from P1 = 3 bar, T1 = 200 ◦C to P2 = 1 bar. Find T2.

We know two properties at state 1; therefore, its state is determined. At state 2, we know the
pressure and something about the path of the process which brought us to state 2. The process was
iso-enthalpic, so h2 = h1. From the tables, we find

h1 = 2865.5
kJ

kg
= h2. (6.161)

So at state 2, we have P2 = 1 bar, h2 = 2865.5 kJ/kg. We interpolate the steam tables to find

T2 = 195.04 ◦C. (6.162)

Note for steam, the enthalpy remained constant, but the temperature dropped. If the material had
been an ideal gas, the temperature drop would have been zero, since for ideal gases, the enthalpy is
related only to temperature.
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6.4.2 Nozzles and diffusers

Similar to a throttling device, we model nozzles and diffusers as steady with one entrance
and exit, with no control volume work. We may or may not neglect heat transfer. We neglect
potential energy changes but take kinetic energy changes into account.

A nozzle is a device which induces a velocity increase; a diffuser is a device which induces
a velocity decrease. For flows with subsonic velocities, nozzles have area decrease in the
flow direction, while diffusers have area increases with the flow direction. We sketch these
common configurations in Fig. 6.13. If one systematically applied the conservation of mass,

subsonic
nozzle

subsonic
diffuser

1

2 1

2

Figure 6.13: Sketch of subsonic nozzle and diffuser.

momentum, and energy principles, after detailed analysis, one finds the converse state of
affairs for supersonic flow conditions. Supersonic nozzles have increasing area; supersonic
diffusers have decreasing area. This is why in the design of rocket nozzles, the cross-sectional
area broadens at the base. The broadening area induces a higher velocity, and induces a
higher thrust for a supersonic rocket engine.

We analyze nozzles and diffusers as follows. Mass conservation tells us

dmcv

dt
︸ ︷︷ ︸

=0

= ṁ1 − ṁ2, (6.163)

ṁ1 = ṁ2 = ṁ. (6.164)
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Energy conservation tells us

dEcv

dt
︸ ︷︷ ︸

=0

= Q̇cv − Ẇcv
︸︷︷︸

=0

+ṁ1

(

h1 +
v2
1

2
+ gz1

)

− ṁ2

(

h2 +
v2
2

2
+ gz2

)

, (6.165)

0 = Q̇cv + ṁ



h1 − h2 +
v2
1

2
− v2

2

2
+ gz1 − gz2
︸ ︷︷ ︸

=0



 , (6.166)

0 =
Q̇cv

ṁ
+ h1 − h2 +

v2
1

2
− v2

2

2
. (6.167)

If the nozzle or diffuser is also adiabatic, we get

h1 +
v2
1

2
= h2 +

v2
2

2
. (6.168)

6.4.3 Turbine

A turbine is a device in which work is generated through expansion of a fluid as it passes
through a fan-like device. The fluid interacts with the blades and turns the fan. Ultimately
thermal and mechanical energy is transferred from the fluid into the rotational kinetic energy
of the fan blades. A sketch of a turbine is given in Fig. 6.14. For a turbine, we typically

P
high

P
low

v
i

v
e

Figure 6.14: Highly simplified sketch of turbine.

neglect kinetic and potential energy changes of the fluid. We may or may not neglect heat
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transfer. We also neglect any unsteady effects. Mass conservation tells us

dmcv

dt
︸ ︷︷ ︸

=0

= ṁ1 − ṁ2, (6.169)

ṁ1 = ṁ2 = ṁ. (6.170)

Energy conservation tells us

dEcv

dt
︸ ︷︷ ︸

=0

= Q̇cv − Ẇcv + ṁ1

(

h1 +
v2
1

2
+ gz1

)

− ṁ2

(

h2 +
v2
2

2
+ gz2

)

, (6.171)

0 = Q̇cv − Ẇcv + ṁ




h1 − h2 +

v2
1

2
− v2

2

2
︸ ︷︷ ︸

=0

+ gz1 − gz2
︸ ︷︷ ︸

=0




 , (6.172)

0 = Q̇cv − Ẇcv + ṁ(h1 − h2), (6.173)

Ẇcv = Q̇cv + ṁ(h1 − h2). (6.174)

We often neglect Q̇cv to get

Ẇcv = ṁ(h1 − h2). (6.175)

On a per mass basis, we can scale by ṁ to get

w = h1 − h2. (6.176)

For turbines, h1 > h2, so we get w > 0. The device is doing work.

6.4.4 Pumps and compressors

The analysis for a pump or compressor is effectively identical to that for a turbine. However
the device operates in an opposite sense. Mechanical energy from either rotating (like a
compressor in a jet engine) or reciprocating machinery (like a piston-cylinder arrangement)
is transferred to the working fluid, raising its energetic state. We typically neglect changes
in kinetic and potential energy of the fluid and consider the device to be in a steady state.
We sometimes neglect heat transfer to the device.

The analysis is as follows. Mass conservation tells us

dmcv

dt
︸ ︷︷ ︸

=0

= ṁ1 − ṁ2, (6.177)

ṁ1 = ṁ2 = ṁ. (6.178)
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Energy conservation tells us

dEcv

dt
︸ ︷︷ ︸

=0

= Q̇cv − Ẇcv + ṁ1

(

h1 +
v2
1

2
+ gz1

)

− ṁ2

(

h2 +
v2
2

2
+ gz2

)

, (6.179)

0 = Q̇cv − Ẇcv + ṁ




h1 − h2 +

v2
1

2
− v2

2

2
︸ ︷︷ ︸

=0

+ gz1 − gz2
︸ ︷︷ ︸

=0




 , (6.180)

0 = Q̇cv − Ẇcv + ṁ(h1 − h2), (6.181)

Ẇcv = Q̇cv + ṁ(h1 − h2). (6.182)

We often neglect Q̇cv to get

Ẇcv = ṁ(h1 − h2). (6.183)

On a per mass basis, we can scale by ṁ to get

w = h1 − h2. (6.184)

For pumps and compressors, h1 < h2, so we get w < 0. The device requires an input of
work.

6.4.5 Heat exchanger

A heat exchanger is a device in which a working fluid trades its thermal energy with another
working fluid. A sketch of a heat exchanger is given in Fig. 6.15. For heat exchangers, we

T
1,hot

T
1,cold

T
2,hot

T
2,cold

Figure 6.15: Sketch of counterflow heat exchanger.

typically neglect all work, as well as changes in kinetic and potential energy. Also

• there will be exchange of thermal energy between individual flow streams, but

• globally for the entire device, there will be no heat transfer with the environment.
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Let us consider a counterflow heat exchanger. The mass balance for steady flow is trivial.
The energy balance, neglecting changes in KE and PE states

dEcv

dt
︸ ︷︷ ︸

=0

= Q̇cv
︸︷︷︸

=0

− Ẇcv
︸︷︷︸

=0

+
∑

i

ṁihi −
∑

e

ṁehe. (6.185)

Applying this to the counterflow heat exchanger gives

ṁ1h1,hot + ṁ2h2,cold = ṁ1h1,cold + ṁ2h2,hot, (6.186)

ṁ1 (h1,hot − h1,cold) = ṁ2 (h2,hot − h2,cold) . (6.187)

Example 6.4
Given an adiabatic air turbine with ṁ = 1.5 kg/s with the following inlet and exit conditions

• Pi = 1000 kPa,

• Ti = 1200 K,

• Pe = 100 kPa,

• Te = 700 K,

calculate the work output of the turbine assuming i) CPIG, ii) CIIG, and neglecting changes in kinetic
and potential energy. We have a simple sketch in Fig. 6.16.

turbine
i e

Figure 6.16: Sketch of turbine problem.

The first law for both CPIG and CIIG is the same. It is, after neglecting changes of kinetic and
potential energy,

dEcv

dt
︸ ︷︷ ︸

=0

= Q̇cv
︸︷︷︸

=0

−Ẇcv + ṁhi − ṁhe. (6.188)

Because this problem is adiabatic and steady, we get

Ẇcv = ṁ(hi − he). (6.189)

Our estimate of the work output will depend on which caloric state equation we choose.
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• CPIG. For a CPIG, we have
hi − he = cP (Ti − Te). (6.190)

For ideal gases we have, cP −cv = R and k = cP /cv. The second of these gives cv = cP /k. Substituting
into the first gives

cP − cP

k
= R, (6.191)

cP

(

1 − 1

k

)

= R, (6.192)

cP

(
k − 1

k

)

= R, (6.193)

cP =
k

k − 1
R. (6.194)

For diatomic gases at moderate temperatures, we have k = 7/5; thus,

cP =
k

k − 1
R =

7
5

7
5 − 1

R =
7

2
R, cv =

1

k − 1
R =

1
7
5 − 1

R =
5

2
R. (6.195)

So

cP =
7
5

7
5 − 1

(

0.287
kJ

kg K

)

= 1.0045
kJ

kg K
, (6.196)

cv =
1

7
5 − 1

(

0.287
kJ

kg K

)

= 0.7175
kJ

kg K
. (6.197)

Note these are the same values listed in Table A.5 of BS.

So for the turbine work output, we get

Ẇcv = ṁcP (Ti − Te) =

(

1.5
kg

s

)(

1.0045
kJ

kg K

)

((1200 K) − (700 K)) = 753.375 kW. (6.198)

• CIIG. For the CIIG, we have a few choices. We could use Table A.6 of BS to estimate cP at an
intermediate temperature, and then treat it as a constant. We could form the integral

∫ e

i
cP (T )dT .

Or we could use the ideal gas tables, Table A.7.1 of BS. Let us do the third method. At Ti = 1200 K,
we find

hi = 1277.81
kJ

kg
. (6.199)

At Te = 700 K, we find

he = 713.56
kJ

kg
. (6.200)

So

Ẇcv = ṁ(hi − he) =

(

1.5
kg

s

)((

1277.81
kJ

kg

)

−
(

713.56
kJ

kg

))

= 846.375 kW. (6.201)

The two methods yield similar results. Use of the more accurate CIIG reveals there is more useful work
that can be expected when we take actual material behavior into account. This is because the high
temperature gas has some extra energy stored in its vibrational modes which was unaccounted for by
the CPIG model. Recall our CPIG model did account for rotational modes in taking cv = 5/2R. But
as can be seen from examining Fig. 5.12, for diatomic molecules in air, such as O2, cv/R > 5/2 for our
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temperatures of T ∈ [700 K, 1200 K]. Presumably, molecular vibration is relevant at these elevated
temperatures; in particular, the enhanced work predicted by the CIIG model is a manifestation of
accounting for the additional energy available which was initially bound into vibrational modes at high
temperature. The CIIG model properly accounts for this.

Example 6.5
Given a steam turbine with ṁ = 1.5 kg/s, Q̇cv = −8.5 kW with the following inlet and exit

conditions

• Pi = 2 MPa,

• Ti = 350 ◦C,

• vi = 50 m
s ,

• zi = 6 m,

• Pe = 0.1 MPa,

• xe = 1,

• ve = 200 m
s ,

• ze = 3 m,

find the power output. The same simple sketch of Fig. 6.16 applies.

The first law states

dEcv

dt
︸ ︷︷ ︸

=0

= Q̇cv − Ẇcv + ṁ

(

hi +
v2
i

2
+ gzi

)

− ṁ

(

he +
v2
e

2
+ gze

)

, (6.202)

Ẇcv = Q̇cv + ṁ

(

hi − he +
1

2
(v2

i − v
2
e) + g(zi − ze)

)

. (6.203)

From the steam tables, we learn

hi = 3137
kJ

kg
, he = 2675.5

kJ

kg
. (6.204)

So

Ẇcv = (−8.5 kW ) +

(

1.5
kg

s

)((

3137
kJ

kg

)

−
(

2675.5
kJ

kg

)

+
1

2

(
kJ

1000 J

)((

50
m

s

)2

−
(

200
m

s

)2
)

+
9.81 m

s2

1000 J
kJ

((6 m) − (3 m))

)

, (6.205)

= (−8.5 kW ) +

(

1.5
kg

s

)








(

461.6
kJ

kg

)

︸ ︷︷ ︸

=∆h

−
(

18.75
kJ

kg

)

︸ ︷︷ ︸

=∆KE

+

(

0.0294
kJ

kg

)

︸ ︷︷ ︸

=∆PE








, (6.206)

= 655.7 kW. (6.207)

Note
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• The dominant term is the ∆h term. Kinetic and potential energy changes, as well as heat transfer
effects are small in comparison. This is typical for turbines.

• The factor of 1000 is necessary to give the units of specific kinetic and potential energy changes kJ/kg.
Let us quickly check the units for kinetic energy, here without the factor of 1000:

J

kg
=

N m

kg
=

kg m2

s2 kg
=

m2

s2
. (6.208)

6.5 Introduction to the Rankine cycle

Consider the

• Rankine cycle: a thermodynamic cycle which forms the foundation for most steam
power plants.

The cycle was studied analytically by Rankine,13 depicted in Fig. 6.17. We will consider

Figure 6.17: William John Macquorn Rankine (1820-1872), Scottish engineer who sys-
tematically studied and published discussion of steam power cycles. Image from
http://en.wikipedia.org/wiki/William John Macquorn Rankine.

additional nuances of the Rankine cycle in Sec. 10.1.
The key features of the Rankine cycle are

13W. J. M. Rankine, 1859, A Manual of the Steam Engine and Other Prime Movers, Griffin, London.
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• 1 → 2: compression of a liquid by a pump,

• 2 → 3: boiling of the liquid to form a vapor,

• 3 → 4: expansion of the vapor through a turbine, and

• 4 → 1: condensation of the vapor to liquid in a condenser.

A sketch of the Rankine cycle in the P − v plane is given in Fig. 6.18. The Rankine

1

2 3

4

pump

boiler

turbine

condenser

P

v

Figure 6.18: Sketch of Rankine cycle in the P − v plane.

cycle forms the cornerstone of a wide variety of power generating devices in the world today.
Whether the heat source comes from burning coal, natural gas, fuel oil, garbage, nuclear
fission, solar energy, or some other source, it can always be used to boil water, which is
the key feature of the Rankine cycle. Most modern power plants are considerably more
complicated than the simple outline given here. Some are equipped to use a variety of
fuels. Often coal burning components are used continuously for so-called base loads and
are supplemented during peak consumption hours by natural gas. Some modern plants use
natural gas for base loads. Some cycles are equipped for district heating and cooling, some
for electric power generation, some for nautical propulsion.

Example 6.6
Consider the Rankine cycle sketched in Fig. 6.19 for generation of power. The conditions of the

steam are indicated in Fig. 6.19. The cycle includes some of the effect of losses; thus, it is not an ideal
Rankine cycle. But it is close. Find, on a per unit mass basis,

• the heat transfer in the line between the boiler and the turbine,

• the turbine work,

• the heat transfer in the condenser, and
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boiler

turbine

condenser

pump

2
q

3

1
w

2
 = -4 kJ/kg

4
q

1

3 3a

4

1

2

P
3
 = 2 MPa

T
3
 = 300 oC

P
3a
 = 1.9 MPa

T
3a
 = 290 oC

3a
w

4

P
4
 = 15 kPa

x
4
 = 0.9

P
1
 = 14 kPa

T
1
 = 45 oC

Figure 6.19: Sketch of steam power cycle, known as the Rankine cycle.

• the heat transfer in the boiler.

For illustration, Fig. 6.20 shows photographs of some elements of the University of Notre Dame
Power Plant configured in a way which reflects the rudimentary Rankine cycle. The actual plant is
more complex than indicated in Fig. 6.20. It contains additional elements for cooling, heating with gas
and oil, and pollution removal. A full analysis is beyond the scope of these notes.

We use the steam tables for our equation of state. We can model this as a steady state system
composed of devices with one inlet and one exit. We can neglect changes in KE and PE. For any such
device, the mass flow rate ṁ is constant, and the energy balance gives

dEcv

dt
︸ ︷︷ ︸

=0

= Q̇cv − Ẇcv + ṁ(hi − he), (6.209)

0 = q − w + hi − he. (6.210)

• Work in pump. Let us assume an ideal pump, which is adiabatic, 1q2 = 0. Work is done by the
pump on the fluid in compressing it. A pump restores the high pressure to the fluid to compensate
for frictional losses.

1w2 = hi − he = h1 − h2. (6.211)

We go to the tables and find h1 = 188.45 kJ/kg. Now, we know 1w2 = −4 kJ/kg, so this lets us
calculate h2 via

h2 = h1 − 1w2 =

(

188.45
kJ

kg

)

−
(

−4
kJ

kg

)

= 192.45
kJ

kg
. (6.212)

Note:

– The pump work is relatively small, as will be seen by comparison to later calculations of work
and heat transfers for other devices.

• Heat transfer in boiler. A boiler is an active device in which thermal energy of perhaps combustion
or nuclear reaction is used to boil water. The tables tell us that h3 = 3023.5 kJ/kg. There is no work
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boiler turbine

condenserpump

Figure 6.20: Elements of the University of Notre Dame Power Plant, configured in an over-
simplified manner, 14 June 2010.

in a boiler, so 2w3 = 0, and the first law becomes

2q3 = he − hi = h3 − h2, (6.213)

=

(

3023.5
kJ

kg

)

−
(

192.45
kJ

kg

)

= 2831.1
kJ

kg
. (6.214)

Note

– The heat transfer to the boiler, 2q3 > 0, so the thermal energy is entering the device.

• Heat transfer in line between boiler and turbine. For the flow in the pipe, there is no external shaft
work, so 3w3a = 0, and thus

3q3a = he − hi = h3a − h3. (6.215)
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From double interpolation of the steam tables, h3a = 3002.5 kJ/kg, so

3q3a =

(

3002.5
kJ

kg

)

−
(

3023.5
kJ

kg

)

= −21
kJ

kg
. (6.216)

– Because the thermal energy leaves the pipe, 3q3a < 0. In general we will find that q will be
path-dependent. For this type of analysis, it reduces to differences in the end states.

– Note that P drops because of friction in the pipes.

– Note that T drops because of heat transfer to the surroundings.

– Most importantly, note that we easily determined a quantity of global importance with data
that was easily measured at the inlet and exit of the pipe. We did not need to consider the
detailed fluid and thermal fields within the pipe.

• Turbine work. We assume an ideal turbine, which is adiabatic, 3aq4 = 0, so

3aw4 = hi − he = h3a − h4. (6.217)

Now, we know h3a already. For h4, we have

h4 = hf + x4hfg, at P4 = 15 kPa, (6.218)

=

(

225.94
kJ

kg

)

+ (0.9)

(

2373.1
kJ

kg

)

, (6.219)

= 2361.7
kJ

kg
. (6.220)

Thus,

3aw4 =

(

3002.5
kJ

kg

)

−
(

2361.7
kJ

kg

)

= 640.8
kJ

kg
. (6.221)

Note

– the pressure P drops as the steam expands through the turbine,

– the work 3aw4 > 0, which indicates the turbine is doing work, and

– the function of a turbine is precisely that: to do work.

• Heat transfer in condenser. A condenser is just a place for steam to convert to liquid water. It is a
passive device. So 4w1 = 0. The first law reduces to

4q1 = he − hi = h1 − h4. (6.222)

We know h4. And h1 is a compressed liquid state. Let us approximate h1 using the saturated liquid
value at T = 45 ◦C; thus, h1 = 188.45 kJ/kg. So

4q1 =

(

188.45
kJ

kg

)

−
(

2361.7
kJ

kg

)

= −2173.25
kJ

kg
. (6.223)

Note:

– the heat transfer 4q1 < 0 because thermal energy leaves the condenser to the surroundings. This
is why cooling lakes near power plants are warmer than they otherwise would be.
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Process ∆h
(

kJ
kg

)

q
(

kJ
kg

)

w
(

kJ
kg

)

1 → 2 4 0 -4
2 → 3 2831.1 2831.1 0

3 → 3a -21 -21 0
3a→ 4 -640.8 0 640.8
4 → 1 -2173.25 -2173.25 0
Total 0 636.8 636.8

Table 6.1: First law analysis summary for our non-ideal Rankine cycle.

This problem is an example of a thermodynamic cycle. This particular cycle is important because it
is the foundation of most electrical power generation in the world, as well as many other applications.
We can introduce the concept of a cycle thermal efficiency, η as the ratio of what we want to what we
pay for. Here, we want net work, which is the difference of the turbine work and the pump work, and
we pay for the heat transfer into the boiler. Mathematically, we have

η =
what we want

what we pay for
, (6.224)

=
wcycle

qin
, (6.225)

=
wturbine + wpump

qboiler
, (6.226)

=
3aw4 + 1w2

2q3
, (6.227)

=

(

640.8 kJ
kg

)

+
(

−4 kJ
kg

)

2831.1 kJ
kg

, (6.228)

= 0.225. (6.229)

This is a low efficiency by modern standards. Later we shall use the second law of thermodynamics to
calculate the peak efficiency of a steam power plant. That analysis will reveal that the peak efficiency
for this plant is η = 0.445.

In a spirit similar to that of double-entry accounting, we summarize the key energy balances in
Table 6.1. Note there is some small round-off error due mainly due to significant digits and interpolation
that has been ignored in Table 6.1. Each row must maintain the control volume balance ∆h = q − w.
Each column must add to form its total. Because h is a state property, the net ∆h for the cycle must
be zero. And to satisfy the first law for the cycle, the total q must equal the total w.

There is another useful way to formulate the thermal efficiency. We can begin with Eq. (6.227) and
say

η =
3aw4 + 1w2

2q3
. (6.230)
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Using Eqs. (6.211,6.213), we can reform Eq. (6.230) as

η =
(h3a − h4) + (h1 − h2)

h3 − h2
, (6.231)

=
h3a − h3 + h3 − h4 + h1 − h2

h3 − h2
, (6.232)

=
(h3a − h3) + (h3 − h2) + (h1 − h4)

h3 − h2
, (6.233)

= 1 − (h3 − h3a) + (h4 − h1)

h3 − h2
. (6.234)

And with the net heat entering as qin = h3 − h2 and the net heat loss as qout = (h3 − h3a) + (h4 − h1),
we can express Eq. (6.234) as

η = 1 − qout

qin
=

qin − qout

qin
=

wcycle

qin
. (6.235)

The local steam power plant at the University of Notre Dame runs on a variant of the Rankine
cycle. This particular power plant relies on a local source, St. Joseph’s Lake, for its cooling water. On
a cold winter day, the effect of the power plant on St. Joseph’s Lake, relative to the nearby St. Mary’s
Lake, which has no connection to the power plant, is dramatic. Fig. 6.21 shows the two lakes on the
same day. The power plant also generates steam for heating of the buildings on campus which requires

Figure 6.21: St. Joseph’s Lake (left) and St. Mary’s Lake (right) on the University of Notre
Dame campus, 14 February 2010, demonstrating the effect of exchanging heat with the
condenser of the Notre Dame power plant near St. Joseph’s Lake.

many underground steam lines. The effect of heat loss is the lines is obvious on many winter days on
the Notre Dame campus as is evident from Fig. 6.22.

Example 6.7
A well insulated chamber with V = 1 ft3 initially contains air at P = 14.7 lbf/in2, T = 100 ◦F .

See Fig. 6.23. Intake and exhaust valves are opened, and air enters and exits at 1 lbm/min through
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Figure 6.22: Zones of melted snow in regions near underground steam lines on the University
of Notre Dame campus, 14 February 2010.

air initially at
P = 14.7 psia
T = 100 oF 

1 2

P = 30 psia
T = 200 oF
m = 1 lbm/min
air

.

Figure 6.23: Sketch of transient thermal mixing problem.

each valve. The entering air is at P = 30 lbf/in2, T = 200 ◦F . Assume the air is well mixed so that
P and T are uniform throughout the chamber. Find P (t), T (t).

The temperatures are moderate, so it is not a problem to model air as a CPIG. For a CPIG, we
have

P
V

m
= RT, (6.236)

dh = cP dT, (6.237)

du = cvdT. (6.238)

The mass and energy evolution equations for the control volume are, respectively,

dmcv

dt
= ṁ1 − ṁ2, (6.239)

dEcv

dt
= Q̇cv − Ẇcv + ṁ1

(

h1 +
v2
1

2
+ gz1

)

− ṁ2

(

h2 +
v2
2

2
+ gz2

)

. (6.240)

Let us find the initial mass in the control volume. At t = 0 s, we have

m =
PV

RT
=

PV
R
M T

=

(

14.7 lbf
in2

)(

144 in2

ft2

) (
1 ft3

)

1545 lbf ft
lbmole ◦R

28.97 lbm
lbmole

(100 + 460 ◦R)
= 0.0709 lbm. (6.241)
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Now, the mass balance gives
dmcv

dt
= ṁ1 − ṁ2, (6.242)

with ṁ1 = ṁ2 = (1 lbm/min)(min/60 s) = (1/60) lbm/s.

dmcv

dt
=

(
1

60

lbm

s

)

−
(

1

60

lbm

s

)

= 0, (6.243)

mcv = constant = 0.0709 lbm. (6.244)

Now, for the energy equation, we can neglect changes in kinetic and potential energies. The volume is
insulated, so Q̇cv = 0. And there is no shaft work, so Ẇcv = 0. So the energy balance reduces to

dEcv

dt
= ṁ1h1 − ṁ2h2. (6.245)

Now, since ṁ1 = ṁ2 = ṁ, and since Ecv = Ucv = mcvucv when KE and PE are neglected, the energy
equation reduces to

d

dt
(mcvucv) = ṁ(h1 − h2). (6.246)

Since mcv is constant, and since du = cvdT , where cv is constant for a CPIG, we get

mcvcv
dTcv

dt
= ṁ(h1 − h2). (6.247)

Now, h1 is known from the inlet conditions. After mixing, the exit enthalpy takes on the value of the
enthalpy in the chamber. So we have from the caloric state equation for h that

h1 − h2 = cP (T1 − Tcv). (6.248)

Thus, the energy equation becomes

mcvcv
dTcv

dt
= ṁcP (T1 − Tcv). (6.249)

We also have the initial condition T (0) = To. We rewrite the energy equation, Eq. (6.249), as

dTcv

dt
=

ṁ

mcv

cP

cv
︸︷︷︸

=k

(T1 − Tcv). (6.250)

dTcv

dt
=

ṁ

mcv
k(T1 − Tcv). (6.251)

Note the temperature is equilibrated when Tcv = T1. We expect after a long time that the entire system
acquires the character of the inlet after all the old material is flushed from the control volume. The
question now is how long is the flushing time? To answer this, we must solve a differential equation.
Let us separate variables to get

dTcv

T1 − Tcv
=

ṁ

mcv
kdt, (6.252)

− ln(T1 − Tcv) =
ṁ

mcv
kt + C, (6.253)

T1 − Tcv = exp

(

− ṁ

mcv
kt − C

)

, (6.254)

T1 − Tcv = C ′ exp

(

− ṁ

mcv
kt

)

. (6.255)
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At the initial state, we get

T1 − To = C ′. (6.256)

Thus

Tcv = T1 − (T1 − To) exp

(

− ṁ

mcv
kt

)

. (6.257)

Note that as t → ∞, Tcv → T1. Also note by inspection, the time constant of relaxation is

τ =
mcv

ṁ

1

k
. (6.258)

So the time to equilibrium is short if

• the input forcing ṁ is large, or

• the mass in the control volume, mcv, is small.

For us, the time constant is

τ =
0.0709 lbm
(

7
5

) (
1
60

lbm
s

) = 3.04 s. (6.259)

So the temperature variation is

Tcv(t) = (660 ◦R) − ((660 ◦R) − (560 ◦R)) exp

(

− t

3.04 s

)

. (6.260)

Tcv(t) = (660 ◦R) − (100 ◦R) exp

(

− t

3.04 s

)

. (6.261)

For the pressure, we have PV = mRT , so

Pcv(t) =
mRTcv(t)

V
, (6.262)

=

(0.0709 lbm)

(
1545 ft lbf

lbmole ◦R

28.97 lbm
lbmole

)
(
(660 ◦R) − (100 ◦R) exp

(
− t

3.04 s

))

1 ft3
ft2

144 in2
. (6.263)

So the pressure is

Pcv(t) = (17.33 psia) − (2.6258 psia) exp

(

− t

3.04 s

)

. (6.264)

A plot of T (t) and P (t) is given in Fig. 6.24. Note, the final pressure is not the inlet pressure.
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Figure 6.24: Plots of T (t) and P (t) for transient thermal mixing problem.

6.6 Preview: equations of continuum mechanics

This course focuses on mass and energy conservation coupled with equations of state for sys-
tems which are well modeled as equilibrium processes. We can do many important problems
with these tools. However, there are many problems which we cannot do with these tools,
e.g. problems with coupled time and space dependency, or problems with detailed material
motion.

Let us, as a preview for future courses, write various related sets of partial differential
equations which can couple equilibrium thermodynamics with mechanics.

6.6.1 Full set

We first give a summary of a reasonably complete and general set of equations for a continuum
material. One way to write these equations is as follows:

∂ρ

∂t
+ ∇ · (ρv) = 0 mass, (6.265)

∂

∂t
(ρv) + ∇ · (ρvv) = ρg −∇P + ∇ · τ , linear momenta, (6.266)

τ T = τ , angular momenta, (6.267)

∂

∂t

(

ρ

(

u+
1

2
v · v

))

+ ∇ ·
(

ρv

(

u+
1

2
v · v

))

= −∇ · q −∇ · (Pv)

+∇ · (τ · v) + ρv · g,
energy. (6.268)

Equations (6.265-6.268) are the axioms of mass conservation, linear momentum conservation,
angular momenta conservation, and energy conservation, respectively. They are valid for any
pure material, be it solid, liquid, or gas, as long as we are at velocities small relative to the
velocity of light. New variables here include the deviatoric stress tensor τ , and the heat flux
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vector q. The vector g is the constant gravitational acceleration. It is easily modified for
variable gravitational acceleration.

The conservation axioms are necessary but not sufficient to determine all flow variables.
They must be supplemented by constitutive relations. Constitutive relations specify the
actual material. A general set is given here.

P = P (ρ, T ), thermal EOS, (6.269)

u = u(ρ, T ), caloric EOS, (6.270)

q = q(T,∇T, . . . ), heat flux, (6.271)

τ = τ (T,∇v,∇x, . . . ), stress. (6.272)

Equation (6.269) is a thermal equation of state. An example is the ideal gas law P = ρRT .
Equation (6.270) is a caloric equation of state. An example is a calorically perfect ideal
gas, u = cv(T − To) + uo. Equation (6.271) is a relation between the heat flux vector and
other state variables. An example is Fourier’s law, q = −k∇T. Equation (6.272) is a relation
between the deviatoric stress and a variety of variables. For example, a Newtonian fluid
obeying Stokes’ assumption has τ = µ(∇v + (∇v)T ) − (1/3)(∇ · v)I. This relates stress to
strain rate. On the other hand, the stress in a solid would be related to the strain, instead
of the strain rate.

6.6.2 Static solids equations

For a static solid, we take v = 0 and the density constant. The mass equation becomes
irrelevant, as does the angular momenta equation. The linear momenta equation reduces to
a force balance, since inertia is zero. We take the total stress tensor σ = τ − P I, where I is
the identity matrix.

∇ · σ = −ρg, linear momenta. (6.273)

σ =
E

1 + ν

(

e +
ν

1 − 2ν
Tr(e)I

)

, stress-strain relation. (6.274)

Here, E is the modulus of elasticity, ν is Poisson’s ratio (−1 ≤ ν ≤ 1/2), and e is the strain.

6.6.3 Incompressible fluid mechanics equations

In the discipline of incompressible fluid mechanics, we typically take ρ to be a constant,
we ignore the kinetic energy of the fluid, consider fluid properties such as viscosity and
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conductivity to be constant, and reduce our equations to the following set

∇ · v = 0, mass, (6.275)

ρ

(
∂v

∂t
+ v · ∇v

)

= ρg −∇P + µ∇2v, linear momenta, (6.276)

τ T = τ , angular momenta, (6.277)

ρcP

(
∂T

∂t
+ v · ∇T

)

= k∇2T, energy, (6.278)

τ = µ(∇v + (∇v)T ), stress-strain rate, (6.279)

q = −k∇T, Fourier’s law (6.280)

The thermodynamic state equations are not particularly important here. Moreover, the mass
and linear momenta equations form an independent set. The energy equation is coupled to
to mass and momenta equations because of the velocity vector.

6.6.4 Compressible fluid mechanics equations

In compressible aerodynamics, we account for density changes and thermodynamics, but
usually neglect gravity, viscosity and heat conduction. Our equations reduce to, for a CPIG,

∂ρ

∂t
+ ∇ · (ρv) = 0, mass, (6.281)

ρ

(
∂v

∂t
+ v · ∇v

)

= −∇P, linear momenta, (6.282)

(
∂u

∂t
+ v · ∇u

)

= −P
(
∂v

∂t
+ v · ∇v

)

, energy, (6.283)

P = ρRT, thermal state, (6.284)

u = cvT + uo, caloric state. (6.285)

Notice the energy equation is simply the familiar du/dt = −Pdv/dt, when d/dt is interpreted
as ∂/∂t+ v · ∇.

6.6.5 Heat transfer in incompressible static solids

For heat transfer in static solids, we require v = 0. Moreover, there is no work. We take
a calorically perfect solid with constant thermal conductivity k which obeys Fourier’s law
q = −k∇T and get the first law of thermodynamics to reduce to the simple scalar equation
known to Fourier in the early nineteenth century:

ρc
∂T

∂t
= k∇2T, energy. (6.286)
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Chapter 7

The second law of thermodynamics

Read BS, Chapter 7

Conservation of mass and energy are fine concepts that allow us to quantify and predict well
many phenomena which are observed in nature. And if a phenomenon can be repeated, it
becomes subject to prediction, and can be thought of as a science.

However, conservation of mass and energy, by themselves, admit as possibilities phenom-
ena which are not observed in nature! For instance consider an isolated system composed of
two equal masses of liquid water. See Fig. 7.1. The first is at TA = 310 K, the second is at

A B

T = 310 K     T = 290 K

A B

T = 320 K    T = 280 K

A B

T = 300 K    T = 300 K

t      ∞

not observed in nature

observed in nature

Figure 7.1: Sketch of two scenarios, both of which satisfy mass and energy conservation.

TB = 290 K. A long time elapses. Because the combined system is isolated, there are no
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192 CHAPTER 7. THE SECOND LAW OF THERMODYNAMICS

external heat or work exchanges with the environment. But we will allow heat exchanges
between mass A and mass B. Consider two possibilities, both admitted by mass and energy
conservation, as t→ ∞:

• TA → 320 K, TB → 280 K. The thermal energy that is gained by A is lost by B, such
that the net energy is conserved and the first law is satisfied. This is never observed
in nature.

• TA → 300 K, TB → 300 K. The thermal energy that is lost by A is gained by B, so
once again the first law is satisfied. This is always observed in nature.

So mass conservation and the first law of thermodynamics, both of which speak to this
gedankenexperiment, are insufficient to guarantee that we will predict what is observed in
nature. We need another axiom!

In a similar way, there are a variety of phenomena which may satisfy mass and energy
conservation, but are not observed in nature. Some include

• water running uphill without an external assist,

• CO2 and H2O reacting spontaneously to form CH4 and O2, and

• air separating into its constituents spontaneously.

7.1 Statements of the second law

The second law of thermodynamics is an attempt to provide a single all-encompassing state-
ment which expands our thermodynamic theory so as to predict the just-described behavior.
Though our statement of the second law will be simple enough, it will be obtuse and some-
times difficult to reconcile with nature. It is also a profound concept which has wide ranging
ramifications. Its origins are firmly rooted in the engineering sciences, as it was motivated
by optimization of steam engines. However, it has found applications in many realms of
physics, chemistry, ecology, economics, computer science, and other fields.

In his influential essay contrasting scientific and humanistic cultures, C. P. Snow1 sees
understanding of the second law as an indicator of scientific literacy and goes on to chide
his humanist colleagues:

A good many times I have been present at gatherings of people who, by the stan-
dards of the traditional culture, are thought highly educated and who have with
considerable gusto been expressing their incredulity at the illiteracy of scientists.
Once or twice I have been provoked and have asked the company how many of
them could describe the Second Law of Thermodynamics, the law of entropy. The
response was cold: it was also negative. Yet I was asking something which is

1C. P. Snow, 1959, The Two Cultures, Cambridge U. Press, Cambridge (reprinted 1998).
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about the scientific equivalent of: ‘Have you read a work of Shakespeare’s?’ I
now believe that if I had asked an even simpler question —such as, What do you
mean by mass, or acceleration, which is the scientific equivalent of saying, ‘Can
you read?’ —not more than one in ten of the highly educated would have felt that
I was speaking the same language. So the great edifice of modern physics goes up,
and the majority of the cleverest people in the western world have about as much
insight into it as their Neolithic ancestors would have had.

Let us summarize some more reasons for studying the second law:

• It predicts the direction in time of processes.

• It aids in determining equilibrium conditions.

• It allows one to determine peak performance of practical devices.

• It enables one to frame analysis of the factors which inhibit the realization of peak
performance.

• It allows a rational definition of the absolute temperature scale.

• It has implications beyond engineering in physics, philosophy, economics, computer
science, etc.

7.1.1 Entropy-based statement

There are many ways to state the second law of thermodynamics. One statement is as
follows:

• Second law of thermodynamics: The entropy of an isolated system can never
decrease with time.

This definition begs the question, what is entropy? A formal definition will be deferred to
the next chapter. Let us loosely define it here as a measure of the so-called randomness (or
disorder) of a system, with high randomness corresponding to high entropy. Low randomness
or low disorder often corresponds to low entropy.

Interpreted in another way, structure or order requires energy input to be realized, while
over time, without continued maintenance, structure and order decay. The formulation of
the second law we adopt will be robust enough to prevent us from predicting water to run
uphill, methane to spontaneously form from carbon dioxide and water, or air to separate into
its constituents. It will also be seen to be an important principle for predicting the optimal
behavior of a wide variety of engineering devices.

All that said, it should be noted that the equivalence of entropy with disorder, while
useful and common, is likely not universal. Certainly Wright2 characterizes it as “a highly

2P. G. Wright, 1970, “Entropy and disorder,” Contemporary Physics, 11(6): 581-588.
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contentious opinion” and discusses counter-examples, especially as related to molecular level
phenomena. Wright’s arguments are reinforced by Styer,3 who concludes that the notion of
“entropy as disorder” be used only in conjunction with the notion of “entropy as freedom.”
Freedom here is to be interpreted as the ability to acquire a variety of states: if only one state
is available, freedom is severely restricted, and entropy is low; if many states are available,
freedom is widespread, and entropy is high. Both terms, “disorder” and “freedom” are
shown by Styer to have alternate interpretations which render both imperfect metaphors for
entropy.

7.1.2 Clausius statement

Clausius, the German mathematical physicist who probably did the most to cast thermody-
namics on a scientific basis, gives a more precise statement of the second law:

• Second law of thermodynamics: “Heat cannot, of itself, pass from a colder to a
hotter body.”4

The original German version appeared earlier5 and is reproduced in Fig. 7.2.

Figure 7.2: Image of the original 1854 appearance of the Clausius form of the second law.

The Clausius formulation of the second law is easy to understand in engineering terms
and is illustrated schematically in Fig. 7.3. Note that air conditioners move heat from cold
regions to hot regions, but that work input is required.

7.1.3 Kelvin-Planck statement

Another statement of the second law is inspired by statements of the nineteenth century
scientists, Kelvin and Planck, depicted in Fig. 7.4. The so-called Kelvin-Planck statement,
a modern rendition of earlier statements, is often given as

• Second law of thermodynamics: It is impossible for any system to operate in
a thermodynamic cycle and deliver a net amount of work to its surroundings while
receiving an energy transfer by heat from a single thermal reservoir.

3D. F. Styer, 2000, “Insight into entropy,” American Journal of Physics, 68(12): 1090-1096.
4R. Clausius, 1879, The Mechanical Theory of Heat, Macmillan, London, p. 78.
5R. Clausius, 1854, “Ueber eine veränderte Form des aweiten Hauptsatzes der mechanischen Wärmethe-

orie,” Annalen der Physik und Chemie, 169(12): 481-506.
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cold hot
Q

is impossible without W

cold hot
Q

is possible without W

Figure 7.3: Schematic of the Clausius statement of the second law of thermodynamics.

Thomson’s original 1851 statement6 is somewhat different. Planck’s 1897 statement7 is
closer. Both are reproduced in Fig. 7.5.

The Kelvin-Planck formulation of the second law is easy to understand in engineering
terms and is illustrated schematically in Fig. 7.6. For the schematic of Fig. 7.6, the first law,
neglecting changes in kinetic and potential energy, states that

U2 − U1 = Q−W. (7.1)

But we have specified that the process is a cycle, so U1 = U2, and thus the first law holds

Q = W. (7.2)

Now, the second law, for this scenario, holds that positive Q cannot be delivered, which
gives, for an engine in contact with a single thermal reservoir,

Q ≤ 0, W ≤ 0. (7.3)

In informal language, the Kelvin-Planck statement says

• you can turn all the work into heat, but

• you cannot turn all the heat into work.

7.1.4 Carathèodory statement

Another form of the second law was given by the mathematician and advocate for the ax-
iomatic approach to thermodynamics, Carathèodory, depicted in Fig. 7.7. The Carathèodory
statement8 is

6W. Thomson (later Lord Kelvin), 1851, “On the dynamical theory of heat, with numerical results de-
duced from Mr. Joule’s equivalent of a thermal unit, and M. Regnault’s observations on steam,” Transactions

of the Royal Society of Edinburgh, 20: 261-268; 289-298.
7M. Planck, 1897, Vorlesungen über Thermodynamik, Walter de Gruyter, Berlin; reprinted in

English translation as Treatise on Thermodynamics, Dover, New York, p. 89.
8C. Carathèodory, 1909, “Untersuchungen über die Grundlagen der Thermodynamik,” Mathematische

Annalen, 67: 355-386.
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a) b)

Figure 7.4: a) William Thomson (Lord Kelvin) (1824-1907), Ulster-born Scottish scientist
who had profound impact on nineteenth century science including thermodynamics. Image
from http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Thomson.html,
b) Max Karl Ernst Ludwig Planck (1858-1947), German physicist. Image from
http://commons.wikimedia.org/wiki/File:Max Planck (1858-1947).jpg.

a) Kelvin                                                                     b) Planck

Figure 7.5: Images of a) Thomson’s 1851 and b) Planck’s 1897 statements of the second law
of thermodynamics.

• Second law of thermodynamics: In the neighborhood of any equilibrium state
of a thermodynamic system, there are equilibrium states that are adiabatically inac-
cessible.

Demonstration of its equivalence to other statements is not straightforward, and we shall
not consider it in any further detail in these notes; nevertheless, the notions embodied in
this statement as well as the school of thought in thermodynamics which has grown around
the work of its author has benefits associated with casting thermodynamics in the context of
more general mathematical ideas, thus making results from modern mathematics more easily
applicable to thermodynamics. The work of Carathèodory is often dismissed as somehow too
mathematical. Indeed, his approach to thermodynamics in general requires a mathematical
sophistication beyond that needed to understand the more common Clausius or Kelvin-
Planck formulations. The interested reader can consult a relevant discussion.9

9M. W. Zemansky, 1966, “Kelvin and Caratheodory–a reconciliation,” American Journal of Physics,
34(10): 914-920.
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Q

thermal reservoir

cyclic
engine

W

first law: Q=W, since ΔU=0 for cycle

second law: This scenario cannot be.

Q

thermal reservoir

cyclic
engine

W

first law: Q=W, since ΔU=0 for cycle

second law: This scenario can be.

Figure 7.6: Schematic of the Kelvin-Planck statement of the second law of thermodynamics.

7.1.5 Judeo-Christian statement

One finds in Genesis 3:19 the admonition given by the Catholic church in its Ash Wednesday
services,

• Modulated second law of thermodynamics: Remember man that thou art
dust, and unto dust thou shalt return.

7.1.6 Historian-inspired statement

The great American historian and generalist, Henry Brooks Adams (1838-1918) grandson
and great-grandson of American presidents, wrote a detailed and entertaining essay on the
second law. Among his many comments is included10

• Adams’ Second Law of Thermodynamics: “...but to the vulgar and ignorant
historian it meant only that the ash-heap was constantly increasing in size.”

7.1.7 Literature-inspired statement

Though he probably did not intend it for engineering, the Nobel literature laureate Chinua
Achebe’s most famous novel has a title which also serves as a rough-and-ready statement of
the second law:

• Informal second law of thermodynamics: Things fall apart.

The title of the novel is drawn from a line in Nobel literature laureate William Butler Yeats’
apocalyptic 1921 poem, The Second Coming.

10H. B. Adams, 1910, A Letter to American Teachers of History, J. H. Furst, Washington.
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Figure 7.7: Constantin Carathèodory (1873-1950), Greek mathematician. Image from
http://en.wikipedia.org/wiki/Constantin Caratheodory.

7.1.8 Food service-inspired statement

• Second law of thermodynamics, special case: Untended food rots.

7.2 Reversible and irreversible processes

We shall find it useful to have in hand definitions for so-called reversible and irreversible
processes. Let us take

• Reversible process: A process in which it is possible to return both the system
and surroundings to their original states.

• Irreversible process: A process in which it is impossible to return both the system
and surroundings to their original states.

Now, it may be possible to restore the system to its original state but not the surroundings
(or the surroundings to its original state but not the system). Such a process is irreversible.

We shall often study reversible processes as they represent an ideal of the most we can
ever hope to achieve. Some common engineering idealizations of reversible processes include

• frictionless motion,

• ideal inviscid flow of a fluid over an airfoil.

Now, everything in the real world deviates from the ideal. In flow over a wing, friction in
the form of viscosity causes local irreversible heating of the air near the wing and the wing
itself. Often in the real world these irreversibilities are confined to small regions and often
do not largely affect the motion of the body.

If the world in which we live were reversible, we would realize some benefits, but ulti-
mately life would be impossible. In a reversible world
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• Pendulum clocks would never need to be rewound.

• Electricity would flow without generating heat; thus, computer fans would be unnec-
essary, among other things, but

• We would not be able to walk!

7.3 Analysis of Carnot heat engines

Here, we will present what amounts to a version of the discussion of the 1850s inspired by
the original work of Carnot11 depicted along with his writings in Fig. 7.8, for heat engines.

Figure 7.8: Sadi Nicolas Léonard Carnot (1796-1832), French engineer
whose analysis formed the basis for modern thermodynamics; image from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Carnot Sadi.html

and the title page from his magnum opus.

Carnot’s 1824 work was done before any formal notions of the first and second laws had been
systematized.

11S. Carnot, 1824, Réflexions sur la Puissance Motrice du Feu et sur les Machines propres à Développer

cette Puissance, Bachelier, Paris. (English translation, 2005, Reflections on the Motive Power of Fire, Dover,
Mineola, New York). 1897 English translation.
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The informal statement of the Kelvin-Planck version of the second law is that you cannot
turn all the heat into work. Now, an engineer often wants to harvest as much as possible
of the thermal energy of combustion and convert it into mechanical energy. Kelvin-Planck
simply says we cannot have it all. But it lets us have some! In fact if we only harvest a
portion of the thermal energy for work and reject the rest in the form of thermal energy, we
can satisfy the second law. We show this schematically in Fig. 7.9. The first law for this

Q
H

hot thermal reservoir

cyclic
engine

W

first law:  W = Q
H
 - Q

L
, since ∆U = 0 for cycle

second law:  This scenario can be.

Q
L

cold thermal reservoir

Figure 7.9: Schematic of a realizable heat engine.

system is
U2 − U1 = QH −QL −W. (7.4)

Note that here, we are thinking of W , QH , and QL as all positive. If we were rigorous
with our sign convention, we would have reversed the arrow on QL since our sign convention
always has positive work entering the system. However,

• following a common practice, the rigorous sign convention is traditionally abandoned
for analysis of heat engines!

Now, we are requiring a cyclic process, so U1 = U2; thus, Eq. (7.4) reduces to

W = QH −QL. (7.5)

Now, recall we previewed the idea of thermal efficiency, η, in Eq. (6.229):

η =
what you want

what you pay for
. (7.6)

We recast it for the scenario of Fig. 7.9, where we want W and we pay for QH :

η =
W

QH

. (7.7)
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Now, we use Eq. (7.5) to eliminate W in Eq. (7.7) and get

η =
QH −QL

QH

= 1 − QL

QH

. (7.8)

Equation (7.8) is analogous to the earlier Eq. (6.235). Now, if QL = 0, we get η = 1, and
our engine does a perfect job in converting all the heat into work. But if QL = 0, we violate
the Kelvin-Planck version of the second law! So we must reject some heat. Another version
of the Kelvin-Planck statement then is

η = 1 − QL

QH

< 1. (7.9)

It is possible to prove the following corollary to the Kelvin-Planck statement:

ηirreversible ≤ ηreversible, (7.10)

for cycles operating between the same thermal reservoirs.

And there is a second corollary, applicable for two different cycles, both reversible, and both
operating between the same thermal reservoirs:

ηreversible,1 = ηreversible,2. (7.11)

Example 7.1
Prove the first corollary, Eq. (7.10).

We show this schematically in Fig. 7.10. In Fig. 7.10a, we have two cyclic engines operating
between the same thermal reservoirs. One is reversible, and extracts reversible work, WR from an input
of QH . The other engine is irreversible and extracts irreversible work WI from the same heat input
QH . Because WI 6= WR, the two engines reject a different amount of heat to satisfy the first law. The
reversible engine rejects QL, and the irreversible engine rejects Q′

L.
In Fig. 7.10b, we take formal advantage of the reversibility of one of the engines to reverse all

processes, as shown by the different nature of all the arrows. In fact we have created a refrigerator, a
device in which a work input is used to move thermal energy from a cold region to a hot region. Now,
in this configuration, an identical QH is added and removed from the hot thermal reservoir. So the net
effect into the system defined by the combined two cyclic engines is that there is no net heat transfer to
the combined system. We show this schematically in Fig. 7.11. Now, the combined effect of Fig. 7.11 is
in a form suitable for application of the Kelvin-Planck form of the second law. We have the net work
as

W = WI − WR. (7.12)

And the Kelvin-Planck statement, from Eq. (7.3) holds that

W ≤ 0. (7.13)

Imposing Eq. (7.12) into Eq. (7.3), we get

WI − WR ≤ 0, (7.14)

WI ≤ WR. (7.15)
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a)  original configuration                                b) reversed configuration

Figure 7.10: Schematic of a heat engine used in proof of the first corollary of the Kelvin-
Planck statement of the second law of thermodynamics.

cyclic
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Q
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cyclic
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L
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R

Figure 7.11: Net effect of the configuration from Fig. 7.10b.

Now, the efficiency of the reversible engine from Fig. 7.10a is

ηreversible =
WR

QH
. (7.16)

The efficiency of the irreversible engine from Fig. 7.10a is

ηirreversible =
WI

QH
. (7.17)

And since QH is the same in both, and WI ≤ WR, we have proved the first corollary:

ηirreversible ≤ ηreversible. (7.18)

The second corollary, Eq. (7.11), can be proved in a similar manner.
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7.4 The absolute temperature scale

The second corollary to the Kelvin-Planck statement holds that all reversible engines op-
erating between the same thermal reservoirs have the same η. This is independent of any
details of the cycle or the materials involved. This implies that

• The thermal efficiency, η, should depend only on the character of the reservoirs in-
volved.

Specifically, we will define η in terms of what we will call the temperature of the reservoir.
This is the classical macroscopic interpretation of temperature. Later statistical theories give
it the additional interpretation as a measure of the average translational kinetic energy of
molecules of the system. But that is not our approach here! Now, we might suppose that
this new thermodynamic property, temperature, should somehow be a measure of how much
heat is transferred from one reservoir to another. Moreover, each reservoir will have its
own temperature. The hot reservoir will have temperature TH ; the cold reservoir will have
temperature TL. So we are then saying that

η = η(TH , TL). (7.19)

As of yet, this functional form is unspecified. Substituting this form into our earlier Eq. (7.8),
we get

η(TH , TL) = 1 − QL

QH

. (7.20)

This can only be true if QL and QH have some relation to TL and TH . So let us propose a
useful definition. We insist that our temperatures take the form of that for a Carnot cycle

TL

TH

=
QL

QH

. (7.21)

This is just a definition that cannot be argued. Its utility will be seen as its justification,
but nothing more. Eq. (7.21) is valid only in the context of a Carnot cycle, and not for other
cycles.

Our logic train is that we observe heat engines, such as steam engines seen by Carnot
in the early 1800s, doing work as a result of heat transfers. That effect, work, must have a
cause. And we are going to assert that the cause is affiliated with a temperature difference.

So far our temperature has been defined only in terms of a ratio. Let us make an arbitrary
choice to avoid ratios. We take, for convenience, the temperature of the triple point of water
to be 273.15 K. Thus for any system, the local T is

T = (273.15 K)

(
Q

Qtriple point

)

reversible cycle

. (7.22)
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This implies we can connect our heat engine to a reservoir maintained at the triple point
temperature of water, and measure the associatedQs for the heat engine. With our definition,
Eq. (7.21), our thermal efficiency, Eq. (7.8), becomes

η = 1 − TL

TH

. (7.23)

This famous formula is the thermal efficiency for an idealized heat engine; it is not valid for
other heat engines. This formula is not found in Carnot’s original work; nor is it straightfor-
wardly presented in the later works of the 1850s. Clausius puts most of the pieces in place,12

so much so that Müller and Müller13 attribute the formula to him; but it is not directly seen
in his 1854 study; see Truesdell.14

Note

lim
TL→0

η = 1, (7.24)

lim
TH→∞

η = 1. (7.25)

These two statements have practical importance. While we would like to drive our efficiency
to be as close to unity as possible, nature limits us. Generally, we have little to no control
over the environmental temperature TL, so it is a lower bound, usually around TL ∼ 300 K.
And material properties for engines limit TH . For many metals, TH ∼ 1500 K is approaching
values where material strength is lost. So a practical upper bound based on these numbers
tells us η ∼ 1 − (300 K)/(1500 K) = 0.8 is maybe the most we can expect. We plot η as a
function of TH for fixed TL = 300 K in Fig. 7.12. For real systems, with irreversible features,
the values are much worse.

7.5 Analysis of Carnot refrigerators and heat pumps

A refrigerator or heat pump is a device which, with work input, moves thermal energy
from cold regions to hot regions. Without the work input, this could not be achieved, as
it would violate the Clausius statement of the second law of thermodynamics. We show
this schematically in Fig. 7.13. For a refrigerator, we define a coefficient of performance β,
sometimes called COP , as

β =
what you want

what you pay for
=
QL

W
, Carnot refrigerator. (7.26)

12R. Clausius, 1854, “Ueber eine veränderte Form des aweiten Hauptsatzes der mechanischen Wärmethe-
orie,” Annalen der Physik und Chemie, 169(12): 481-506.

13I. Müller and W. H. Müller, 2009, Fundamentals of Thermodynamics and Applications with Historical

Annotations and many Citations from Avogadro to Zermelo, Springer, Berlin, p. 131.
14C. Truesdell, 1980, The Tragicomical History of Thermodynamics, 1822-1854, Springer, New York,

p. 330.
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Figure 7.12: Plot of idealized thermal efficiency as a function of hot thermal reservoir tem-
perature with TL = 300 K.

Now, the first law for this cycle gives W = QH −QL, so

β =
QL

QH −QL

=
1

QH

QL
− 1

=
1

TH

TL
− 1

, Carnot refrigerator. (7.27)

Note that
β ≥ 0, (7.28)

for TH/TL ≥ 1. In addition, it is possible to have β > 1 if TH/TL < 2. Since we reserve
efficiencies to have 0 ≤ η ≤ 1, the COP is not really an efficiency. But it is a useful measure
that is used as an industry standard for refrigerators.

For heat pumps, we want to bring QH into a warm room from a cold outdoors to make
the warm room warmer. So it has a related COP , which we define as β′:

β′ =
QH

W
, Carnot heat pump. (7.29)

Again the first law gives W = QH −QL, so

β′ =
QH

QH −QL

=
1

1 − QL

QH

=
1

1 − TL

TH

, Carnot heat pump. (7.30)

For TL/TH ≤ 1, we have β′ ≥ 1.
Note for both refrigerators and heat pumps, as W → 0, both β → ∞ and β′ → ∞, and

we transfer thermal energy from a cold reservoir to a hot one, in violation of the Clausius
statement of the second law.

Example 7.2
The inside of a refrigerator is held at TL = 3 ◦C. The surroundings are at TH = 27 ◦C. We must

remove 1.25 kW of thermal energy from the inside of the refrigerator to balance the thermal energy
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Figure 7.13: Schematic of a realizable refrigerator or heat pump.

entering from the environment. Find the best possible coefficient of performance β and the minimum
power requirement to operate the refrigerator.

First, we need to convert to an absolute scale. So TL = 3+273.15 = 276.15 K, and TH = 300.15 K.
The problem is sketched in Fig. 7.14. We have

β =
1

TH

TL
− 1

=
1

300.15 K
276.15 K − 1

= 11.5063. (7.31)

Now,

β =
what we want

what we pay for
=

Q̇L

Ẇ
. (7.32)

Thus

Ẇ =
Q̇L

β
=

1.25 kW

11.5063
= 0.108367 kW. (7.33)

Note the rules of heat transfer determine the energy load needed to keep the temperature constant. We
have not considered those here. This is the smallest possible engine that would be needed. Inefficiencies
would cause the actual size needed to be higher.

7.6 Rejected thermal energy on a national scale

We see that the second law characterizes the necessary rejection of heat in processes involving
heat and work. Let us briefly examine this on a national scale. Figure 7.15 reports US energy
usage in 2011 from a wide variety of sources directed to a wide variety of applications. The
basic unit of energy here is the quad where 1 quad = 1015 Btu = 1.055× 1018 J = 1.055 EJ ,
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Figure 7.14: Schematic of a Carnot refrigerator diagram for our example.

where EJ is an “exajoule.” Much can be gleaned from this chart. Overall US energy use
is estimated at 97.3 quad for the year indicated. As far as the second law is concerned,
electricity generation rejects 26.6 quad waste heat per annum and transportation rejects
20.3 quad waste heat per annum. In total, 55.6 quad is rejected, and 41.7 quad is directed
towards a useful intended purpose. Thus, the thermal efficiency of the US in 2011 was

ηUS =
41.7 quad

(41.7 quad) + (55.6 quad)
= 0.429. (7.34)

Example 7.3
If all the waste heat in the US in 2011 were directed into Lake Michigan, find its temperature rise.

In more convenient units the waste heat for a given year is

Q = (55.6 quad)

(
1.055 × 1018 J

quad

)

= 5.87 × 1019 J. (7.35)

Now, Lake Michigan has a volume of 4900 km3. Therefore the mass of water in Lake Michigan is
roughly

m = ρV =

(

997
kg

m3

)
(
4900 km3

)
(

103 m

km

)3

= 4.88 × 1015 kg. (7.36)

If all the waste energy were dumped into Lake Michigan, we could expect from a first law analysis to
find a temperature rise of

∆T =
Q

mcP
=

5.87 × 1019 J

(4.88 × 1015 kg)
(

4180 J
kg K

) = 2.88 K. (7.37)
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Figure 7.15: Chart of distribution of energy sources and usage in the US in 2011. Data from
Lawrence Livermore National Laboratory, https://flowcharts.llnl.gov/.

For comparison, Lake Ontario would have received roughly an 8 K temperature rise. Locally on the
University of Notre Dame campus, both St. Mary’s and St. Joseph’s Lakes would be vaporized many
times over.
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Chapter 8

Entropy

Read BS, Chapter 8

Much as the new property energy arose via consideration of the first law of thermodynamics,
we will find it useful to introduce

• Entropy: a thermodynamic property which provides a quantitative measure of the
disorder of a given thermodynamic state,

from consideration of the second law of thermodynamics. The word itself was coined by
Clausius,1 who based it on the combination of ǫν- (en-) “to put into,” and τρoπή (tropē),
“turn” or “conversion.” The Greek here is a modification of the original Greek of Clausius,
who employed ὴ τρoπὴ. An image of the first use of the word is given in Fig. 8.1.

In some ways entropy is simply a mathematical convenience and a theoretical construct.
However, its resilience is due to the fact that it is useful for engineers to summarize important
design concepts for thermal systems such as steam power plants, automobile engines, jet
engines, refrigerators, heat pumps, and furnaces.

8.1 Theoretical development

Let us motivate the property of entropy by considering Fig. 8.2. Here, we perform our
analysis on a differential basis. We have a thermal reservoir at Tres which delivers a small
amount of heat δQ′ to a reversible cyclic engine, labeled “1.” This engine delivers a small
amount of work δW ′ and rejects a small amount of heat δQ to another reservoir at variable
T , labeled “2.” This reservoir itself delivers a different small amount of work δW to the
surroundings. Let us examine the implications of our temperature definition and the second
law of thermodynamics on this scenario.

1R. Clausius, 1865, “Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der
mechanischen Wärmetheorie,” Annalen der Physik und Chemie, 125(7): 353-390.
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Figure 8.1: Image capturing the first use of the word entropy, from R. Clausius, 1865.

δQ ’

T
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T δW

1

2

combined system boundary

Figure 8.2: Sketch of heat engine configuration to motivate the development of entropy.
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We first apply Eq. (7.21) to the configuration of Fig. 8.2:

δQ′

δQ
=
Tres

T
. (8.1)

Thus
δQ′

Tres

=
δQ

T
. (8.2)

Now, let us take the combined system, enclosed within the dotted box, to be composed
of 1 and 2. The first law in differential form for the combined system is

dE = (δQ′) − (δW + δW ′) . (8.3)

Note that we have not yet required the process be cyclic. Also note that δQ is internal and
so does not cross the boundary of the combined system and is not present in our first law
formulation. Rearrange Eq. (8.3) to get

δW + δW ′ = δQ′ − dE. (8.4)

Now, use Eq. (8.2) to eliminate δQ′ in Eq. (8.4):

δW + δW ′ = Tres
δQ

T
− dE. (8.5)

Now, let us let this configuration undergo a thermodynamic cycle, indicated by the operation
∮

applied to Eq. (8.5):

∮

δW +

∮

δW ′ =

∮

Tres
δQ

T
−
∮

dE
︸ ︷︷ ︸

=0

. (8.6)

Because E is a thermodynamic property, its cyclic integral is zero. But Q and W are not
properties, so they have non-zero values when integrated through a cycle. Performing the
integration of Eq. (8.6) and realizing that, by definition, Tres is a constant, we get

W +W ′ = Tres

∮
δQ

T
. (8.7)

Now, we can apply the Kelvin-Planck form of the second law of thermodynamics to the
configuration of Fig. 8.2; thus, we require simply that

W +W ′ ≤ 0. (8.8)

That is, we cannot convert all the heat to work, but we can convert all the work to heat.
Since Kelvin-Planck tells us W +W ′ ≤ 0, Eq. (8.7) tells us

Tres

∮
δQ

T
≤ 0. (8.9)
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And since Tres > 0, we can divide Eq. (8.9) by it without changing the sense of the inequality
to get a mathematical representation of the second law of thermodynamics:

∮
δQ

T
≤ 0, (8.10)

second law of thermodynamics.

If all processes are reversible, we lose the inequality, and get simply

∮
δQ

T
= 0, (8.11)

all processes reversible.

Now, let us reconsider Fig. 5.6, recast here as Fig. 8.3, which was used for development
of the path-independent thermodynamic property E. Here, we will use similar concepts to
develop the thermodynamic property of entropy. Let us restrict our discussion to reversible

P

V

1

2
A

B

C

Figure 8.3: Sketch of P − V diagram for various combinations of processes forming cyclic
integrals.

processes, which are the best we could hope for in an ideal world. So we demand that
Eq. (8.11) holds.

Now, from Fig. 8.3, consider starting from 1, proceeding on path A to 2, and returning
to 1 via path B. The cyclic integral

∮
δQ/T = 0 decomposes to

(∫ 2

1

δQ

T

)

A

+

(∫ 1

2

δQ

T

)

B

= 0. (8.12)
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Now, perform the same exercise going from 1 to 2 on path A and returning on path C,
yielding

(∫ 2

1

δQ

T

)

A

+

(∫ 1

2

δQ

T

)

C

= 0. (8.13)

Now, subtract Eq. (8.13) from Eq. (8.12) to get

(∫ 1

2

δQ

T

)

B

−
(∫ 1

2

δQ

T

)

C

= 0. (8.14)

Thus
(∫ 1

2

δQ

T

)

B

=

(∫ 1

2

δQ

T

)

C

. (8.15)

We can reverse direction and recover the same result, since
∫ 1

2
= −

∫ 2

1
:

(∫ 2

1

δQ

T

)

B

=

(∫ 2

1

δQ

T

)

C

. (8.16)

Since paths B and C are different and arbitrary, but
∫ 2

1
δQ/T is the same on either path,

the integral must be path-independent. It therefore defines a thermodynamic property of the
system. We define that property as entropy, S, an extensive thermodynamic property:

S2 − S1 =

∫ 2

1

δQ

T
. (8.17)

Note the units of S must be kJ/K in the SI system. We also can scale by the constant mass
m to get the corresponding intensive variable s = S/m:

s2 − s1 =

∫ 2

1

δq

T
. (8.18)

The units for s are kJ/kg/K; note they are the same as cP , cv, and R. In differential form,
we can say

ds =
δq

T
. (8.19)

This leads us to

δq = Tds. (8.20)

Integrating Eq. (8.20), we get

∫ 2

1

δq =

∫ 2

1

Tds. (8.21)
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Thus, we get

1q2 =

∫ 2

1

Tds. (8.22)

This is the heat transfer equivalent to 1w2 =
∫ 2

1
Pdv. So we see the heat transfer for a process

from 1 to 2 is given by the area under the curve in the T − s plane; see Fig. 8.4. Note if our

S
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1
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2
 =∫ TdS 
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2

1

2

area
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path A
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1
Q

2
 =∫ TdS 

1

2

1

2
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B

path B

Figure 8.4: Sketch of process in the T − s plane, with the associated heat transfer.

process lies on a so-called

• Isentrope: a line on which entropy s is constant,

then by Eq. (8.22), 1q2 = 0; thus, the process is adiabatic. Now, Eq. (8.22) only applies for a
reversible process. Combining these notions, we summarize with the important equivalence:

isentropic = adiabatic + reversible.

For problems in which no chemical reactions are present, we will find ourselves interested
only in entropy differences. For problems with chemical reactions, the absolute values of
entropy will be important. Such values can be obtained by consideration of the

• Third law of thermodynamics: “every substance has a finite positive entropy,
but at the absolute zero of temperature the entropy may become zero, and does so
become in the case of perfect crystalline substances,”

quoted here from Lewis and Randall.2 The law, another axiom of thermodynamics, was
developed over several years by Nernst,3 depicted in Fig. 8.5. It will not be considered

2G. N. Lewis and M. Randall, 1923, Thermodynamics and the Free Energy of Chemical Substances,
McGraw-Hill, New York, p. 448.

3e.g. W. H. Nernst, 1906, Ueber die Berechnung chemischer Gleichgewichte aus thermischen Messungen,
Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische

Klasse, Weidmannsche Buchhandlung, Berlin.
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Figure 8.5: Walther Hermann Nernst (1864-1941), German physical
chemist who developed the third law of thermodynamics; image from
http://en.wikipedia.org/wiki/Walther Nernst.

further here.
Because entropy is a thermodynamic property, it can be used to help determine the state.

That is we can say any of the following:

s = s(T, v), s = s(T, P ), s = s(v, x), P = P (T, s), v = v(P, s), . . . (8.23)

For two-phase mixtures, we have, as expected,

s = sf + xsfg, s = sf + x(sg − sf ), s = (1 − x)sf + xsg, x =
s− sf

sfg

. (8.24)

8.2 Second law in terms of entropy

We now have a statement of the second law,
∮
δQ/T ≤ 0, valid for reversible or irreversible

heat transfer, and a definition of entropy S2 − S1 =
∫ 2

1
δQ/T , provided the heat transfer is

reversible. The two seem similar. Let us combine them to cast the second law in terms of
entropy. Consider the cycle in the T − S diagram of Fig. 8.6. We start at 1, and proceed to
2 along path I, which represents an irreversible process. We return from 2 to 1 along path
R, which represents a reversible process. The second law, Eq. (8.10), holds

∮
δQ

T
≤ 0, (8.25)

0 ≥
∮
δQ

T
. (8.26)
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S

T

I

R

1

2

Figure 8.6: Sketch of cycle in the T − S plane composed of irreversible process I from 1 to
2, followed by reversible process R from 2 back to 1.

The equality implies all processes are reversible; the inequality implies some portion of the
process is irreversible. Now, for a reversible process we also have

S2 − S1 =

∫ 2

1

δQ

T
. (8.27)

Since the process is reversible, we reverse to get

S1 − S2 =

∫ 1

2

δQ

T
. (8.28)

Now, apply the second law, Eq. (8.10), to the scenario of Fig. 8.6:

0 ≥
(∫ 2

1

δQ

T

)

I

+

(∫ 1

2

δQ

T

)

R

. (8.29)

Now, substitute Eq. (8.28) into Eq. (8.29) to eliminate the integral along R to get

0 ≥
(∫ 2

1

δQ

T

)

I

+ S1 − S2, (8.30)

S2 − S1 ≥
(∫ 2

1

δQ

T

)

I

. (8.31)

More generally, we can write the second law of thermodynamics as

S2 − S1 ≥
∫ 2

1

δQ

T
. (8.32)
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If 1 → 2 is reversible, the equality holds; if 1 → 2 is irreversible, the inequality holds.
Now, if the system is isolated, there can be no heat transfer interactions and δQ = 0. So

S2 − S1 ≥ 0, (8.33)

isolated system.

This implies 2 occurs later in time than 1. Thus, for isolated systems, the entropy increases
as time moves forward.

Example 8.1
Two large thermal reservoirs, one at TA and the other at TB , exchange a finite amount of heat Q

with no accompanying work exchange. The reservoirs are otherwise isolated and thus form their own
universe, when considered as a combined system. Consider the implications for entropy and the second
law.

The scenario is sketched in Fig. 8.7. Assume for now that positive Q leaves A and enters B. Both A

A B

T
A T

B

Q

Figure 8.7: Sketch of heat transfer from A to B.

and B are so massive that the respective loss and gain of thermal energy does not alter their respective
temperatures. Consider the entropy changes for each system:

SA2 − SA1 =

∫ 2

1

δQ

T
=

1

TA

∫ 2

1

δQ = − Q

TA
, (8.34)

SB2 − SB1 =

∫ 2

1

δQ

T
=

1

TB

∫ 2

1

δQ =
Q

TB
. (8.35)

The entropy change for A is negative since Q was negative for A; the entropy change for B is positive
since Q for B was positive. Now, our universe is the combination of A and B, so the entropy change of
the universe is found by adding the entropy changes of the components of the universe:

(SA2 + SB2)
︸ ︷︷ ︸

=SU2

− (SA1 + SB1)
︸ ︷︷ ︸

=SU1

=
Q

TB
− Q

TA
. (8.36)

With the universe entropy SU as SU = SA + SB , we get

SU2 − SU1 = Q

(
1

TB
− 1

TA

)

. (8.37)
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The universe is isolated, so the second law holds that SU2 − SU1 ≥ 0; thus,

Q

(
1

TB
− 1

TA

)

≥ 0. (8.38)

Now, we have assumed Q > 0; therefore, we can divide by Q without changing the sense of the
inequality:

1

TB
− 1

TA
≥ 0, (8.39)

TA − TB

TATB
≥ 0. (8.40)

Since TA > 0 and TB > 0, we can multiply both sides by TATB without changing the sense of the
inequality to get

TA − TB ≥ 0, (8.41)

TA ≥ TB . (8.42)

We have thus confirmed that our mathematical formulation of the second law in terms of entropy yields
a result consistent with the Clausius statement of the second law. We must have TA ≥ TB in order to
transfer positive heat Q from A to B.

Example 8.2
We have m = 10 kg of liquid water at T1 = 0 ◦C. The water freezes, and its final state is solid

water at T2 = 0 ◦C. Give a second law analysis.

Let us assume reversible processes. For the water, we have

S2 − S1 = m

∫ 2

1

δq

T
. (8.43)

While we can use the steam tables to find the heats of vaporization and sublimation for water, there are
no values listed for the liquid-solid transition process. We consult other sources, and quickly find the
heat of fusion for water estimated as ∆hfusion = 333.55 kJ/kg. We will ignore work since the density
change is not great (though it is not zero). Now, the water will have 1q2 = −∆hfusion as it solidifies,
because it is losing energy. The temperature is constant, so we get

S2 − S1 =
m

T

∫ 2

1

δq =
m1q2

T
=

(10 kg)
(

−333.55 kJ
kg

)

(0 + 273.15 K)
= −12.2112

kJ

K
. (8.44)

Note that ice has more structure, i.e. less randomness, than liquid water. This is reflected in the drop
of entropy.

In order for this process to have taken place, the surroundings must have received a transfer of
(10 kg)(333.55 kJ/kg) = 3335.5 kJ of energy. For this to have occurred, we would need Tsurr ≤ 0 ◦C.
Say the surroundings were at −10 ◦C. Then their entropy would have increased via

∆Ssurr =
3335.5 kJ

(−10 + 273.15) K
= 12.6753

kJ

K
. (8.45)
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Thus, the entropy of the universe would have went up by

∆Suniv =

(

−12.2112
kJ

K

)

+

(

12.6753
kJ

K

)

= 0.4641
kJ

K
. (8.46)

Example 8.3
Given saturated ammonia vapor at P1 = 200 kPa compressed by a piston to P2 = 1.6 MPa in a

reversible adiabatic process, find the work done per unit mass.

Consider the diagram of in Fig. 8.8. The fact that the compression is reversible and adiabatic

NH
3

P
1
 = 200 kPa

x
1
 = 1 NH

3

P
2
 = 1600 kPa

Figure 8.8: Schematic for adiabatic reversible (isentropic) compression of ammonia problem.

implies that it is an isentropic process. If this were a CPIG, we could use algebraic equations, to be
developed, to calculate state 2. But these equations are not valid for materials such as ammonia (NH3)
near the vapor dome. So, we consult the tables.

Interpolation of Table B.2.1 of BS tells us that

s1 = 5.6034
kJ

kg K
, u1 = 1301.3

kJ

kg
, T1 = −18 ◦C, v1 = 0.598902

m3

kg
. (8.47)

Since the process is isentropic,

s2 = s1 = 5.6034
kJ

kg K
. (8.48)

The saturation tables, BS’s B.2.1, tell us that near P2 = 1600 kPa, that sg ∼ 4.8 kJ/kg/K. Since
s2 > sg, the ammonia is superheated at this state. Knowing P2 and s2, we turn to BS’s Table B.2.2 to
find by linear interpolation that

T2 = 134.9 ◦C, u2 = 1548.4
kJ

kg
, v2 = 0.118337

m3

kg
. (8.49)
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Note that T2 is just above the critical temperature of ammonia, which is Tc = 132.3 ◦C. But P2 is well
below the critical pressure, which is Pc = 11333.2 kPa. Note also that v2 < v1.

Now, the first law of thermodynamics tells us that

u2 − u1 = 1q2
︸︷︷︸

=0

−1w2. (8.50)

Since the process is isentropic, 1q2 = 0, and

1w2 = u1 − u2 =

(

1301.3
kJ

kg

)

−
(

1548.4
kJ

kg

)

= −247
kJ

kg
. (8.51)

With considerable effort we could have also constructed 1w2 by integration of the P − v diagram along
an isentrope.

The process is sketched in Fig. 8.9.

s v

T P

1

2

1

2

P=200 kPa

P=1600 kPa

T =-18.8 o
C

T = 134.9 o
C

Figure 8.9: T − s and P − v diagrams for adiabatic reversible (isentropic) compression of
ammonia problem.

Example 8.4
Liquid water at P1 = 100 kPa, x1 = 0 is heated isobarically until T2 = 200 ◦C. Find the heat

added.

The tables tell us that at state 1, we have T1 = 99.62 ◦C, v1 = 0.001043 m3/kg, h1 = 417.44 kJ/kg,
and s1 = 1.3025 kJ/kg/K. We note an intermediate stage i when xg = 1 that Tg = T1 = 99.62 ◦C,
hg = 2675.46 kJ/kg, and sg = 7.3593 kJ/kg/K. At the final state, the superheat tables give us
v2 = 2.17226 m3/kg, h2 = 2875.27 kJ/kg, and s2 = 7.8342 kJ/kg/K.

For the isobaric process, we have the heat transfer given by ∆h. For the part of the process under
the dome, we have

1qg = hg − h1 =

(

2675.46
kJ

kg

)

−
(

417.44
kJ

kg

)

= 2258.02
kJ

kg
. (8.52)
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This quantity is known as the latent heat. It represents heat added without increase in temperature. It
is easily calculated by an independent method. We also have 1qg =

∫ g

1
Tds. Since an isobaric process

under the vapor dome is also isochoric, we can say 1qg = T (sg − s1), so

1qg = (99.62 + 273.15) (K)

((

7.2593
kJ

kg K

)

−
(

1.3025
kJ

kg K

))

= 2257.79
kJ

kg
. (8.53)

The difference in the two predictions can be attributed to rounding error.

For the part of the process outside of the dome, we have

gq2 = h2 − hg =

(

2875.27
kJ

kg

)

−
(

2675.46
kJ

kg

)

= 199.81
kJ

kg
. (8.54)

This quantity is known as the sensible heat. It represents heat added with an increase in temperature.

We can sense it. It could also be calculated via numerical integration of gq2 =
∫ 2

g
Tds for this non-

isothermal process; we omit this calculation.

The total heat added, work, and total entropy change are

1q2 = h2 − h1 =

(

2875.27
kJ

kg

)

−
(

417.44
kJ

kg

)

= 2457.83
kJ

kg
, (8.55)

1w2 = P (v2 − v1) = (100 kPa)

((

2.17226
m3

kg

)

−
(

0.001043
m3

kg

))

= 217.12
kJ

kg
, (8.56)

s2 − s1 =

(

7.8342
kJ

kg K

)

−
(

1.3025
kJ

kg K

)

= 6.5317
kJ

kg K
. (8.57)

Note that 1w2 6= 1q2 because there is a change in internal energy for this process. The process is
sketched in Fig. 8.10.

s v

T
P

1

2

1 2

P=100 kPa
g

g

latent
heat

sensible
heat

work

P=100 kPa

Figure 8.10: T − s and P − v diagrams for isobaric heating of water problem.
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8.3 The Gibbs equation

We are now in a position to obtain one of the most important relations in thermodynamics,
the Gibbs equation, named for the great nineteenth century American engineer, physicist,
chemist, and mathematician, depicted in Fig. 8.11.

Figure 8.11: Josiah Willard Gibbs (1839-1903), American mechanical engineer who
revolutionized the science of classical and statistical thermodynamics; images from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Gibbs.html.

The Gibbs equation is a re-capitulation of the first law of thermodynamics. It is taken
in the limit that

• all processes are assumed to be reversible.

And we shall only consider the Gibbs equation for simple compressible substances, neglecting
changes in kinetic and potential energy, though other forms are possible.

We first recall the differential form of the first law, Eq. (5.8), dE = δQ − δW , neglect4

changes in KE and PE, so that dE = dU , and then consider this on a per mass basis,
obtaining

du = δq − δw. (8.58)

Now, for a simple compressible substance undergoing pressure-volume work, we have Eq. (4.34)
cast on a per mass basis, δw = Pdv. For the same substance undergoing simultaneous re-
versible heat transfer, we have from Eq. (8.20), δq = Tds. So we can recast Eq. (8.58) as the

4The justification of neglecting changes in KE and PE is rarely stated. If we retained the total energy,
we would be led ultimately to ds = de/T + (P/T )dv. Moreover, we would conclude that changes in KE or
PE could lead to a change in entropy. However, we choose to specifically retain an accounting for mechanical
energy via Newton’s second law. Detailed analysis of Newton’s second law would show that work done by
certain classes of forces, e.g. gravity forces and forces due to pressure differences, was reversible, and does
not dissipate mechanical energy. That class of change of KE and PE should not be thought of as entropy-
generating, because of its reversibility. However, work done by other types of forces, e.g viscous shear forces,
does dissipate mechanical energy into thermal energy. Such a conversion is irreversible, and should contribute
to an entropy change. These notions are best understood in the context of the full mass, momenta, and energy
equations for a continuum. Details may be found in http://www.nd.edu/∼powers/ame.60635/notes.pdf.
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Gibbs equation5:

du = Tds− Pdv. (8.59)

Gibbs presented this now famous equation in an obscure journal, which was the only journal
in which he ever published. A reproduction from that journal of the page where his equation
first appeared6 is given in Fig. 8.12.

Figure 8.12: An image of the 1873 first appearance of the Gibbs equation in print.

Note that the Gibbs equation is generally valid for all materials. We have said nothing
about either a thermal or caloric equation of state. It is thus valid for ideal gases, non-ideal
gases, liquids, solids, or two-phase mixtures. And though we considered reversible processes
in its derivation, once we have it, we note that only properties are defined, and so we do not
have to restrict ourselves to reversible processes. It is commonly rearranged in a way which
allows the entropy to be determined:

Tds = du+ Pdv. (8.60)

5In this usage, similar to that given by BS, we are not alone, but may be in the minority. Some texts
call Eq. (8.59) the “first Gibbs equation.” Perhaps a more common name for a variant of Eq. (8.59)
is the “Fundamental Thermodynamic Relation,” which is commonly described for the extensive analog,
dU = TdS − PdV .

6J. W. Gibbs, 1873, “Graphical methods in the thermodynamics of fluids,” Transactions of the Connecti-

cut Academy of Arts and Sciences, 2: 309-342.
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The Gibbs equation can also be written in terms of enthalpy. Recall Eq. (5.52), h = u+Pv,
also valid for general materials. Elementary calculus then tells us

h = u+ Pv, (8.61)

dh = du+ Pdv + vdP, (8.62)

du = dh− Pdv − vdP. (8.63)

Substitute Eq. (8.63) into the Gibbs relation Eq. (8.60) to yield

Tds = dh− Pdv − vdP + Pdv, (8.64)

Tds = dh− vdP. (8.65)

So we can say7

dh = Tds+ vdP. (8.66)

Example 8.5
Given the enthalpy change, calculate the entropy change for water going from saturated liquid to

saturated vapor along a T = 100 ◦C isotherm.

Under the vapor dome, an isotherm is an isobar, so dP = 0. So Eq. (8.66) reduces to

dh = Tds. (8.67)

Since T is constant, the integration is easy,
∫ g

f

dh =

∫ g

f

Tds, (8.68)

= T

∫ g

f

ds, (8.69)

hg − hf = T (sg − sf ), (8.70)

hfg = Tsfg, (8.71)

sfg =
hfg

T
. (8.72)

From Table B.1.1 of BS, we find at T = 100 ◦C, hfg = 2257.03 kJ/kg. Thus, we must have

sfg =
2257.03 kJ

kg

(100 + 273.15) K
= 6.04859

kJ

kg K
. (8.73)

We compare this to the value listed in BS’s Table B.1.1 of sfg = 6.0480 kJ/kg/K. The difference is
likely due to round-off errors. Note that the entropy of the vapor is greater than that of the liquid,
sfg = sg − sf > 0. We easily envision the vapor as having less structure or less order than the liquid.

7Equation (8.66) is called in some texts the “second Gibbs equation.” BS considers it to be a “Gibbs
equation.”
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8.4 Entropy for ideal gases

Let us find how to write the entropy for an ideal gas. We first use the Gibbs equation,
Eq. (8.60), to solve for ds to get

ds =
du

T
+

P

T
︸︷︷︸

=R/v

dv. (8.74)

Now, ideal gases have Pv = RT , so P/T = R/v, so we have

ds =
du

T
+
R

v
dv. (8.75)

Now, ideal gases also have from Eq. (5.75), du = cv(T )dT , so

ds =
cv(T )dT

T
+R

dv

v
. (8.76)

We will first consider a CPIG, and then a CIIG.

8.4.1 Calorically perfect

For a CPIG, cv is a constant, and Eq. (8.76) reduces to

ds =
cvdT

T
+R

dv

v
. (8.77)

This is easily integrated as follows
∫ 2

1

ds =

∫ 2

1

cvdT

T
+

∫ 2

1

R
dv

v
, (8.78)

∫ 2

1

ds = cv

∫ 2

1

dT

T
+R

∫ 2

1

dv

v
. (8.79)

So we get

s2 − s1 = cv ln
T2

T1

+R ln
v2

v1

. (8.80)

In general for a CPIG we can say

s(T, v) = so + cv ln
T

To

+R ln
v

vo

, (8.81)

where o denotes a reference state. We can invert to solve for T/To as follows

T (s, v)

To

=
(vo

v

)R/cv

exp

(
s− so

cv

)

. (8.82)
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Since R/cv = (cP − cv)/cv = k − 1, we also write

T (s, v)

To

=
(vo

v

)k−1

exp

(
s− so

cv

)

. (8.83)

Now, we can also rearrange Eq. (8.66) to get

ds =
dh

T
− v

T
dP. (8.84)

Now, the ideal gas gives us v/T = R/P , and the calorically perfect assumption gives us
dh = cPdT , with cP a constant. Thus, Eq. (8.84) reduces to

ds = cP
dT

T
−R

dP

P
. (8.85)

We integrate Eq. (8.85) to get

∫ 2

1

ds = cP

∫ 2

1

dT

T
−R

∫ 2

1

dP

P
. (8.86)

Thus,

s2 − s1 = cP ln
T2

T1

−R ln
P2

P1

. (8.87)

In general, for a CPIG we can say

s(T, P ) = so + cP ln
T

To

−R ln
P

Po

, (8.88)

where o denotes a reference state. We can invert Eq. (8.88) to form

T (s, P )

To

=

(
P

Po

)R/cP

exp

(
s− so

cP

)

. (8.89)

Since R/cP = (cP − cv)/cP = 1 − 1/k = (k − 1)/k, we have

T (s, P )

To

=

(
P

Po

)(k−1)/k

exp

(
s− so

cP

)

. (8.90)

8.4.2 Calorically imperfect

For the CIIG, we integrate Eq. (8.76) to get

∫ 2

1

ds =

∫ 2

1

cv(T )dT

T
+R

∫ 2

1

dv

v
. (8.91)
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This gives

s2 − s1 =

∫ 2

1

cv(T )dT

T
+R ln

v2

v1

. (8.92)

For the CIIG, we have Eq. (5.77), dh = cP (T )dT , along with the ideal gas result v/T =
R/P ; thus, Eq. (8.84) reduces to

ds =
cP (T )dT

T
−R

dP

P
. (8.93)

Integrating, we get

s2 − s1 =

∫ 2

1

cP (T )dT

T
−R ln

P2

P1

. (8.94)

In general we can say

s = so +

∫ T

To

cP (T̂ )dT̂

T̂
︸ ︷︷ ︸

=so
T

−R ln
P

Po

. (8.95)

Here, the “hat” notation indicates a dummy variable of integration. Here, so
T is a function

of temperature and represents the entropy when the pressure is evaluated at its reference
value of P = Po. In BS, Table A.8 gives tabular values of so

T . Note that

• in this course a superscript o denotes evaluation at a reference pressure. Typically
Po = 100 kPa.

So for the CIIG, we have

s(T, P ) = so +

∫ T

To

cP (T̂ )dT̂

T̂
︸ ︷︷ ︸

=so
T

−R ln
P

Po

= so
T −R ln

P

Po

. (8.96)

We could also say

s2 − s1 = so
T2

− so
T1

−R ln
P2

P1

. (8.97)

Example 8.6
Consider a mass of air, m = 10 kg cooled isochorically from P1 = 1 MPa, T1 = 500 K to the

temperature of the surroundings, T2 = 300 K. Find the entropy change of the air, the surroundings,
and the universe. Assume a CPIG model and then compare to results for a CIIG model.

The scenario is sketched in Fig. 8.13. For air, we take R = 0.287 kJ/kg/K, cv = 0.7175 kJ/kg/K.
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Figure 8.13: Sketch of air cooling in a large surroundings.

Thus, cP = R + cv = 1.0045 kJ/kg/K.

CPIG model

Let us consider the CPIG model. Now, v1 = v2 for the isochoric problem. The ideal gas law gives

P2v2

T2
=

P1v1

T1
, (8.98)

P2v1

T2
=

P1v1

T1
, (8.99)

P2 = P1
T2

T1
, (8.100)

= (1000 kPa)

(
300 K

500 K

)

, (8.101)

= 600 kPa. (8.102)

The first law for the isochoric process tells us

U2 − U1 = 1Q2 − 1W2
︸︷︷︸

=0

, (8.103)

mcv(T2 − T1) = 1Q2, (8.104)

1Q2 = (10 kg)

(

0.7175
kJ

kg K

)

((300 K) − (500 K)), (8.105)

= −1435 kJ. (8.106)

The negative sign indicates the energy left the system. This is the energy that entered the surroundings.
We get the entropy change of the air via the non-specific version of Eq. (8.80):

S2 − S1 = m

(

cv ln
T2

T1
+ R ln

v2

v1

)

, (8.107)

= (10 kg)





(

0.7175
kJ

kg K

)

ln
300 K

500 K
+

(

0.287
kJ

kg K

)

ln 1
︸︷︷︸

=0



 , (8.108)

S2 − S1 = −3.66517
kJ

K
. (8.109)

The entropy went down for the system. Note this is consistent with ds = δq/T . When δq < 0, the
entropy drops. The system becomes more ordered as it cools.
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Now, the surroundings gained thermal energy, Q = 1435 kJ . However, they are so massive that
the surroundings temperature remained constant. So the entropy change of the surroundings is found
from

S2,surr − S1,surr =

∫ 2

1

δQ

Tsurr
, (8.110)

=
1

Tsurr

∫ 2

1

δQ, (8.111)

=
Qsurr

Tsurr
, (8.112)

=
1435 kJ

300 K
, (8.113)

S2,surr − S1,surr = 4.78333
kJ

K
. (8.114)

So the energy addition to the surroundings raised its entropy.
The entropy change of the universe is that of the combination of the surroundings’ change and the

system’s change:

∆Suniv = (S2,surr − S1,surr) + (S2 − S1), (8.115)

=

(

4.78333
kJ

K

)

+

(

−3.66517
kJ

K

)

, (8.116)

∆Suniv = 1.11816
kJ

K
. (8.117)

The universe is isolated, and its entropy went up in this process, consistent with the second law of
thermodynamics.

CIIG model

Let us repeat the analysis with a CIIG model. First, P2 = 600 kPa, unchanged from the CPIG
model. The first law for the isochoric, work-free process gives

1Q2 = m(u2 − u1). (8.118)

But here, we use Table A.7.1 from BS to obtain the internal energies. Doing so, we get

1Q2 = (10 kg)

((

214.36
kJ

kg

)

−
(

359.84
kJ

kg

))

, (8.119)

= −1454.8 kJ. (8.120)

Note this value is very close to the CPIG prediction of −1435 kJ .
We can adapt Eq. (8.97) to calculate the entropy change of the system:

S2 − S1 = m

(

so
T2

− so
T1

− R ln
P2

P1

)

. (8.121)

Table A.7.1 from BS gives us so
T2

= 6.86926 kJ/kg/K and so
T1

= 7.38692 kJ/kg/K. Thus

S2 − S1 = (10 kg)

((

6.86926
kJ

kg K

)

−
(

7.38692
kJ

kg K

)

−
(

0.287
kJ

kg K

)

ln
600 kPa

1000 kPa

)

,(8.122)

= −3.71053
kJ

K
. (8.123)
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This is very close to the CPIG prediction of −3.66517 kJ/K.

For the entropy change of the surroundings, we get

S2,surr − S1,surr =
Qsurr

Tsurr
, (8.124)

=
1454.8 kJ

300 K
, (8.125)

= 4.84933
kJ

K
. (8.126)

Combining the entropy changes of the surroundings and system, we get that for the universe,

∆Suniv =

(

4.84933
kJ

K

)

+

(

−3.71053
kJ

K

)

, (8.127)

= 1.1388
kJ

K
. (8.128)

This is very close to the CPIG estimate of 1.11816 kJ/K.

8.5 Entropy for an incompressible solid or liquid

For an incompressible solid or liquid we have dv = 0, so the Gibbs equation, Eq. (8.59),
reduces to

Tds = du. (8.129)

If we take du = cdT , we get

Tds = cdT, (8.130)

ds =
cdT

T
, (8.131)

s− so =

∫ T

To

c(T̂ )dT̂

T̂
. (8.132)

And if the solid or liquid is calorically perfect with c a true constant, we get

s− so = c ln
T

To

. (8.133)

8.6 Iso- curves

Let us use the Gibbs equation in its various forms to identify a few important curves.
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8.6.1 Isochores

To identify isochores, let us consider Eq. (8.60),

Tds = du+ P dv
︸︷︷︸

=0

, (8.134)

Tds = du, (8.135)

T =
∂u

∂s

∣
∣
∣
∣
v

. (8.136)

This is valid for a general material. Iff we have an ideal gas, then du = cv(T )dT , and on an
isochore, Eq. (8.60) becomes

Tds = du
︸︷︷︸

=cv(T )dT

+P dv
︸︷︷︸

=0

, (8.137)

Tds = cv(T )dT, (8.138)

T

cv(T )
=

∂T

∂s

∣
∣
∣
∣
v

. (8.139)

Thus, the slope of an isochore in the T − s plane for an ideal gas is T/cv.

8.6.2 Isobars

To identify isobars, let us consider Eq. (8.65),

Tds = dh− v dP
︸︷︷︸

=0

, (8.140)

Tds = dh, (8.141)

T =
∂h

∂s

∣
∣
∣
∣
P

. (8.142)

This is valid for a general material. Iff we have an ideal gas, then dh = cP (T )dT , and on
an isobar, Eq. (8.65) becomes

Tds = dh
︸︷︷︸

=cP (T )dT

−v dP
︸︷︷︸

=0

, (8.143)

Tds = cP (T )dT, (8.144)

T

cP (T )
=

∂T

∂s

∣
∣
∣
∣
P

. (8.145)

Thus, the slope of an isobar in the T −s plane for an ideal gas is T/cP . Since cP (T ) > cv(T ),
the slope of the isochore is greater than the slope of an isobar at a given point.

For air as a CPIG with k = 7/5, R = 0.287 kJ/kg/K, the scenario is sketched in Fig. 8.14.
For materials such as water, the behavior is similar. The slope of the isochore is greater at
a given point than that of an isobar.
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Figure 8.14: Sketch of isochores and isobars in the T − s plane for CPIG air, k = 7/5,
R = 0.287 kJ/kg/K, so = 0 kJ/kg/K.

8.6.3 Isentropes

We introduce an

• Isentrope: a curve on which entropy is constant.

For general materials, we identify isentropes by considering Eq. (8.60) with ds = 0:

T ds
︸︷︷︸

=0

= du+ Pdv, (8.146)

0 = du+ Pdv, (8.147)

du = −Pdv. (8.148)

Because there is no heat transfer on an isentrope, for such a process, all of the Pdv work
goes into changing the internal energy of the system. We could also say

∂u

∂v

∣
∣
∣
∣
s

= −P. (8.149)

Similarly,

T ds
︸︷︷︸

=0

= dh− vdP, (8.150)

0 = dh− vdP, (8.151)

dh = vdP. (8.152)
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We could also say

∂h

∂P

∣
∣
∣
∣
s

= v. (8.153)

8.7 Isentropic relations for an ideal gas

Here, we will consider algebraic relations for ideal gases undergoing isentropic processes. The
results are simple for CPIGs and a little more complicated for CIIGs.

8.7.1 Calorically perfect

Let us consider the important case of a CPIG undergoing an isentropic process. Start with
the Gibbs equation, Eq. (8.60), Tds = du + Pdv. Now, for an isentropic CPIG, we have
ds = 0, P = RT/v, and du = cvdT , so we get

0 = cvdT +
RT

v
dv, (8.154)

0 = cv
dT

T
+R

dv

v
, (8.155)

−cv
dT

T
= R

dv

v
, (8.156)

−cv
∫ 2

1

dT

T
= R

∫ 2

1

dv

v
, (8.157)

−cv ln
T2

T1

= R ln
v2

v1

, (8.158)

ln
T2

T1

=
R

cv
ln
v1

v2

, (8.159)

ln
T2

T1

= ln

(
v1

v2

)R/cv

, (8.160)

ln
T2

T1

= ln

(
v1

v2

)k−1

, (8.161)

T2

T1

=

(
v1

v2

)k−1

. (8.162)
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Now, since T = Pv/R, we can also say

P2v2

R
P1v1

R

=

(
v1

v2

)k−1

, (8.163)

P2

P1

v2

v1

=

(
v1

v2

)k−1

, (8.164)

P2

P1

=

(
v1

v2

)k

, (8.165)

(
P2

P1

) k−1

k

=

(
v1

v2

)k−1

. (8.166)

We can summarize by combining Eqs. (8.162, 8.166) to get an important result, which we
emphasize is valid for isentropic calorically perfect ideal gases only:

T2

T1

=

(
P2

P1

) k−1

k

=

(
v1

v2

)k−1

. (8.167)

Another useful form is given by rearranging Eq. (8.166) to get the result, again valid for
isentropic calorically perfect ideal gases only:

P1v
k
1 = P2v

k
2 . (8.168)

We see that the isentropic relation between P and v is that for a polytropic process, see
p. 87, with the polytropic exponent n = k. Recall for an ideal gas undergoing an isothermal
process, we have P1v1 = P2v2, which is polytropic with n = 1.

Example 8.7
Compare the slope of an isentrope and isotherm through the same point in the P − v plane for a

CPIG.

For an isotherm in the P − v plane for a CPIG, we can say

Pv = Povo, (8.169)

P = Povo
1

v
, (8.170)

∂P

∂v

∣
∣
∣
∣
T

= −Povo
1

v2
, (8.171)

∂P

∂v

∣
∣
∣
∣
T

∣
∣
∣
∣
v=vo

= −Po

vo
. (8.172)
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For an isentrope in the P − v plane for a CPIG, we can say

Pvk = Pov
k
o , (8.173)

P = Pov
k
o

1

vk
, (8.174)

∂P

∂v

∣
∣
∣
∣
s

= −kPov
k
o

1

v1+k
, (8.175)

∂P

∂v

∣
∣
∣
∣
s

∣
∣
∣
∣
v=vo

= −k
Po

vo
. (8.176)

Both slopes are negative, since Po > 0 and vo > 0. Because k > 1, the magnitude of the isentrope’s
slope is steeper than that of the isotherm. We give a sketch of the behavior of an isentrope and isotherm
for a CPIG, each passing through the point (Po, vo) in the (P, v) plane, in Fig. 8.15.

v

P

v
o

P
o

n=1, isotherm

n=k, isentrope

Figure 8.15: Sketch of isentrope and isotherm for a CPIG in the P − v plane.

Example 8.8
Show that dT/dz is constant in an isentropic atmosphere, and give an estimate for it.

We must consider the forces acting on a differential slice of the atmosphere. Consider the free body
diagram in Fig. 8.16. Newton’s second law for the fluid gives rise to

ρAdz
︸ ︷︷ ︸

dm

d2z

dt2

︸ ︷︷ ︸

=0

= PA − (P + dP )A − ρgAdz. (8.177)
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dzρgA dz

(P+dP)A

PA

g

Figure 8.16: Free body diagram for differential slice of the atmosphere.

For an atmosphere in mechanical equilibrium, we neglect fluid acceleration and arrive at a force balance
of surface forces against the weight of the fluid:

PA = (P + dP )A + ρgAdz, (8.178)

PA = PA + AdP + ρgAdz, (8.179)

0 = AdP + ρgAdz, (8.180)

0 = dP + ρgdz, (8.181)

dP

dz
= −ρg. (8.182)

So the pressure gradient is constant in the atmosphere in static equilibrium. Now, let us impose a
CPIG assumption. Thus

P = ρRT. (8.183)

Now, let us invoke an isentropic relation for a CPIG:

P = Po

(
T

To

) k
k−1

. (8.184)

Now, take d/dz of Eq. (8.184), using the chain rule, to get

dP

dz
=

Po

To

k

k − 1

(
T

To

) k
k−1

−1
dT

dz
. (8.185)

Now, use Eq. (8.183) to eliminate ρ in Eq. (8.182) and use Eq. (8.185) to eliminate dP/dz in Eq. (8.182),
yielding

Po

To

k

k − 1

(
T

To

) 1
k−1 dT

dz
= − P

RT
g. (8.186)
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Now, use Eq. (8.184) to eliminate P to get

Po

To

k

k − 1

(
T

To

) 1
k−1 dT

dz
= −

Po

(
T
To

) k
k−1

RT
g, (8.187)

k

k − 1

(
T

To

) 1
k−1 dT

dz
= −

(
T
To

) k
k−1

R T
To

g, (8.188)

k

k − 1

(
T

To

) 1
k−1 dT

dz
= −

(
T
To

) 1
k−1

R
g, (8.189)

dT

dz
= −k − 1

k

g

R
= −

cP

cv
− 1

cP

cv

g

cP − cv
= − g

cP
. (8.190)

So dT/dz is indeed a constant. Let us use numerical values to estimate the gradient:

dT

dz
= − 9.81 m

s2

1004.5 J
kg K

= −0.009766
K

m
= −9.766

K

km
. (8.191)

Commercial airplanes fly around at altitude near 10 km. So we might expect temperatures at this
altitude to be about 100 K less than on the ground with this simple estimate. Mountain climbers of
Denali have to rise 5.5 km from its base to its peak; thus, they might expect to experience a 53 K
temperature drop during the ascent, which is a drop of roughly 95 ◦F . Climbers of Pike’s Peak have
only a 1.6 km rise, and so can expect at 15 K (27 ◦F ) drop. There are other mitigating effects that
can modulate these temperature changes that we have not included.

The predictions of Eq. (8.191) are compared to data for a standard atmosphere from Kuethe and
Chow8 in Fig. 8.17. Obviously, the theory and data have some mismatch. For z < 10000 m, the slopes

0 4000 8000 12000
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100

150

200

250

300

T (K)

z (m)

troposphere stratosphere

data
theory: adiabatic dry air

Figure 8.17: Atmospheric temperature as a function of altitude: predictions of Eq. (8.191)
compared with data from Kuethe and Chow.

of the curves are different, with our theory predicting a drop of roughly 10 K/km. The observed rate
of drop in this region is linear but at a rate of 6.5 K/km. Kundu and Cohen9 attribute the discrepancy

8A. M. Kuethe and C.-Y. Chow, 1998, Foundations of Aerodynamics, Fifth Edition, John Wiley, New
York, p. 533.

9P. K. Kundu and I. M. Cohen, 2008, Fluid Mechanics, Fourth Edition, Academic Press, Amsterdam,
p. 605.
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to the neglect of the influence of moisture in the air in the atmosphere. For z > 10000 m, the difference
becomes more pronounced. At this stage, we have reached the end of the troposphere and entered the
stratosphere, where different physics are at work. The predictions of an adiabatic theory for pressure
variation with altitude compare some what better to the data as shown in Fig. 8.18.
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data
theory: adiabatic dry air

Figure 8.18: Atmospheric pressure as a function of altitude: predictions of an adiabatic
theory compared with data from Kuethe and Chow.

Example 8.9
We are given a cylinder divided by a frictionless, mobile, adiabatic piston, with air on one side

and water on the other side as shown in Fig. 8.19. The air is thermally insulated from the water

adiabatic wall

con
d
u
ctin

g w
all

Q

air water

ad
iab

atic, m
ob

ile p
iston

Figure 8.19: Schematic of piston-cylinder arrangement with air on one side and water on the
other.

and the surroundings. The water is in thermal contact with its surroundings. Initially Va1 = 0.1 m3,
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Vw1 = 0.1 m3, Ta1 = 40 ◦C, Tw1 = 90 ◦C, xw1 = 0.1, where a stands for air and w for water. Heat is
added until xw2 = 1. Find the final pressure and the heat added.

Because the piston is frictionless and mobile, we can say at all times that the air and water are in
mechanical equilibrium:

Pa = Pw. (8.192)

The pressure will vary throughout the process, but air and water will always have the same pressure.
We also can see that the total volume will be constant:

Va + Vw = 0.2 m3. (8.193)

Now, the air undergoes a reversible adiabatic process, i.e. isentropic. The water undergoes a non-
adiabatic process; hence, it is not isentropic.

At the initial state the water is saturated at 90 ◦C, x = 0.1. We learn from the tables that

Pw1 = 70.14 kPa, (8.194)

vw1 = vf + x1vfg, (8.195)

=

(

0.001036
m3

kg

)

+ (0.1)

(

2.35953
m3

kg

)

, (8.196)

= 0.2370
m3

kg
, (8.197)

uw1 = uf + x1ufg, (8.198)

=

(

376.85
kJ

kg

)

+ (0.1)

(

2117.7
kJ

kg

)

, (8.199)

= 588.62
kJ

kg
, (8.200)

sw1 = sf + x1sfg, (8.201)

=

(

1.1925
kJ

kg K

)

+ (0.1)

(

6.2866
kJ

kg K

)

, (8.202)

= 1.8212
kJ

kg K
. (8.203)

Now, we can find the mass of the water via

mw =
Vw1

vw1
=

0.1 m3

0.2370 m3

kg

= 0.4219 kg. (8.204)

Now, because of pressure equilibrium,

Pa1 = Pw1 = 70.14 kPa. (8.205)

From the ideal gas law,

va1 =
RTa1

Pa1
=

(

0.287 kJ
kg K

)

(40 + 273) K

70.14 kPa
= 1.281

m3

kg
. (8.206)

So the mass of the air is

ma =
VA1

va1
=

0.1 m3

1.281 m3

kg

= 0.07808 kg. (8.207)
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Pw (kPa) vg
m3

kg
RHS m3

kg

100 1.6940 0.5923
300 0.6058 0.0910
400 0.4625 0.0240
450 0.4140 0.0011
453 0.4133 0.0008
500 0.3749 -0.0172

Table 8.1: Iteration results for water-air problem.

Now, for the isentropic process for the air, we have

Pa1V
k
a1 = Pa2V

k
a2, (8.208)

Va2 = Va1

(
Pa1

Pa2

)1/k

. (8.209)

Now, at state 2, Eq. (8.193) gives Va2 + Vw2 = 0.2 m3. Substitute Eq. (8.209) into this and eliminate
Vw2 in favor of mass and specific volume to get

Va1

(
Pa1

Pa2

)1/k

︸ ︷︷ ︸

=Va2

+mwvw2
︸ ︷︷ ︸

=Vw2

= 0.2 m3. (8.210)

Next use Pa = Pw to get

Va1

(
Pw1

Pw2

)1/k

+ mwvw2 = 0.2 m3. (8.211)

Substitute numbers we know to get

(0.1 m3)

(
70.14 kPa

Pw2

)1/1.4

+ (0.4219 kg)vw2 − 0.2 m3 = 0. (8.212)

Now, this is a relation between Pw2 and vw2. It is not sufficient to fix the state. However, we know
x2 = 1. This gives us another curve in the P − v space. Let us guess a value of Pw2, read the value of
vg from the tables, substitute both into Eq. (8.212), see how close the right hand side (RHS) comes to
zero, and iterate until we have an acceptable estimate. We generate Table 8.1. After the iteration, we
see that

Pw2 = Pa2 = 453 kPa, vw2 = 0.4133
m3

kg
. (8.213)

The tables then give

Tw2 = 148 ◦C, sw2 = 6.856
kJ

kg K
, uw2 = 2557.7

kJ

kg
. (8.214)

Now

Vw2 = mwvw2 = (0.4219 kg)

(

0.4133
m3

kg

)

= 0.1744 m3. (8.215)
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Thus,
Va2 = (0.2 m3) − Vw2 = (0.2 m3) − (0.1744 m3) = 0.0256 m3. (8.216)

Thus,

va2 =
Va2

ma
=

0.0256 m3

0.07808 kg
= 0.3282

m3

kg
. (8.217)

Now, we know two properties of the air, so we can get

Ta2 =
Pa2va2

R
=

(453 kPa)
(

0.3282 m3

kg

)

0.287 kJ
kg K

= 518.1 K. (8.218)

Now, consider the first law of thermodynamics for the entire system. The work is zero since the
entire system is isochoric. So the first law gives

U2 − U1 = 1Q2 − 1W2
︸︷︷︸

=0

, (8.219)

1Q2 = macv(Ta2 − Ta1) + mw(uw2 − uw1), (8.220)

= (0.07808 kg)

(

0.7175
kJ

kg K

)

((518.1 K) − (313 K))

+(0.4219 kg)

((

2557.7
kJ

kg

)

−
(

588.62
kJ

kg

))

, (8.221)

1Q2 = 842.2 kJ. (8.222)

Let us keep on analyzing! Consider the air alone, which is adiabatic. The first law for the air alone
says

Ua2 − Ua1 = a1Qa2
︸ ︷︷ ︸

=0

−a1Wa2, (8.223)

a1Wa2 = −(Ua2 − Ua1), (8.224)

= macv(Ta1 − Ta2), (8.225)

= (0.07808 kg)

(

0.7175
kJ

kg K

)

((313 K) − (518.1 K)), (8.226)

= −11.49 kJ. (8.227)

The work is negative as the air was compressed.
Let us calculate the entropy changes. For the combined system, we have

∆Ssystem = ∆Sa
︸︷︷︸

=0

+∆Sw, (8.228)

= mw(sw2 − sw1), (8.229)

= (0.4219 kg)

((

6.856
kJ

kg K

)

−
(

1.8212
kJ

kg K

))

, (8.230)

= 2.124
kJ

K
. (8.231)

Now, in order for the process to occur, the surroundings must at least have been Tsurr = 148 ◦C =
421 K. The surroundings must have had Q = −842.2 kJ , so their entropy change was

∆Ssurr =
Q

Tsurr
=

−842.2 kJ

421 K
= −2.00

kJ

K
. (8.232)
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So the entropy change of the universe is

∆Suniv = ∆Ssys + ∆Ssurr =

(

2.124
kJ

K

)

+

(

−2.00
kJ

K

)

= 0.124
kJ

K
. (8.233)

Example 8.10
Consider the cannon shown in Fig. 8.20. At t = 0 s, the bore of the cannon between the projectile

P
∞

P
o

x
o

m A

x

Figure 8.20: Sketch of cannon.

and its base is filled with a CPIG at Po. The projectile is located at x = xo. The projectile fits snugly in
the cannon, has mass m, and cross-sectional area A. The ambient pressure is P∞. Find the equations of
motion for the projectile. Assume the gas expands isentropically, and the local pressure is P . Assume
a drag force, proportional to the cube of projectile velocity, retards its motion.

This is a problem which is not in mechanical equilibrium. Newton’s law of motion for the projectile
states

m
d2x

dt2
= (P − P∞)A − C

(
dx

dt

)3

. (8.234)

Here, the product of mass and acceleration is balanced by the net pressure force and the drag force.
Let us define the velocity as

v =
dx

dt
. (8.235)

So our equation of motion becomes

m
dv

dt
= (P − P∞)A − Cv

3. (8.236)

Now, for an isentropic expansion of a CPIG we have

PoV
k
o = PV k, (8.237)

Po(Axo)
k = P (Ax)k, (8.238)

P = Po

(xo

x

)k

. (8.239)
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Thus, we can say

m
dv

dt
=

(

Po

(xo

x

)k

− P∞

)

A − Cv
3. (8.240)

We can thus form a system of two non-linear ordinary differential equations:

dv

dt
=

P∞A

m

(
Po

P∞

(xo

x

)k

− 1

)

− C

m
v
3, v(0) = 0, (8.241)

dx

dt
= v, x(0) = xo. (8.242)

For general parameters, an analytic solution is unlikely. However, we can form a numerical solution.
Our equations are of the form

dv

dt
= f(v, x), v(0) = 0, (8.243)

dx

dt
= g(v, x), x(0) = xo. (8.244)

We can use the first order explicit Euler method to discretize these equations as

vn+1 − vn

∆t
= f(vn, xn), (8.245)

xn+1 − xn

∆t
= g(vn, xn). (8.246)

Here, n represents an old value and n + 1 represents a new value. We solve for the new to obtain

vn+1 = vn + ∆tf(vn, xn), (8.247)

xn+1 = xn + ∆tg(vn, xn). (8.248)

We start with known values of vn and xn. We use the above formulæ to get new values, then we repeat
the process as long as necessary until we have a full solution. When we choose ∆t sufficiently small,
we should get a stable solution that is a good approximation of the actual solution. Linearization near
the equilibrium point gives an estimate for ∆t:

∆t <

√

mxo

kPoA

(
Po

P∞

) 1+k
k

. (8.249)

This estimate is only valid in the limit as t → ∞, and so may not work for early time, where ∆t may
need to be much smaller. For early time, we can linearize near the initial point and find that we need

∆t <

√
mxo

kPoA
, (8.250)

to capture the early time dynamics.
For m = 1 kg, A = 0.01 m2, C = 0.01 N/(m/s)3, P∞ = 105 Pa, Po = 108 Pa, xo = 0.1 m,

k = 7/5, we have obtained a numerical solution. Note that at such a high pressure, not unlike those in
real cannons, the ideal gas law is likely not an accurate assumption.

A plot at early time for x(t) and v(t) is given in Fig. 8.21. This shows a window in time which
is consistent with a realistic barrel length. For these values, our estimate, Eq. (8.250), for the time
step to capture the early time dynamics gives ∆t < 2.6 × 10−4 s. Note this is consistent with the rise
time results shown in Fig. 8.21 which show the peak velocity of near 300 m/s reached in under 0.001 s.
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Figure 8.21: Position and velocity of projectile in cannon problem for early time.
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Figure 8.22: Position and velocity of projectile in cannon problem for late time.

These muzzle velocities are a little low for actual cannons, which also may have higher initial pressures.
Around t = 0.01 s, we have x ∼ 2 m, which is not unlike a cannon barrel length.

Let us now assume an unrealistically long barrel length and calculate for a long time. A plot at
late time for x(t) and v(t) is given in Fig. 8.22. At late time we see the projectile is approaching
an equilibrium where the velocity goes to zero due to drag forces and the position oscillates about
an equilibrium where there is a pressure balance. As t → ∞, our estimate, Eq. (8.249) for ∆t is
applicable. For these values, our estimate for the time step near equilibrium gives ∆t < 0.10 s. This
time scale actually captures the period of oscillation effectively. It is surprising that the system came
to equilibrium at such a short distance x = 15 m, and it is hard to imagine an actual artillery shell
behaving in this way. It is likely that the drag model is highly inaccurate.

A clearer picture of the early, intermediate, and late time dynamics can be seen in the log-log scale
plot of x(t) given in Fig. 8.23. For early time t < 10−4 s, the piston is effectively stationary. We call
this a time of inertial confinement. For t > 10−4 s, we see that x grows exponentially as time grows,
reflected in the positive sloped line on the log-log plot of Fig. 8.23. During this phase of the expansion,
the pressure force of the compressed air dominates the resistive force of the atmospheric pressure and
the drag force. As x rises, and as dx/dt rises, the resistance of the atmosphere and the drag force
both become more prominent, until around t ∼ 1 s, when the forces begin to balance one another. At
this point, there is overcompensation due to the inertia of the piston, and the atmospheric pressure
dominates the charge pressure. This sets up an oscillation, which ultimately decays due to the drag
force.
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Figure 8.23: Position of projectile in cannon problem versus time, plotted on a log-log scale
to reveal the regimes where different physics are dominant.

Example 8.11
For the previous example problem, show details of the linearized analysis in the late time limit so

as to derive Eqs. (8.249).

At equilibrium, we must have dv/dt = 0 and dx/dt = 0. So, as with all equilibrium states, we solve
the corresponding algebra problem deduced from Eqs. (8.241), 8.242):

0 =
P∞A

m

(

Po

P∞

(
xo

xeq

)k

− 1

)

− C

m
v
3
eq, (8.251)

0 = veq. (8.252)

Equations (8.251, 8.252) form two algebraic equations for the two unknowns veq and xeq at the equi-
librium state. One root is obvious, and the other is easily found with simple algebra. The equilibrium
state is thus seen to be

xeq = xo

(
Po

P∞

) 1
k

, (8.253)

veq = 0. (8.254)

Note

• The equilibrium state is one of rest, veq = 0. This is consistent with a mechanical equilibrium.

• xeq rises if xo increases, Po increases, or P∞ decreases.

• The equilibrium state is independent of the mass of the projectile, and the cross-sectional area.

Now, let us examine the local dynamics in the neighborhood of equilibrium. Consider Taylor series
expansions about xeq and veq of Eqs. (8.243, 8.244):

dv

dt
= f(veq, xeq)

︸ ︷︷ ︸

=0

+
∂f

∂v

∣
∣
∣
∣
eq

(v − veq) +
∂f

∂x

∣
∣
∣
∣
eq

(x − xeq) + . . . , (8.255)

dx

dt
= g(veq, xeq)

︸ ︷︷ ︸

=0

+
∂g

∂v

∣
∣
∣
∣
eq

(v − veq) +
∂g

∂x

∣
∣
∣
∣
eq

(x − xeq) + . . . . (8.256)
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We have constructed f and g to have values of zero at equilibrium. Now, since veq and xeq are constants
with derivatives of zero, we can rewrite Eqs. (8.255, 8.256) as

d

dt
(v − veq) =

∂f

∂v

∣
∣
∣
∣
eq

(v − veq) +
∂f

∂x

∣
∣
∣
∣
eq

(x − xeq) + . . . , (8.257)

d

dt
(x − xeq) =

∂g

∂v

∣
∣
∣
∣
eq

(v − veq) +
∂g

∂x

∣
∣
∣
∣
eq

(x − xeq) + . . . . (8.258)

Now, with

f(v, x) =
P∞A

m

(
Po

P∞

(xo

x

)k

− 1

)

− C

m
v
3, (8.259)

We have

∂f

∂v
= −3

C

m
v
2. (8.260)

At equilibrium, where v = 0, this gives

∂f

∂v

∣
∣
∣
∣
eq

= 0. (8.261)

We also get

∂f

∂x
= −k

PoA

mx

(xo

x

)k

. (8.262)

Evaluating ∂f/∂x at the equilibrium point, we find

∂f

∂x

∣
∣
∣
∣
eq

= −k
PoA

mxo

(
P∞

Po

) 1+k
k

. (8.263)

By inspection, we see that ∂g/∂v = 1 and ∂g/∂x = 0. Thus, Eqs. (8.257, 8.258) become

d

dt
(v − veq) = −k

PoA

mxo

(
P∞

Po

) 1+k
k

(x − xeq) + . . . , (8.264)

d

dt
(x − xeq) = (v − veq) + . . . . (8.265)

Let us define two new variables:

x̂(t) = x(t) − xeq, (8.266)

v̂(t) = v(t) − veq. (8.267)

With the definitions of Eqs. (8.266, 8.267), Eqs. (8.264, 8.265) reduce to

dv̂

dt
= −k

PoA

mxo

(
P∞

Po

) 1+k
k

x̂, (8.268)

dx̂

dt
= v̂. (8.269)

Take now the time derivative of Eq. (8.269) and substitute it into Eq. (8.268) to get the second order
linear differential equation:
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d2x̂

dt2
+ k

PoA

mxo

(
P∞

Po

) 1+k
k

x̂ = 0. (8.270)

We can rewrite this in the form of a mass-spring type problem as

m
d2x̂

dt2
+ ksx̂ = 0, (8.271)

ks = k
PoA

xo

(
P∞

Po

) 1+k
k

. (8.272)

The solution of this equation is well known to be

x(t) = C1 sin

(√

ks

m
t

)

+ C2 cos

(√

ks

m
t

)

. (8.273)

The solution is oscillatory and has time constant

τ =

√
m

ks
=

√

mxo

kPoA

(
Po

P∞

) k+1

k

. (8.274)

At early time one can also do a similar linear analysis in the neighborhood of x ∼ xo and v ∼ 0.
One can define new variables x̃ = x − xo, ṽ = v, linearize the equations, and solve at early time.

8.7.2 Calorically imperfect

Consider now an isentropic relation for a CIIG. Recall from Eq. (8.96) that there is no
simple way to write the algebraic form of the entropy, which relies on an integral, available
in tabular form. Consideration of CIIGs usually relies on an unusual combination of table
look-up and equations.

We can use Eq. (8.96) to write the entropy at states 1 and 2 as

s1 = so
T1

−R ln
P1

Po

, (8.275)

s2 = so
T2

−R ln
P2

Po

. (8.276)

Recall o denotes the reference pressure, and so
T is a temperature-dependent function, which

is available in tabular form. So the entropy difference, s2 − s1, is

s2 − s1 = so
T2

− so
T1

−R

(

ln
P2

Po

− ln
P1

Po

)

, (8.277)

= so
T2

− so
T1

−R ln

(
P2

Po

Po

P1

)

, (8.278)

= so
T2

− so
T1

−R ln

(
P2

P1

)

. (8.279)
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If the process is isentropic, we have s2 = s1, and so

0 = so
T2

− so
T1

−R ln
P2

P1

, (8.280)

so
T2

− so
T1

= R ln
P2

P1

. (8.281)

Example 8.12
Air is isentropically compressed from T1 = 300 K, P1 = 100 kPa to T2 = 2000 K. Find the final

pressure with a CIIG and CPIG model. Find the work per unit mass of compression for CIIG and
CPIG models.

First consider the first law, u2 − u1 = 1q2 − 1w2. Because the process is isentropic, 1q2 = 0, so

1w2 = u1 − u2, (8.282)

for both the CIIG and CPIG.

• CIIG analysis: For the CIIG, we find from Table A.7.1 of BS that

u1 = 214.36
kJ

kg
, u2 = 1677.52

kJ

kg
. (8.283)

So

1w2 = u1 − u2 = −1463.16
kJ

kg
. (8.284)

The work is negative because the fluid is being worked upon.

For this system, Table A.7.1 gives

so
T1

= 6.86926
kJ

kg K
, so

T2
= 8.96611

kJ

kg K
. (8.285)

Now, apply Eq. (8.281) for the isentropic process:

so
T2

− so
T1

= R ln
P2

P1
, (8.286)

P2 = P1 exp

(
so

T2
− so

T1

R

)

, (8.287)

= (100 kPa) exp





(

8.96611 kJ
kg K

)

−
(

6.86926 kJ
kg K

)

0.287 kJ
kg K



 , (8.288)

= 148935 kPa. (8.289)

• CPIG analysis: For the CPIG, with cv = 0.7175 kJ/kg/K, we have

1w2 = u1 − u2 = cv(T1 − T2) =

(

0.7175
kJ

kg K

)

((300 K) − (2000 K)) = −1219.75
kJ

kg
. (8.290)
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And we have for an isentropic CPIG, with k = 7/5

P2 = P1

(
T2

T1

) k
k−1

= (100 kPa)

(
2000 K

300 K

) 7/5

7/5−1

= 76503.4 kPa. (8.291)

Note the pressure from the CPIG model is half that from the CIIG model! This illustrates the dangers
of using a CPIG model for high temperature applications.

If we had chosen T2 = 400 K, the CIIG model would have given P2 = 274.7 kPa, and the CPIG
model would have given P2 = 273.7 kPa. This emphasizes at low temperatures, the CPIG is an accurate
model.

8.8 Two cycles

In this section, we describe two important thermodynamic cycles. The most scientifically
important is the Carnot cycle, and we spend some effort in its exposition. We contrast this
with the Otto cycle, which is used to model the operation of gasoline engines.

8.8.1 Carnot

Motivated by a practical desire to improve French industry in the aftermath of military de-
feats of earlier decades, Nicolas Lèonard Sadi Carnot (1796-1832), (son of the mathematician
and architect of the military success of the early French revolution, Lazare Carnot) devel-
oped an impractical engine with great theoretical importance. Though the so-called Carnot
engine has never been built, it represents the best heat engine which could be built, and im-
poses useful restrictions for practical engineers with visions of unrealizable efficiencies. Most
importantly, the analysis of Carnot demonstrates how perpetual motion machines of the first
and second kind cannot exist. Those of the first kind violate the first law of thermodynamics;
those of the second kind violate the second law of thermodynamics.

Let us use a piston-cylinder arrangement to illustrate a Carnot cycle. See the sketch of
Fig. 8.24. A sketch of the process in both the P − v and T − s planes for a CPIG is given
in Fig. 8.25.
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Figure 8.24: Sketch of Carnot cycle piston-cylinder device.
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Figure 8.25: Sketch of a Carnot cycle for a CPIG represented in the P − v and T − s planes.
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The Carnot cycle is defined in four stages. Here, we use a different identification of the
states 1, 2, 3, and 4 than do BS to be consistent with more common notation that will be
used later for other engines by BS and most other texts. The four stages are

• 1 → 2: adiabatic reversible (isentropic) compression (Q = 0) from TL to TH ,

• 2 → 3: isothermal reversible expansion at TH ,

• 3 → 4: adiabatic reversible (isentropic) expansion from TH to TL, and

• 4 → 1: isothermal compression at TL.

We always assume the same fluid is present within the Carnot engine, and ignore the effects
of valves. We also ignore the effect of mixtures of combustible gases.

The Carnot cycle for a CPIG is such a foundational idealization for mechanical engineers
that it is centrally incorporated in the logo of the international mechanical engineering
academic honor society, Pi Tau Sigma (ΠTΣ). The logo is reproduced in Fig. 8.26.

Figure 8.26: Logo of the international mechanical engineering honor society, Pi Tau Sigma
(ΠTΣ) featuring the Carnot cycle for a CPIG in the P −v plane as displayed on the campus
of the University of Notre Dame.

Example 8.13
Given k, R, TL = T1 = T4, TH = T2 = T3, v1 and v4, demonstrate for a CPIG undergoing a Carnot

cycle, that the earlier derived Eq. (7.23), η = 1 − TL/TH , is true. Also find the net work and heat
transfer.

First note that cv = R/(k − 1).
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• For process 1 → 2, we have the first law

u2 − u1
︸ ︷︷ ︸

=cv(T2−T1)

= 1q2
︸︷︷︸

=0

− 1w2
︸︷︷︸

=
R

2

1
Pdv

, (8.292)

cv(T2 − T1) = −
∫ 2

1

Pdv, (8.293)

cv(TH − TL) = −
∫ 2

1

Pdv, (8.294)

(
R

k − 1

)

(TH − TL) = −
∫ 2

1

Pdv. (8.295)

For the isentropic process Pvk = P1v
k
1 , and we know from the per mass version of Eq. (4.46) for work

for a polytropic process that when n = k, the work must be

1w2 =
P2v2 − P1v1

1 − k
, (8.296)

=
RT2 − RT1

1 − k
, (8.297)

= − R

k − 1
(T2 − T1). (8.298)

This is consistent with the change in internal energy being the negative of the work done.

• For process 2 → 3, the first law gives

u3 − u2 = 2q3 − 2w3, (8.299)

cv (T3 − T2)
︸ ︷︷ ︸

=0

= 2q3 −
∫ 3

2

Pdv, (8.300)

2q3 =

∫ 3

2

Pdv, (8.301)

= RTH

∫ 3

2

dv

v
, (8.302)

= RTH ln
v3

v2
. (8.303)

Now, we have from the isentropic relations that

v2 = v1

(
T1

T2

) 1
k−1

= v1

(
TL

TH

) 1
k−1

, v3 = v4

(
TL

TH

) 1
k−1

. (8.304)

So

2q3 = RTH ln






v4

(
TL

TH

) 1
k−1

v1

(
TL

TH

) 1
k−1




 = RTH ln

v4

v1
. (8.305)

• For process 3 → 4, the first law gives

u4 − u3 = 3q4
︸︷︷︸

=0

−3w4, (8.306)

cv(T4 − T3) = −3w4, (8.307)
(

R

k − 1

)

(TL − TH) = −3w4. (8.308)
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• For process 4 → 1, the first law gives

u1 − u4 = 4q1 − 4w1, (8.309)

cv(T1 − T4)
︸ ︷︷ ︸

=0

= 4q1 −
∫ 1

4

Pdv, (8.310)

4q1 =

∫ 1

4

Pdv, (8.311)

= RTL

∫ 4

1

dv

v
, (8.312)

= RTL ln
v1

v4
. (8.313)

Now, we know the thermal efficiency is from Eq. (7.10)

η = 1 − QL

QH
. (8.314)

For us

QL ∼ |4q1| =

∣
∣
∣
∣
RTL ln

v1

v4

∣
∣
∣
∣
= RTL ln

v4

v1
, (8.315)

QH ∼ |2q3| =

∣
∣
∣
∣
RTH ln

v4

v1

∣
∣
∣
∣
= RTH ln

v4

v1
. (8.316)

So

η = 1 −
RTL ln v4

v1

RTH ln v4

v1

, (8.317)

η = 1 − TL

TH
, Q.E.D.10 (8.318)

Also, we easily get the net work and heat transfer via

wcycle = qcycle = 2q3 + 4q1 = RTH ln
v4

v1
+ RTL ln

v1

v4
= R(TH − TL) ln

v4

v1
. (8.319)

We summarize the first law statements in Table 8.2.

Example 8.14
A mass of m = 1 kg of water executes a Carnot cycle. The high temperature isothermal expansion

is from P2 = 15 bar, x2 = 0.25 to the saturated vapor state. The adiabatic expansion is to P4 = 1 bar.
Analyze the system.

The system is sketched in Fig. 8.27. We have P2 = 1500 kPa, x2 = 0.25. From the tables we find

10abbreviation of the Latin phrase, quod erat demonstrandum, “that which was to have been demon-

strated.” The original Greek version, used by Euclid and Archimedes, was
,
o
′

πǫρ
,
ǫ
′

δǫι δǫι̂ξαι, translated as
“precisely what was required to be proved,” (http://en.wikipedia.org/wiki/Q.E.D.).
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Process ∆u q w
1 → 2 R

k−1
(TH − TL) 0 − R

k−1
(TH − TL)

2 → 3 0 RTH ln v4

v1

RTH ln v4

v1

3 → 4 − R
k−1

(TH − TL) 0 R
k−1

(TH − TL)

4 → 1 0 RTL ln v1

v4

RTL ln v1

v4

Total 0 R(TH − TL) ln v4

v1

R(TH − TL) ln v4

v1

Table 8.2: First law analysis summary for our CPIG undergoing a Carnot cycle.

v
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1

2 3
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isotherm

T=471.47 K

1

2 3

4
T=372.77 K

Figure 8.27: Sketch of a Carnot cycle for water represented in the P − v and T − s planes.

the following

T2 = 198.32 ◦C = 471.47 K, (8.320)

vf2 = 0.001154
m3

kg
, vfg2 = 0.13062

m3

kg
. (8.321)

uf2 = 843.14
kJ

kg
, ufg2 = 1751.3

kJ

kg
, (8.322)

sf2 = 2.3150
kJ

kg K
, sfg2 = 4.1298

kJ

kg K
. (8.323)
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So we get the properties of state 2 via

v2 = vf2 + x2vfg2 = 0.033809
m3

kg
, (8.324)

u2 = uf2 + x2ufg2 = 1280.97
kJ

kg
, (8.325)

s2 = sf2 + x2sfg2 = 3.3475
kJ

kg K
. (8.326)

At state 3, we know P3 = P2 = 1500 kPa, and x3 = 1, so the properties can be read from the
saturated water tables for x3 = 1. We find

v3 = 0.13177
m3

kg
, (8.327)

u3 = 2594.5
kJ

kg
, (8.328)

s3 = 6.4448
kJ

kg K
. (8.329)

At state 4, we know P4 = 100 kPa. We also know that s4 = s3 = 6.4458 kJ/kg/K. So the state is
fixed. At state 4, the tables give

T4 = 99.62 ◦C = 372.77 K, (8.330)

vf4 = 0.001154
m3

kg
, vfg4 = 0.13062

m3

kg
, (8.331)

uf4 = 843.14
kJ

kg
, ufg4 = 1751.3

kJ

kg
, (8.332)

sf4 = 2.3150
kJ

kg K
, sfg4 = 4.1298

kJ

kg K
. (8.333)

Knowing s4, we can find the quality x4 via

x4 =
s4 − sf4

sfg4
=

(

6.4448 kJ
kg K

)

−
(

2.3150 kJ
kg K

)

4.1298 kJ
kg K

= 0.849013. (8.334)

We then find

v4 = vf4 + x4vfg4 = 1.43839
m3

kg
, (8.335)

u4 = uf4 + x4ufg4 = 2190.68
kJ

kg
. (8.336)

Now, we know that for state 1, s1 = s2 = 3.34745 kJ/kg/K, and sf1 = sf4, sfg1 = sfg4. So

x1 =
s1 − sf1

sfg1
= 0.337629. (8.337)

We also know that T1 = T4 = 372.77 K. We also know that vf1 = vf4, vfg1 = vfg4, uf1 = uf4,
ufg1 = ufg4. So

v1 = uf1 + x1vfg1 = 0.572635
m3

kg
, (8.338)

u1 = uf1 + x1ufg1 = 1122.54
kJ

kg
. (8.339)
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Now, let us consider the first law for each process.

• 1 → 2: The first law gives

u2 − u1 = 1q2
︸︷︷︸

=0

−1w2, (8.340)

1w2 = u1 − u2, (8.341)

1w2 =

(

1122.54
kJ

kg

)

−
(

1280.97
kJ

kg

)

, (8.342)

= −158.423
kJ

kg
. (8.343)

• 2 → 3: The first law gives

u3 − u2 = 2q3 − 2w3. (8.344)

Now,

2w3 =

∫ 3

2

Pdv, (8.345)

= P3(v3 − v2), (8.346)

= (1500 kPa)

((

0.13177
m3

kg

)

−
(

0.033809
m3

kg

))

, (8.347)

= 146.942
kJ

kg
. (8.348)

So

2q3 = (u3 − u2) + 2w3, (8.349)

=

((

2594.5
kJ

kg

)

−
(

1280
kJ

kg

))

+

(

146.942
kJ

kg

)

, (8.350)

= 1460.48
kJ

kg
. (8.351)

• 3 → 4: The first law gives

u4 − u3 = 3q4
︸︷︷︸

=0

−3w4. (8.352)

So

3w4 = u3 − u4, (8.353)

=

(

2594.5
kJ

kg

)

−
(

2190.68
kJ

kg

)

, (8.354)

= 403.82
kJ

kg
. (8.355)

• 4 → 1: The first law gives

u1 − u4 = 4q1 − 4w1. (8.356)
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Now

4w1 =

∫ 1

4

Pdv, (8.357)

= P1(v1 − v4), (8.358)

= (100 kPa)

((

0.572635
m3

kg

)

−
(

1.43839
m3

kg

))

, (8.359)

= −86.5752
kJ

kg
. (8.360)

So

4q1 = (u1 − u4) + 4w1, (8.361)

=

((

1122.54
kJ

kg

)

−
(

2190.68
kJ

kg

))

+

(

−86.5752
kJ

kg

)

, (8.362)

= −1154.71
kJ

kg
. (8.363)

The net work for the cycle is

wcycle = 1w2 + 2w3 + 3w4 + 4w1, (8.364)

=

(

−158.423
kJ

kg

)

+

(

146.942
kJ

kg

)

+

(

403.82
kJ

kg

)

+

(

−86.5752
kJ

kg

)

, (8.365)

= 305.763
kJ

kg
. (8.366)

The net heat transfer for the cycle is

qcycle = 2q3 + 4q1, (8.367)

=

(

1460.48
kJ

kg

)

+

(

−1154.71
kJ

kg

)

, (8.368)

= 305.763
kJ

kg
. (8.369)

Note that, as expected wcycle = qcycle. Now, let us calculate the thermal efficiency.

η =
wcycle

qin
, (8.370)

=
wcycle

2q3
, (8.371)

=
305.763 kJ

kg

1460.48 kJ
kg

, (8.372)

= 0.209345. (8.373)

This should be the same as the Carnot theory’s prediction

η = 1 − TL

TH
, (8.374)

= 1 − 372.77 K

471.47 K
, (8.375)

= 0.209345. (8.376)

The small differences are likely due to interpolation error from using the tables. We summarize the
first law statements in Table 8.3.
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Process ∆u
(

kJ
kg

)

q
(

kJ
kg

)

w
(

kJ
kg

)

1 → 2 158.423 0 -158.423
2 → 3 1313.54 1460.48 146.942
3 → 4 -403.82 0 403.82
4 → 1 -1068.14 -1154.71 -86.5752
Total 0 305.763 305.763

Table 8.3: First law analysis summary for our water undergoing a Carnot cycle.

8.8.2 Otto

The Otto cycle approximates the gasoline engine using what is known as an air standard
approximation. It is named for Nikolaus Otto, depicted in Fig. 8.28. Many details are

Figure 8.28: Nikolaus August Otto (1832-1891), German developer of the internal combus-
tion engine. Image from http://en.wikipedia.org/wiki/Nicholas Otto.

ignored (like inlet and exhaust), and all material properties are taken to be those of air
modelled as a CPIG. It employs a fixed mass approach. Diagrams for P − v and T − s for
the Otto cycle are shown in Fig. 8.29. One can outline the Otto cycle as follows:

• 1 → 2: isentropic compression in the compression stroke,

• 2 → 3: isochoric heating in the combustion stroke during spark ignition,

• 3 → 4: isentropic expansion in power stroke, and

• 4 → 1: isochoric rejection of heat to the surroundings.
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Figure 8.29: P − v and T − s diagrams for the Otto cycle.

Clearly, the cycle is not a Carnot cycle. The heat transfer during the combustion and
exhaust strokes does not take place at constant temperature. Roughly speaking, we might
expect degradation of the thermal efficiency, relative to an equivalent Carnot engine operating
between the same temperature bounds, because some of the heat transfer of the Otto cycle
occurs at lower temperatures than other parts of the cycle. Recall that for maximum Carnot
efficiency, we would like TH as high as possible. Just past state 2, the heat transferred at T2

is at a lower temperature than the heat transferred at T3.

Note for isochoric heating, such as 2 → 3, in a fixed mass environment, the first law gives

u3 − u2 = 2q3 − 2w3, (8.377)

u3 − u2 = 2q3 −
∫ v3

v2

P dv, but v2 = v3, (8.378)

u3 − u2 = 2q3 −
∫ v2

v2

P dv

︸ ︷︷ ︸

=0

, (8.379)

2q3 = u3 − u2, (8.380)

2q3 = cv(T3 − T2), if CPIG. (8.381)
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The thermal efficiency is found as follows:

η =
Wnet

QH

, (8.382)

=
QH −QL

QH

, (8.383)

= 1 − QL

QH

, (8.384)

= 1 − mcv(T4 − T1)

mcv(T3 − T2)
, (8.385)

= 1 − T4 − T1

T3 − T2

, (8.386)

= 1 −
T1

(
T4

T1

− 1
)

T2

(
T3

T2

− 1
) . (8.387)

Now, one also has the isentropic relations:

T2

T1

=

(
V1

V2

)k−1

, (8.388)

T3

T4

=

(
V4

V3

)k−1

. (8.389)

But V4 = V1 and V2 = V3, so

T3

T4

=

(
V1

V2

)k−1

=
T2

T1

. (8.390)

Cross multiplying the temperatures, one finds

T3

T2

=
T4

T1

. (8.391)

Thus, the thermal efficiency reduces to

η = 1 − T1

T2

. (8.392)

This looks a lot like the Carnot efficiency. But for a Carnot engine operating between the
same temperature bounds, we would have found η = 1 − T1/T3. Since T3 > T2, the Carnot
engine is more efficient than the ideal Otto engine. This identifies an important

• Thermal engine design principle: To optimize the performance of a thermal
engine, the T − s diagram describing its behavior should be as close to a rectangle as
possible, with the highest possible TH and the lowest possible TL.
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One often finds commercial engines characterized by their compression ratios. Modern
gasoline engines may have compression ratios of rv = 10. In terms of the compression ratio
rv = V1/V2, one has

η = 1 − r1−k
v = 1 − 1

rk−1
v

. (8.393)

Note if the compression ratio increases, the thermal efficiency increases, so this is desirable,
in principle. However, high compression ratios introduces a variety of problems including
1) loss of material strength of hot metals in the engine, 2) higher incidence of detonation
or knock in the combustion process, 3) greater tendency to form harmful pollutants such as
NOx.

Some deviations of actual performance from that of the air-standard Otto cycle are as
follows:

• specific heats actually vary with temperature,

• combustion may be incomplete (induces pollution and lowers fuel efficiency),

• work of inlet and exhaust is ignored, and

• losses of heat transfer to engine walls are ignored.

Example 8.15
(adopted from Moran and Shapiro, second edition, p. 363). The temperature at the beginning of

the compression process of an air-standard Otto cycle with a compression ratio of 8 is 540 ◦R, the
pressure is 1 atm, and the cylinder volume is 0.02 ft3. The maximum temperature is 3600 ◦R. Find

• temperature and pressure at each stage of the process, and

• thermal efficiency.

For the isentropic compression,

T2 = T1

(
V1

V2

)k−1

, (8.394)

= (540 ◦R)(8)1.4−1, (8.395)

= 1240.69 ◦R. (8.396)

One can use the ideal gas law to get the pressure at state 2:

P2V2

T2
=

P1V1

T1
, (8.397)

P2 = P1
V1

V2

T2

T1
, (8.398)

= (1 atm)(8)

(
1240.69 ◦R

540 ◦R

)

, (8.399)

= 18.3792 atm. (8.400)
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Now, V3 = V2 since the combustion is isochoric. And the maximum temperature is T3 = 3600 ◦R. This
allows use of the ideal gas law to get P3:

P3V3

T3
=

P2V2

T2
, (8.401)

P3 = P2
V2

V3
︸︷︷︸

=1

T3

T2
, (8.402)

= (18.3792 atm)(1)

(
3600 ◦R

1240.59 ◦R

)

, (8.403)

= 53.3333 atm. (8.404)

One uses the isentropic relations for state 4:

T3

T4
=

(
V4

V3

)k−1

, (8.405)

T4

T3
=

(
V3

V4

)k−1

, (8.406)

T4 = T3

(
V2

V1

)k−1

, (8.407)

T4 = T3

(
V1

V2

)1−k

, (8.408)

= (3600 ◦R)(8)1−1.4, (8.409)

= 1566.99 ◦R. (8.410)

For the pressure at state 4, use the ideal gas law:

P4V4

T4
=

P3V3

T3
, (8.411)

P4 = P3
V3

V4

T4

T3
, (8.412)

= P3
V2

V1

T4

T3
, (8.413)

= (53.3333 atm)

(
1

8

)
1566.99 ◦R

3600 ◦R
, (8.414)

= 2.90184 atm. (8.415)

The thermal efficiency is

η = 1 − 1

rk−1
v

, (8.416)

= 1 − 1

81.4−1
, (8.417)

= 0.564725. (8.418)

A Carnot engine operating between the same upper and lower temperature limits would have had
thermal efficiency η = 1 − (540 ◦R)/(3600 ◦R) = 0.85.
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8.9 Entropy of thermo-mechanical mixing

We believe from experience that mixing is most likely a process which is entropy-generating.
For instance, it is easy to mix water and ink together, but hard to separate them into their
original components. Separation can be accomplished, but it takes energy. Now, we can
also mix the energy of components. We might imagine two gases at different states. This
is a structured arrangement. When the two gases mix, they come to a new equilibrium
without external impetus. There is consequently less structure in the universe, and the
entropy should go up. Moreover, it would require an external action to return the system
to its original state. Let us demonstrate this with a simple example thermo-mechanically
mixing two CPIGs initially at different temperatures and pressures, but with otherwise
identical properties. We will enforce thermal equilibrium via temperature equilibration and
mechanical equilibrium via pressure equilibration.

Example 8.16
Consider a fixed volume chamber which is thermally insulated from its outer surroundings. The

fixed volume chamber is initially divided into two compartments A and B, by a thin, thermally insulated
barrier. Both compartments contain CPIG air (R = 0.287 kJ/kg/K, cv = 0.7175 kJ/kg/K). We have
PA = 100 kPa, TA = 300 K, mA = 10 kg, PB = 200 kPa, TB = 500 K, and mB = 2 kg. The thin
barrier is removed, and the combined system comes to a new mechanical and thermal equilibrium at
state C. Find the entropy change of the universe.

The process is sketched in Fig. 8.30. Use the ideal gas law to get the various volumes:

A                              B

P
A =100 kPa      P

B  = 200 kPa
T

A  = 300 K      T
B  = 500 K

m
A
 = 10 kg        m

B
 = 2 kg

C

P
C

T
C

m
C

before mixing                                                 after mixing

Figure 8.30: Schematic for mixing problem.

vA =
RTA

PA
, vB =

RTB

PB
. (8.419)

VA = mAvA =
mARTA

PA
, VB = mBvB =

mBRTB

PB
. (8.420)

Now, mass conservation gives

mC = mA + mB , (8.421)

= (10 kg) + (2 kg), (8.422)

= 12 kg. (8.423)
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By geometry, we have

VC = VA + VB =
mARTA

PA
+

mBRTB

PB
= R

(
mATA

PA
+

mBTB

PB

)

. (8.424)

So we can get one intensive property at the final state:

vC =
VC

mC
=

R
(

mATA

PA
+ mBTB

PB

)

mA + mB
. (8.425)

We can use the first law of thermodynamics to get a second property at the final state:

UC − (UA + UB) = 1Q2
︸︷︷︸

=0

− 1W2
︸︷︷︸

=0

. (8.426)

Because the combined system is adiabatic and isochoric, there is no global heat transfer or work during
the process, so

UC − (UA + UB) = 0, (8.427)

UC = UA + UB, (8.428)

mCcv(TC − To) = mAcv(TA − To) + mBcv(TB − To), (8.429)

(mA + mB)(TC − To) = mA(TA − To) + mB(TB − To), (8.430)

(mA + mB)TC = mATA + mBTB , (8.431)

TC =
mATA + mBTB

mA + mB
. (8.432)

The mixture temperature, TC is the mass-weighted average of the two initial temperatures. Note it
would not matter if we used K or ◦C to get the mixture temperature. The final temperature for our
system is

TC =
(10 kg)(300 K) + (2 kg)(500 K)

(10 kg) + (2 kg)
= 333.333 K. (8.433)

Now, we can use the ideal gas to find the final pressure:

PC =
RTC

vC
= R

mATA+mBTB

mA+mB

R
“

mATA
PA

+
mBTB

PB

”

mA+mB

=
mATA + mBTB

mATA

PA
+ mBTB

PB

. (8.434)

The final pressure is

PC =
(10 kg)(300 K) + (2 kg)(500 K)

(10 kg)(300 K)
100 kPa + (2 kg)(500 K)

200 kPa

= 114.286 kPa. (8.435)

Now, there are no interactions with the surroundings, so we need only consider the entropy changes
of A and B. First consider the gas which starts at state A and finishes at state C
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∆SA = mA

(

cP ln
TC

TA
− R ln

PC

PA

)

, (8.436)

∆SA

R
= mA

(
cP

R
ln

TC

TA
− ln

PC

PA

)

, (8.437)

∆SA

R
= mA

(
cP

cP − cv
ln

TC

TA
− ln

PC

PA

)

, (8.438)

∆SA

R
= mA

(
k

k − 1
ln

TC

TA
− ln

PC

PA

)

, (8.439)

∆SA

R(mA + mB)
=

mA

mA + mB

(

ln

(
TC

TA

) k
k−1

− ln
PC

PA

)

, (8.440)

=
10 kg

(10 kg) + (2 kg)

(

ln

(
333.333 K

300 K

) 1.4
1.4−1

− ln
114.286 kPa

100 kPa

)

, (8.441)

= 0.196025. (8.442)

Here, we have generated a dimensionless entropy rise by scaling by RmC . Gas A saw its scaled entropy
rise.

Similarly, for the gas which starts at B and ends at C, we have

∆SB

R(mA + mB)
=

mB

mA + mB

(

ln

(
TC

TB

) k
k−1

− ln
PC

PB

)

, (8.443)

=
2 kg

(10 kg) + (2 kg)

(

ln

(
333.333 K

500 K

) 1.4
1.4−1

− ln
114.286 kPa

200 kPa

)

, (8.444)

= −0.143252. (8.445)

Gas B saw its scaled entropy fall.
The combined system has

∆SA + ∆SB

R(mA + mB)
= 0.196025 − 0.143252 = 0.0527733. (8.446)

Dimensionally

∆SA + ∆SB = (0.0527733)RmC = (0.0527733)

(

0.287
kJ

kg K

)

(12 kg) = 0.181751
kJ

K
. (8.447)

With some more effort, we could prove that the mixing of arbitrary initial states would result in a global
entropy increase.

We note

• The entropy of the universe increased, and we were able to quantify it.

• The adiabatic mixing process we described is irreversible. That is to say, once mixed,
we do not expect to see a spontaneous return to the initial state.

• The entropy of the universe will increase whenever two systems, initially not in equi-
librium, come to an equilibrium.
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8.10 Probabilistic approach to entropy

One of the more difficult concepts regarding entropy is how it relates to the randomness of
a system. In fact what constitutes randomness vis-à-vis structure may be open to question.

Consider the diagram of Fig. 8.31. Here, we take the level of the grey scale to be propor-

individual blocks at
different temperatures:
indication of structure, order,
and low entropy

individual blocks at
uniform intermediate 
temperature:  indication
of lack of structure,
randomness, and high
entropy

Figure 8.31: Two scenarios for the temperature field with the grey scale proportional to the
temperature.

tional to the local temperature. The blocks on the left are held at a variety of temperatures,
hot, intermediate, and cold. The blocks on the right are held at the same intermediate tem-
perature. Let us restrict attention to the case where the hot and cold temperature blocks
on the left just balance, so that when the net temperature of all the blocks on the left is
calculated, it is precisely the intermediate temperature of the blocks on the right. For such
a case, the total thermal energy of the left and right configurations is equal. Energy being
equal, which configuration has the higher entropy? One is tempted to say that on the left
because it looks to be more random. But in fact it is the configuration on the right, which is
equivalent to that on the left having come to equilibrium, while conserving energy. The con-
figuration on the left has each block at a different temperature. This is properly considered,
in the sense of thermodynamics, to be a structure. Left to itself, the thermal energy would
diffuse, giving rise to the configuration on the right. Now, the grey-level of each block on
the left is representative of that block’s average kinetic energy. Within each block, there will
be a distribution of kinetic energy for each individual molecule. For the blocks on the right,
there is an overall distribution of randomness, the same for each block. That randomness is
not represented by the uniform grey shade, which only captures the average kinetic energy.

It may be possible to better understand the relationship between entropy and randomness,
such as that depicted in Fig. 8.31, by the following discussion. Let us consider a radically
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different approach to entropy, first advocated by Boltzmann in the late nineteenth century.
Boltzmann, depicted at two disparate stages in his life in Fig. 8.32, had to struggle mightily

Figure 8.32: Ludwig Boltzmann (1844-1906), Austrian physicist whose statistical ap-
proach to thermodynamics laid the foundation for quantum mechanics; images from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Boltzmann.html.

for his theories to gain acceptance in a time when the atomic theory of matter was not widely
understood. His arguments have become accepted over time relative to those of his many
detractors. Let us define a set of N possible states, each with a probability of pn. By the
nature of probability, we must have

N∑

n=1

pn = 1. (8.448)

Because of the nature of probability, we will demand that

pn ∈ [0, 1]. (8.449)

That is to say neither negative probability or probability greater than unity has any meaning.
Let us define the entropy of the system as

S = −kB

N∑

n=1

pn ln pn. (8.450)

where we take kB to be the Boltzmann constant. Boltzmann’s tomb has a variant of this
equation cut into its stone, as shown in Fig. 8.32. As an aside, we note that operating on
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Eq. (8.450) yields an alternative expression relating S to pn:

− S

kB

=
N∑

n=1

pn ln pn, (8.451)

− S

kB

=
N∑

n=1

ln ppn
n , (8.452)

− S

kB

= ln
N∏

n=1

ppn
n , (8.453)

exp

(

− S

kB

)

=
N∏

n=1

ppn
n . (8.454)

Boltzmann defined kB such that

kB ≡ R

N
, (8.455)

where N is Avogadro’s number, N = 6.02214179 × 1023 molecule/mole. So

kB =
8.314472 J

K mole

6.02214179 × 1023 molecule
mole

= 1.380650 × 10−23 J

K molecule
. (8.456)

Example 8.17
Consider a CPIG in terms of the Boltzmann constant.

We have

PV = nRT, (8.457)

PV = nN
R

N
︸︷︷︸

=kB

T, (8.458)

PV = nNkBT. (8.459)

We next define the number of molecules N as the product of the number of moles, which we also take
to be n, and the number of molecules per mole, N:

N = nN. (8.460)

Thus, the ideal gas law becomes

PV = NkBT. (8.461)

Consider next the internal energy. Neglecting the additive constant, we have

u = cvT. (8.462)
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Now, scale by the molecular mass to cast this on a per mole basis:

u

M
=

cv

M
T, (8.463)

u = cvT, (8.464)

u =
cv

R
RT, (8.465)

u =
cv

cP − cv
RT, (8.466)

u =
1

cP

cv
− 1

RT, (8.467)

u =
1

k − 1
RT, (8.468)

u =
N

k − 1

R

N
T, (8.469)

u =
N

k − 1
kBT, (8.470)

u

N
=

1

k − 1
kBT. (8.471)

Now, u is the energy per mole. And N is the number of molecules per mole. Now, define û as the
energy per molecule:

û =
u

N
. (8.472)

Thus,

û =
1

k − 1
kBT. (8.473)

For a monatomic ideal gas, k = 5/3; therefore,

û =
3

2
kBT. (8.474)

For monatomic ideal gases, there are three degrees of freedom; thus, each degree of freedom contributes
(1/2)kBT to the internal energy of the molecule.

Example 8.18
Consider a system with four possible states, 1, 2, 3, and 4. Now, consider three configurations A,

B, and C. For each configuration, which may correspond to a bulk energy level, we have a different set
of probabilities for each state. Let us take:

• Energy level A: p1 = 1, p2 = 0, p3 = 0, p4 = 0.

• Energy level B: p1 = 1
2 , p2 = 1

4 , p3 = 1
8 , p4 = 1

8 .

• Energy level C: p1 = 1
4 , p2 = 1

4 , p3 = 1
4 , p4 = 1

4 .

Let us find the entropy of each energy level via S = −kB

∑4
n=1 pn ln pn:
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Roll pn −kBpn ln pn

2 1/36 0.0995kB

3 2/36 0.1605kB

4 3/36 0.2071kB

5 4/36 0.2441kB

6 5/36 0.2742kB

7 6/36 0.2986kB

8 5/36 0.2742kB

9 4/36 0.2441kB

10 3/36 0.2071kB

11 2/36 0.1605kB

12 1/36 0.0995kB

Total
∑
pn = 1 −kB

∑
pn ln pn = 2.2694kB

Table 8.4: Entropy associated with an ordinary pair of six-sided unbiased dice.

• A: SA = −kB (1 ln 1 + 0 ln 0 + 0 ln 0 + 0 ln 0) = 0.

• B: SB = −kB

(
1
2 ln 1

2 + 1
4 ln 1

4 + 1
8 ln 1

8 + 1
8 ln 1

8

)
= 1.21301kB .

• C: SC = −kB

(
1
4 ln 1

4 + 1
4 ln 1

4 + 1
4 ln 1

4 + 1
4 ln 1

4

)
= 1.38629kB .

Note the least random is at energy level A, where there is certainty that the configuration is state
1. There is no randomness to this, and the entropy is formally zero. Loosely speaking, this might
correspond to a temperature of absolute zero, where the probability of finding a molecule in its ground
state is unity. Note that we have used the mathematical limit limx→0 x lnx = 0, which can be shown
with L’Hôpital’s rule. Configuration B is less random, with some bias towards states 1 and 2. It has
positive entropy. Configuration C has the highest entropy. In this configuration, all states are equally
likely. It is the most random in this sense.

Example 8.19
Let us do the same exercise with a pair of ordinary dice. We summarize the probability of rolling

each number in Table 8.4. The entropy of this configuration is S = 2.2694kB . Now, if each roll were
equally likely, the entropy would be different. We would need a single die with eleven sides to achieve
this! See Table 8.5. The entropy of this configuration is greater, and in fact, maximum: S = 2.3979kB .
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Roll pn −kBpn ln pn

2 1/11 0.21799kB

3 1/11 0.21799kB

4 1/11 0.21799kB

5 1/11 0.21799kB

6 1/11 0.21799kB

7 1/11 0.21799kB

8 1/11 0.21799kB

9 1/11 0.21799kB

10 1/11 0.21799kB

11 1/11 0.21799kB

12 1/11 0.21799kB

Total
∑
pn = 1 −kB

∑
pn ln pn = 2.3979kB

Table 8.5: Entropy of an equally weighted eleven-sided die.
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Example 8.20
Consider the entropy associated with the results of rolling an ordinary unbiased six-sided die.

Compare this with a variety of biased or so-called “loaded” die.

First consider the unbiased or non-“loaded” die. The probability of rolling each number 1 through
6 is pn = 1/6. The entropy associated with each roll is −kBpn ln pn = −kB(1/6) ln(1/6) = 0.298627kB .
See Table 8.6. The total entropy is

S = −kB

6∑

n=1

pn ln pn = 1.79176kB . (8.475)

Now, consider the average value of a roll of the die. A given roll will result in a value of n = 1, . . . , 6.
Let us define the average value of n to be <n>. Using the ordinary rules of probability, we expect that

<n> =
6∑

n=1

npn = 1

(
1

6

)

+ 2

(
1

6

)

+ 3

(
1

6

)

+ 4

(
1

6

)

+ 5

(
1

6

)

+ 6

(
1

6

)

=
7

2
. (8.476)

Let us turn our analysis around. Let us say we know <n> = 7/2, but do not know pn. Ther-
modynamically, this is equivalent to saying we know the mean kinetic energy of our molecules, but
do not know the kinetic energy of an individual molecule. Given that there are six possible states of
the system, we would like to know how this energy is distributed among the possible states. Now, we
already know that pn = 1/6 for n = 1, . . . , 6 is a possibility. But it is easy to check that p3 = p4 = 1/2,
p1 = p2 = p5 = p6 = 0 is another possibility. In fact, there are an infinite set of pn for which
∑6

n=1 pn = 1 and
∑6

n=1 npn = 7/2. To fix our selection of the distribution of pn, let us assert

that the entropy is maximized, while simultaneously satisfying the two constraints
∑6

n=1 pn = 1 and
∑6

n=1 npn = 7/2.

This gives rise to a problem in constrained optimization, which can be solved with the method of
Lagrange multipliers. Thus, our problem is to select pn so as to maximize

S∗ = −kB

6∑

n=1

pn ln pn + λ1

(

1 −
6∑

n=1

pn

)

+ λ2

(

7

2
−

6∑

n=1

npn

)

, (8.477)

Roll pn −kBpn ln pn

1 1/6 0.298627kB

2 1/6 0.298627kB

3 1/6 0.298627kB

4 1/6 0.298627kB

5 1/6 0.298627kB

6 1/6 0.298627kB

Total
∑
pn = 1 −kB

∑
pn ln pn = 1.79176kB

Table 8.6: Entropy of an equally weighted six-sided die.
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subject to the constraints

6∑

n=1

pn = 1, (8.478)

6∑

n=1

npn =
7

2
. (8.479)

Here S∗ = S +λ1

(

1 −∑6
n=1 pn

)

+λ2

(

7/2 −∑6
n=1 npn

)

, and λ1 and λ2 are the Lagrange multipliers.

If we maximize S∗, while satisfying the constraints, we also maximize S. To obtain a solution for values
of pn which maximize S∗, we differentiate Eq. (8.477) with respect to each pn and set the result to zero.
We thus get six equations:

∂S∗

∂p1
= −kB (1 + ln p1) − λ1 − λ2 = 0, (8.480)

∂S∗

∂p2
= −kB (1 + ln p2) − λ1 − 2λ2 = 0, (8.481)

∂S∗

∂p3
= −kB (1 + ln p3) − λ1 − 3λ2 = 0, (8.482)

∂S∗

∂p4
= −kB (1 + ln p4) − λ1 − 4λ2 = 0, (8.483)

∂S∗

∂p5
= −kB (1 + ln p5) − λ1 − 5λ2 = 0, (8.484)

∂S∗

∂p6
= −kB (1 + ln p6) − λ1 − 6λ2 = 0. (8.485)

These six equations take the general form

−kB(1 + ln pn) − λ1 − nλ2 = 0, n = 1, . . . , 6, (8.486)

which reduces to

ln pn = −1 − λ1

kB
− λ2

kB
n, (8.487)

pn = exp

(

−1 − λ1

kB
− λ2

kB
n

)

, (8.488)

pn = exp

(

−1 − λ1

kB

)

exp

(

−n
λ2

kB

)

. (8.489)

These six equations, embodied in Eq. (8.489), in conjunction with the two constraints, Eqs. (8.478,8.479),
form eight equations for the eight unknowns p1, . . . , p6, λ1/kB , λ2/kB . They can be solved iteratively
by Newton’s method. We find

<n> =
7

2
: p1 = p2 = p3 = p4 = p5 = p6 =

1

6
. (8.490)

From here on let us take λ∗

1 = λ1/kB and λ∗

2 = λ2/kB . The values of the Lagrange multipliers are
λ∗

1 = 0.79176, λ∗

2 = 0, but are not of particular importance. One could use a variety of methods to
show the extreme value for S we found was actually a maximum. Thus, for <n> = 7/2, the probability
distribution function that maximizes entropy is in fact uniform, with pn = 1/6. Thermodynamically,
this implies that if the average energy is 7/2, the six accessible states are equally likely to be populated,
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as it is this distribution of probabilities which maximizes the system’s entropy and thus satisfies the
second law of thermodynamics.

Let us decrease the mean die roll to <n> = 2 and ask what probability distribution now maximizes
entropy. That is to say, we are going to employ a “loaded” die. Now, there are again an infinite number
of ways to distribute pn to obtain <n> = 2. One obvious way is to take p2 = 1 and p1 = p3 = p4 = p5 =
p6 = 0. But this will not maximize entropy; certainly, such a die has no randomness to it. Replacing
Eq. (8.479) with

∑6
n=1 npn = 2 and solving the similar Lagrange multipliers problem to determine the

set of pn which maximizes S, we obtain

<n> = 2 : p1 = 0.47812, (8.491)

p2 = 0.254752, (8.492)

p3 = 0.135737, (8.493)

p4 = 0.0723234, (8.494)

p5 = 0.0385354, (8.495)

p6 = 0.0205324. (8.496)

A die loaded in this fashion will maximize entropy or randomness while simultaneously achieving the
desired average behavior, which can be thought of as conserving energy.

If we choose a mildly loaded die, so that <n> = 4, we find the distribution of pn which maximizes
entropy to be slightly biased:

<n> = 4 : p1 = 0.103065, (8.497)

p2 = 0.122731, (8.498)

p3 = 0.146148, (8.499)

p4 = 0.174034, (8.500)

p5 = 0.207240, (8.501)

p6 = 0.246782. (8.502)

The probability distribution functions pn(n) for a variety of <n> values are shown in Fig. 8.33.
Obviously, if <n> = 1, there is only one possibility: the die must be entirely weighted to always
yield a 1; thus, p1 = 1, and all others are zero. There is no randomness, and the entropy is zero. A
similar condition holds for <n> = 6. For <n> ∈ [1, 6], there is a non-trivial distribution of pn which
maximizes S for the given <n>. Note that when <n> = 7/2, that S is maximized, and the probability
distribution is uniform with pn = 1/6. A plot of S/kB versus <n> is given in Fig. 8.34.
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Figure 8.33: Probability distribution functions for a six-sided die weighted so as to achieve
a variety of mean values <n> = 1, 2, 3, 7/2, 4, 5, 6 while maximizing entropy.
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Figure 8.34: Scaled entropy as a function of mean value of the six-sided die.
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As an aside, let us reconsider Eq. (8.489), which itself holds for any value of <n>. Since
∑6

n=1 pn =
1, we can form

6∑

n=1

pn = 1 = exp (−1 − λ∗

1)

6∑

n=1

exp (−nλ∗

2) . (8.503)

Now, let us divide Eq. (8.489) by the left and right sides of Eq. (8.503) so as to get

pn =
exp (−nλ∗

2)
∑6

n=1 exp (−nλ∗

2)
. (8.504)

We next define the so-called partition function, Z(λ∗

2), as

Z(λ∗

2) =

6∑

n=1

exp (−nλ∗

2) . (8.505)

Now, rewriting Eq. (8.487), we have

ln pn = −1 − λ∗

1 − nλ∗

2. (8.506)

Now, take the logarithm of Eq. (8.504) and employ the definition of the partition function, Eq. (8.505),
to get

ln pn = −nλ∗

2 − lnZ. (8.507)

Combining Eqs. (8.506) and (8.507), we get

1 + λ∗

1 = lnZ. (8.508)

This relates the first Lagrange multiplier to the second, which is embodied within Z.
Now, let us uncover a non-obvious, but useful relation through the following sequence of operations.

Let us prove that

<n> = − d

dλ∗

2

lnZ. (8.509)

We can show this by employing our definitions combined with a series of operations and see if we are
led to an identity. First use the chain rule

<n> = − dZ

dλ∗

2

d

dZ
lnZ, (8.510)

= − dZ

dλ∗

2

1

Z
, (8.511)

=

(

− d

dλ∗

2

6∑

n=1

exp (−nλ∗

2)

)

1

Z
, (8.512)

=

(
6∑

n=1

n exp (−nλ∗

2)

)

1

Z
, (8.513)

=

∑6
n=1 n exp (−nλ∗

2)
∑6

n=1 exp (−nλ∗

2)
. (8.514)

Now, we also know by definition of the average and the probability pn that

<n> =

6∑

n=1

npn. (8.515)

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


8.11. SUMMARY STATEMENT OF THERMODYNAMICS 277

Using Eq. (8.504) to remove pn from Eq. (8.515), we recover exactly Eq. (8.514). Thus our assertion of
Eq. (8.509) is true.

Lastly, we see that given <n>, it is possible to solve Eq. (8.514) to find λ∗

2. With λ∗

2, one can then
use Eq. (8.504) to find each of the pn. In fact, the problem reduces to solving a polynomial equation.
If we take x = exp(−λ∗

2), Eq. (8.514) reduces to

<n> =
x + 2x2 + 3x3 + 4x4 + 5x5 + 6x6

x + x2 + x3 + x4 + x5 + x6
. (8.516)

A factor of x cancels, and after rearrangement, we find a fifth order polynomial in x:

(6 − <n>)x5 + (5 − <n>)x4 + (4 − <n>)x3 + (3 − <n>)x2 + (2 − <n>)x + (1 − <n>) = 0. (8.517)

There are five roots to this equation, and at least one real root. It is likely possible to prove that in
cases of interest there is only one real root. Let us check for the special case in which <n> = 3.5 = 7/2.
In that case, we get

5x5 + 3x4 + x3 − x2 − 3x − 5 = 0, (8.518)

(x − 1)(5x4 + 8x3 + 9x2 + 8x + 5) = 0. (8.519)

There is obviously one real root, x = 1. The other four roots are complex. For x = exp(−λ∗

2) = 1, we
must have λ∗

2 = 0, as we have seen to be the case for the uniform distribution pn = 1/6 associated with
<n> = 7/2.

Unaware of Boltzmann’s theory, electrical engineer and mathematician Claude Shannon
published in 1948 what amounts to precisely the same theory in the context of data com-
munication. When applied in such context, Boltzmann’s theory is known as information
theory. Information theory was constructed to quantify data lost in telephone line signals.
The theory and its author has had a seminal effect on modern computer and communication
technologies.1112 Shannon is depicted in Fig. 8.35.

8.11 Summary statement of thermodynamics

We have now covered the major ideas of the natural philosophy that is thermodynamics. We
can summarize for an isolated universe by stating

• The energy of the universe is constant, and its entropy is increasing.

This is a loose translation of the statement of Clausius,13

11C. E. Shannon, 1948, “A mathematical theory of communication,” Bell System Technical Journal, 27(3):
379-423.

12C. E. Shannon, 1948, “A mathematical theory of communication,” Bell System Technical Journal, 27(4):
623-656.

13R. Clausius, 1865, “Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der
mechanischen Wärmetheorie,” Annalen der Physik und Chemie, 125(7): 353-390.
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Figure 8.35: Claude Elwood Shannon (1916-2001), American electrical en-
gineer and mathematician whose “information entropy” is mathemati-
cally identical to Boltzmann’s statistical definition of entropy; image from
http://en.wikipedia.org/wiki/Claude Elwood Shannon.

• Die Energie der Welt ist konstant. Die Entropie der Welt strebt einem Maximum zu.

It is a pessimistic set of principles! Thinking cosmologically, these laws would suggest
that a large concentrated mass-energy complex, initially in a highly structured state, would
ultimately deteriorate into spatially homogeneous space dust at a state of final equilibrium,
the so-called heat death scenario posed initially in the nineteenth century by Kelvin and
others. Present non-equilibrium thermodynamic theory would admit local structures to self-
organize into ordered units such as a solar system or living beings. Such structures could
potentially draw the energy necessary for self-organization from residual energy from the
initial state.

Though some disagree, it is claimed here that the science of thermodynamics is incapable
of definitively answering theological questions which often arise regarding the origin of the
universe, its ultimate fate, and the evolution of structures within it. It simply gives a
framework for what is admissible with a given set of assumptions. In that it can illuminate
some aspects of theology by identifying those parts of it that are in and out of agreement with
empirical observations and their consequences, it may be of some use to such disciplines that
are outside its realm. More generally, many scientists follow the train of thought popularized
by the Austrian philosopher of science Karl Popper (1902-1994) who restricted scientific
theories to those that are empirically testable, or more specifically, “falsifiable.” Statements
need not be falsifiable to be true, which thus admits the possibility of theological fact; they
simply are not science.

So, if our universe is formally isolated, we can look forward to “heat death” and the
ultimate equilibrium, first suggested by Thomson.14 If it is not isolated, there is more

14W. Thomson, 1852, “On a universal tendency in nature to the dissipation of mechanical energy,” Trans-

actions of the Royal Society of Edinburgh, 20(3): 139-142.

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://en.wikipedia.org/wiki/Claude_Elwood_Shannon
http://www.nd.edu/~powers/ame.20231/kelvin1852.pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/


8.11. SUMMARY STATEMENT OF THERMODYNAMICS 279

uncertainty, and perhaps less reason for pessimism. The so-called laws of thermodynamics
are simply an efficient reflection of present-day empirical data. Science is in that sense
radically pragmatic; if unimpeachable data is found which contradict our present axioms of
thermodynamics, science resorts to new and improved axioms.
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Chapter 9

Second law analysis for a control
volume

Read BS, Chapter 9

In this chapter, we will apply notions from control volume analysis to problems which involve
the second law of thermodynamics.

Recall that the fundamental description of our axioms is written for systems. We simply
modify these axioms when applying them to control volumes. We shall omit most of the
details of the reduction of the second law to control volume formulation. It is not unlike
that done for mass and energy conservation.

9.1 Irreversible entropy production

First recall an important form of the second law for a system, Eq. (8.31):

S2 − S1 ≥
∫ 2

1

δQ

T
. (9.1)

Let us introduce a convenient variable, the

• Irreversible entropy production: a quantity which characterizes that portion
of entropy production which is irreversible.

We note that entropy can be produced by reversible heat transfer as well, which we segregate
and do not consider here. We adopt the common notation of 1σ2 for irreversible entropy
production, with units of kJ/K. Our 1σ2 is equivalent to 1S2 gen of BS, but is more aligned
with the notation of non-equilibrium thermodynamics. We give it the subscripts to emphasize
that it is path-dependent. Mathematically, we recast the second law for a system by the
following two equations:

S2 − S1 =

∫ 2

1

δQ

T
+ 1σ2, (9.2)

1σ2 ≥ 0. (9.3)

281
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Clearly, this is just a notational convenience which moves the inequality from one equation
to another. On a differential basis, we can say for a system

dS =
δQ

T
+ δσ. (9.4)

And for time-dependent processes, we say for a system

dS

dt
=

1

T

δQ

dt
+
δσ

dt
. (9.5)

Now, let us expand to an unsteady control volume, which should be similar to that for a
system, with corrections for inlets and exits. We get

dScv

dt
=
∑

j

Q̇j

Tj

+
∑

i

ṁisi −
∑

e

ṁese + σ̇cv. (9.6)

Let us study this equation in some common limits. First, if the problem is in steady
state, then

0 =
∑

j

Q̇j

Tj

+
∑

i

ṁisi −
∑

e

ṁese + σ̇cv, (9.7)

steady state limit.

If it is in steady state and there is one entrance and one exit, then mass conservation gives
ṁi = ṁe = ṁ, and

0 =
∑

j

Q̇j

Tj

+ ṁ(si − se) + σ̇cv, (9.8)

steady state, one entrance, one exit.

We can rearrange to say

se − si =
1

ṁ

∑

j

Q̇j

Tj

+
σ̇cv

ṁ
. (9.9)

If there is no heat transfer to the control volume, then

se − si =
σ̇cv

ṁ
, (9.10)

no heat transfer to control volume, steady state, one entrance/exit.

Example 9.1
A steam turbine has an inlet condition of P1 = 30 bar, T1 = 400 ◦C, v1 = 160 m/s. Its exhaust

condition is T2 = 100 ◦C, v2 = 100 m/s, x2 = 1. The work for the turbine is wcv = 540 kJ/kg. Find
σ̇cv/ṁ. The surroundings are at 500 K. See Fig. 9.1.
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control volume

P
1
 = 30 bar

T
1
 = 400 oC

v
1
 = 160 m/s

T
2
 = 100 oC

v
2
 = 100 m/s

x
2
 = 1

w
cv
 = 540 kJ/kg

steam turbine

T
surr

 = 500 K
q

cv

Figure 9.1: Steam turbine schematic.

Mass conservation tells us

dmcv

dt
︸ ︷︷ ︸

=0

= ṁ1 − ṁ2, (9.11)

ṁ1 = ṁ2 = ṁ. (9.12)

Energy conservation tells us

dEcv

dt
︸ ︷︷ ︸

=0

= Q̇cv − Ẇcv + ṁ

(

h1 +
v2
1

2

)

− ṁ

(

h2 +
v2
2

2

)

, (9.13)

Q̇cv

ṁ
=

Ẇcv

ṁ
+ (h2 − h1) +

1

2

(
v
2
2 − v

2
1

)
, (9.14)

qcv = wcv + (h2 − h1) +
1

2

(
v
2
2 − v

2
1

)
. (9.15)

We find from the tables that P2 = 101.3 kPa, h2 = 2676.05 kJ/kg, and h1 = 3230.82 kJ/kg. So

qcv =

(

540
kJ

kg

)

+

((

2676.05
kJ

kg

)

−
(

3230.82
kJ

kg

))

+
1

2

((

100
m

s

)2

−
(

160
m

s

)2
) kJ

kg

1000 m2

s2

, (9.16)

= −22.6
kJ

kg
. (9.17)

This represents a loss of heat to the surroundings.

The second law tells us

s2 − s1 =
∑ qcv,j

Tj
+

σ̇cv

ṁ
, (9.18)

σ̇cv

ṁ
= s2 − s1 −

qcv

T
. (9.19)
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From the tables, we find s1 = 6.9212 kJ/kg/K, s2 = 7.3549 kJ/kg/K. So

σ̇cv

ṁ
=

((

7.3549
kJ

kg K

)

−
(

6.9212
kJ

kg K

))

−
(

−22.6 kJ
kg

500 K

)

, (9.20)

= 0.4789
kJ

kg K
> 0. (9.21)

The process is sketched in Fig. 9.2.

s v

T
P

1

2

1

2

P=101.3 kPa

P=3000 kPa

T=100 o
C

T
=
400 o

C

Figure 9.2: T − s and P − v diagrams for steam turbine problem.

Example 9.2
Steam is flowing in a diffuser. At the entrance it has P1 = 0.2 MPa, T1 = 200 ◦C, v1 = 700 m/s.

At the exhaust it has v2 = 70 m/s. Assume an adiabatic reversible process. Find the final pressure
and temperature. See Fig. 9.3. Because the process is reversible and adiabatic, the second law simply

control volume

P
1
 = 0.2 MPa

T
1
 = 200 oC

v
1
 = 700 m/s

v
2
 = 70 m/s

Figure 9.3: Steam diffuser schematic.
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reduces to

s2 = s1. (9.22)

We go to the tables and find s1 = 7.5066 kJ/kg/K. So s2 = 7.5066 kJ/kg/K.
Now, the first law tells us

dEcv

dt
︸ ︷︷ ︸

=0

= Q̇cv
︸︷︷︸

=0

− Ẇcv
︸︷︷︸

=0

+ṁ

(

h1 +
1

2
v
2
1 + gz1

)

− ṁ

(

h2 +
1

2
v
2
2 + gz2

)

. (9.23)

Now, we cannot neglect kinetic energy changes in a diffuser. We can neglect potential energy changes.
We can also neglect unsteady effects as well as control volume work. We were told it is adiabatic, so
heat transfer can be neglected. Thus, we get

0 = ṁ

(

h1 +
1

2
v
2
1

)

− ṁ

(

h2 +
1

2
v
2
2

)

, (9.24)

h2 = h1 +
1

2

(
v
2
1 − v

2
2

)
. (9.25)

The tables give us h1 = 2870.5 kJ/kg. We thus can get

h2 =

(

2870.5
kJ

kg

)

+
1

2

((

700
m

s

)2

−
(

70
m

s

)2
) kJ

kg

1000 m2

s

= 3113.05
kJ

kg
. (9.26)

Now, we know two properties, h2 and s2. To find the final state, we have to double interpolate the
superheated steam tables. Doing so, we find

T2 = 324.1 ◦C, P2 = 542 kPa. (9.27)

See Fig. 9.4 for a diagram of the process. Note the temperature rises in this process. The kinetic

s v

T
P

1

2

1

2

P=200 kPa

P=542 kPa
T=324.1 K

T=200 K

Figure 9.4: Steam diffuser schematic.

energy is being converted to thermal energy.
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9.2 Bernoulli’s principle

Let us consider our thermodynamics in appropriate limit to develop the well known

• Bernoulli principle: a useful equation in thermal science, often used beyond its
realm of validity, relating pressure, fluid velocity, density, and fluid height, valid only
in the limit in which mechanical energy is conserved.

The principle was first elucidated, though not without considerable turmoil within his prolific
family, by Daniel Bernoulli,1 depicted in Fig. 9.5.

Figure 9.5: Daniel Bernoulli (1700-1782), Dutch-born mathematician and physicist; image
from http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Bernoulli Daniel.html.

For the Bernoulli principle to be formally valid requires some restrictive assumptions.
We shall make them here in the context of thermodynamics. The same assumptions allow
one to equivalently obtain the principle from an analysis of the linear momentum equation
developed in fluid mechanics courses. In such a fluids development, we would need to make
several additional, but roughly equivalent, assumptions. This equivalence is obtained because
we shall develop the equation in the limit that mechanical energy is not dissipated. For our
analysis here, we will make the following assumptions:

• the flow is steady,

• all processes are fully reversible,

• there is one inlet and exit, and

• there is contact with one thermal reservoir in which thermal energy is transferred
reversibly.

1D. Bernoulli, 1738, Hydrodynamica, sive de Viribus et Motibus Fluidorum Commentarii, J. H. Deckeri,
Strasbourg.
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Though we will not study it, there is another important version of the Bernoulli principle
for unsteady flows.

Our second law becomes in the limits we study,

dScv

dt
︸︷︷︸

=0

=
Q̇cv

T
+ ṁs1 − ṁs2 + σ̇cv

︸︷︷︸

=0

, (9.28)

0 =
Q̇cv

T
+ ṁ(s1 − s2), (9.29)

ṁ(s2 − s1) =
Q̇cv

T
, (9.30)

ṁT (s2 − s1) = Q̇cv. (9.31)

Now, let us non-rigorously generalize this somewhat and allow for differential heat transfer
at a variety of temperatures so as to get

ṁ

∫ 2

1

Tds = Q̇cv. (9.32)

In a more formal analysis from continuum mechanics, this step is much cleaner, but would
require significant development. What we really wanted was a simplification for Q̇cv which
we could use in the energy equation, considered next:

dEcv

dt
︸ ︷︷ ︸

=0

= Q̇cv
︸︷︷︸

=ṁ
R

2

1
Tds

−Ẇcv + ṁ

(

h1 +
1

2
v2
1 + gz1

)

− ṁ

(

h2 +
1

2
v2
2 + gz2

)

, (9.33)

Ẇcv

ṁ
=

∫ 2

1

Tds+ (h1 − h2) +
1

2
(v2

1 − v2
2) + g(z1 − z2). (9.34)

Now, one form of the Gibbs equation, Eq. (8.65), has Tds = dh− vdP , so
∫ 2

1

Tds =

∫ 2

1

dh−
∫ 2

1

vdP, (9.35)

∫ 2

1

Tds = h2 − h1 −
∫ 2

1

vdP, (9.36)

∫ 2

1

Tds+ (h1 − h2) = −
∫ 2

1

vdP. (9.37)

Now, substitute Eq. (9.37) into Eq. (9.34) to get

wcv =

∫ 2

1

Tds+ (h1 − h2)

︸ ︷︷ ︸

=−

R

2

1
vdP

+
1

2
(v2

1 − v2
2) + g(z1 − z2), (9.38)

wcv = −
∫ 2

1

vdP +
1

2
(v2

1 − v2
2) + g(z1 − z2). (9.39)
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Now, if wcv = 0, we get

0 =

∫ 2

1

vdP +
1

2
(v2

2 − v2
1) + g(z2 − z1). (9.40)

9.2.1 Incompressible limit

In the important limit for liquids in which v is approximately constant, we recall that ρ = 1/v
and write

0 = v

∫ 2

1

dP +
1

2
(v2

2 − v2
1) + g(z2 − z1), (9.41)

0 = v(P2 − P1) +
1

2
(v2

2 − v2
1) + g(z2 − z1), (9.42)

0 =
P2 − P1

ρ
+

1

2
(v2

2 − v2
1) + g(z2 − z1). (9.43)

We can rewrite this as

P

ρ
+

1

2
v2 + gz = constant, (9.44)

Bernoulli’s equation for an incompressible liquid.

In a different limit, that in which changes in kinetic and potential energy can be neglected,
Eq. (9.39) reduces to

wcv = −
∫ 2

1

vdP. (9.45)

This integral is not the area under the curve in P − v space. It is the area under the curve
in v − P space instead. Contrast this with the system result where we get 1w2 =

∫ 2

1
Pdv.

In the important operation of pumping liquids, v is nearly constant, and we can say

wpump = −v(P2 − P1), (9.46)

Ẇpump = ṁv(P1 − P2). (9.47)

9.2.2 Calorically perfect ideal gas limit

Let us consider the Bernoulli equation for a CPIG undergoing a reversible adiabatic process.
For such a process, we have Pvk = C. Thus, v = (C/P )1/k. Let us consider Eq. (9.40) for
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this case:

0 =

∫ 2

1

(
C

P

) 1

k

dP +
1

2
(v2

2 − v2
1) + g(z2 − z1), (9.48)

0 =
k

k − 1

[

P

(
C

P

) 1

k

]P2

P1

+
1

2
(v2

2 − v2
1) + g(z2 − z1), (9.49)

0 =
k

k − 1
(P2v2 − P1v1) +

1

2
(v2

2 − v2
1) + g(z2 − z1). (9.50)

Thus, for a CPIG obeying Bernoulli’s principle, we can say, taking v = 1/ρ,

k

k − 1

P

ρ
+

1

2
v2 + gz = constant, (9.51)

Bernoulli’s equation for a CPIG.

Using Pvk = C = Pov
k
o and ρo = 1/vo, we can rewrite Eq. (9.51) as

k

k − 1

(
P

Po

) k−1

k Po

ρo

+
1

2
v2 + gz = constant. (9.52)

Similarly for isentropic pumps or turbines using CPIGs with negligible changes in kinetic
and potential energies, Eq. (9.39) reduces to

wcv = −
∫ 2

1

vdP, (9.53)

= − k

k − 1
(P2v2 − P1v1), (9.54)

= − k

k − 1
R(T2 − T1), (9.55)

= −kRT1

k − 1

(
T2

T1

− 1

)

, (9.56)

= −kRT1

k − 1

((
P2

P1

) k−1

k

− 1

)

. (9.57)

An isothermal pump or compressor using a CPIG has

wcv = −
∫ 2

1

vdP, (9.58)

= −
∫ 2

1

RT

P
dP, (9.59)

= −RT1 ln
P2

P1

, (9.60)

= −P1v1 ln
P2

P1

. (9.61)
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9.2.3 Torricelli’s formula

Let us consider a special case of the Bernoulli equation, known as Torricelli’s formula, devel-
oped by Evangelista Torricelli,2 the inventor of the barometer, and for whom the pressure
unit torr is named (1 torr = 133.322 Pa = 1/760 atm.) Torricelli is sketched in Fig. 9.6.

Figure 9.6: Evangelista Torricelli (1608-1647), Italian physicist and mathematician; image
from http://en.wikipedia.org/wiki/Evangelista Torricelli.

Consider the scenario of Fig. 9.7. Here, a fluid is in an open container. The container has
a small hole near its bottom. The fluid at the top of the container, z = z1, is at P1 = Patm.
The leaking fluid exhausts at the same pressure P2 = Patm. The fluid leaks at velocity v2

at a hole located at z = z2. The fluid at the top of the container barely moves; so, it has
negligible velocity, v1 ∼ 0. The fluid exists in a constant gravitational field with gravitational
acceleration g, as sketched. Assume the fluid is incompressible and all of the restrictions of
Bernoulli’s law are present. Let us apply Eq. (9.44):

P1

ρ
+

1

2
v2
1

︸︷︷︸

∼0

+gz1 =
P2

ρ
+

1

2
v2
2 + gz2. (9.62)

Setting P1 = P2 = Patm and ignoring v1 gives

gz1 =
1

2
v2
2 + gz2, (9.63)

v2 =
√

2g(z1 − z2), (9.64)

Torricelli’s formula.

2E. Torricelli, 1643, De Motu Gravium Naturaliter Accelerato, Firenze.
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1~ 0
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Figure 9.7: Fluid container with hole.

Notice rearranging Torricelli’s formula gives

1

2
v2
2

︸︷︷︸

kinetic energy

= g(z1 − z2)
︸ ︷︷ ︸

potential energy

. (9.65)

It represents a balance of kinetic and potential energy of the fluid, and thus is concerned
only with mechanical energy.

Example 9.3
Let us design a liquid water fountain by cutting a hole in a high pressure water pipe. See Fig. 9.8.

We desire the final height of the water jet to be 30 m. The jet rises against a gravitational field with
g = 9.81 m/s2. The atmospheric pressure is 100 kPa. Water has density ρ = 997 kg/m3. Find the
necessary pipe gauge pressure P1 and jet exit velocity v2.

Let us apply the Bernoulli principle between states 1 and 3, the pipe interior and the peak of the
height of the fountain. We will estimate the velocity of the water in the pipe to be small, v1 ∼ 0 m/s.
We will also estimate the velocity at the apex of the motion to be negligible, v3 = 0 m/s.

Let us apply Eq. (9.44):

P1

ρ
+

1

2
v
2
1

︸︷︷︸

∼0

+gz1 =
P3

ρ
+

1

2
v
2
3

︸︷︷︸

=0

+gz3, (9.66)

P1 = Patm + ρg(z3 − z1), (9.67)

P1 − Patm
︸ ︷︷ ︸

=Pgauge

= ρg(z3 − z1). (9.68)

Substituting numbers, we find

Pgauge =

(

997
kg

m3

)(

9.81
m

s2

)

(30 m) = 2.934 × 105 Pa = 293.4 kPa. (9.69)
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 ρ = 997 kg/m3, P
1
 = ?, v

1
 ~ 0 m/s

 v
3
 ~ 0 m/s, P

3
 = 100 kPa

v
2
 = ?, P

2
 = 100 kPa

30
 m

g = 9.81 m/s2

Figure 9.8: Sketch of simple water fountain.

We can use the same principle to estimate the exit velocity, v2. Here, we take z1 ∼ z2.

P1

ρ
+

1

2
v
2
1

︸︷︷︸

∼0

+gz1 =
P2

ρ
+

1

2
v
2
2 + g z2

︸︷︷︸

∼z1

, (9.70)

P1

ρ
=

Patm

ρ
+

1

2
v
2
2, (9.71)

v2 =

√

2(P1 − Patm)

ρ
, (9.72)

v2 =

√

2Pgauge

ρ
. (9.73)

Substituting numbers, we find

v2 =

√

2(2.934 × 105 Pa)

997 kg
m3

= 24.26
m

s
. (9.74)

One could use a similar analysis to estimate the necessary pressure to generate the jet of the University
of Notre Dame’s War Memorial Fountain, depicted in Fig. 9.9.

Example 9.4
Perform a similar calculation for the problem sketched in Fig. 9.8, but account for mass conservation.

Take the cross-sectional area of the pipe to be A1 = A4 = 1 m2, and that of the hole to be A2 = 0.01 m2.
We measure v1 = 1 m/s. See Fig. 9.10. Assume we have the same Pgauge = 293.4 kPa as calculated
earlier. Find the new height of the fountain, z3, and the new exit velocity v2.
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Figure 9.9: The University of Notre Dame’s War Memorial Fountain, 4 June 2010.

m
1

.

m
2

.

m
4

.

A
2
 = 0.01 m2

A1 = 1 m2 A
4
 = 1 m2

v
1
 = 1 m/s

Figure 9.10: Schematic of mass balance for water fountain problem.

The mass balance gives us

dmcv

dt
︸ ︷︷ ︸

=0

= ṁ1 − ṁ2 − ṁ4, (9.75)

0 = ṁ1 − ṁ2 − ṁ4, (9.76)

ṁ4 = ṁ1 − ṁ2. (9.77)

We recall that ṁ = ρvA, so

ρ4v4A4 = ρ1v1A1 − ρ2v2A2. (9.78)

We assume incompressible flow, so ρ1 = ρ2 = ρ4 = ρ, and we have A1 = A4, so

ρv4A1 = ρv1A1 − ρv2A2, (9.79)

v4 = v1 − v2
A2

A1
. (9.80)

This is nice, but not that useful. It simply predicts a lessening of velocity downstream of the hole.
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Bernoulli’s equation applied between 1 and 2 gives

P1

ρ
+

1

2
v
2
1 + gz1 =

P2

ρ
+

1

2
v
2
2 + g z2

︸︷︷︸

∼z1

, (9.81)

P1

ρ
+

1

2
v
2
1 =

Patm

ρ
+

1

2
v
2
2, (9.82)

v2 =

√

2(P1 − Patm)

ρ
+ v2

1, (9.83)

=

√

2Pgauge

ρ
+ v2

1. (9.84)

With numbers, we get

v2 =

√

2(2.934 × 105 Pa)

997 kg
m3

+
(

1
m

s

)2

= 24.28
m

s
. (9.85)

The exit velocity is barely changed from our earlier analysis.
Now, determine the new height. Let us again apply Eq. (9.44):

P1

ρ
+

1

2
v
2
1 + gz1 =

P3

ρ
+

1

2
v
2
3

︸︷︷︸

=0

+gz3, (9.86)

P1

ρ
+

1

2
v
2
1 + gz1 =

Patm

ρ
+ gz3, (9.87)

P1 − Patm

ρ
+

1

2
v
2
1 = g(z3 − z1), (9.88)

z3 − z1 =
Pgauge

ρg
+

1

2g
v
2
1. (9.89)

Substituting numbers, we get

z3 − z1 =
2.934 × 105 Pa

(

997 kg
m3

) (
9.81 m

s

) +
1

2
(
9.81 m

s2

)

(

1
m

s

)2

= 30.05 m. (9.90)

The extra boost in height comes from accounting for the initial kinetic energy of the water.

9.3 Component efficiency

Recall for cycles, we define a thermal efficiency as η = Wnet/QH = what you want/what
you pay for. We can further define efficiencies for components. For a component, we will
generally take an efficiency to be

ηcomponent =
what we get

the best we could get
. (9.91)
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The best we could get is generally an isentropic device. So, for example, for a turbine, we
say

ηturbine =
actual work

work done by an isentropic turbine
=

w

ws

. (9.92)

Here, the subscript “s” denotes isentropic.
For a nozzle, we would like to maximize the kinetic energy of the working fluid, so we

say

ηnozzle =
v2

v2
s

. (9.93)

However for pumps and compressors, the isentropic pump requires the least work input. So
we take instead

ηpump,compressor =
ws

w
. (9.94)

Example 9.5
N2 is adiabatically compressed from T1 = 300 K, P1 = 100 kPa to P2 = 1000 kPa. The compressor

efficiency is ηc = 0.9. Find the final state and the compression work per unit mass. Assume N2 is a
CIIG.

The first law for adiabatic compression gives

w = h2 − h1. (9.95)

Table A.8 from BS tells us that at T1 = 300 K, h1 = 311.67 kJ/kg, so
T1

= 6.8463 kJ/kg/K. But we
are not sure what state 2 is, and the first law does not help yet, as we do not know either w or h2.

Let us calculate state 2 assuming an isentropic process, and then use our knowledge of compressor
efficiency to correct for real effects. We first note for N2 that

R =
R

M
=

8.31451 kJ
kmole K

28.013 kg
kmole

= 0.2968
kJ

kg K
. (9.96)

From Eq. (8.96), we can conclude that for an isentropic process in which s2 = s1 that

s2 − s1 = 0 = so
T2

− so
T1

− R ln
P2

P1
, (9.97)

so
T2

= so
T1

+ R ln
P2

P1
, (9.98)

=

(

6.8463
kJ

kg K

)

+

(

0.2968
kJ

kg K

)

ln
1000 kPa

100 kPa
, (9.99)

= 7.52971
kJ

kg K
. (9.100)

Knowing so
T2

, we next interpolate Table A.8 from BS to get

T2s = 576.133 K, h2s = 601.712
kJ

kg
. (9.101)
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(Note the CPIG assumption would have yielded T2s = (300 K)(10)0.286 = 579.209 K). So the work for
the isentropic compressor is

ws = h2s − h1 =

(

601.712
kJ

kg

)

−
(

311.67
kJ

kg

)

= 290.042
kJ

kg
. (9.102)

Now, consider the compressor efficiency:

ηc =
ws

w
, (9.103)

w =
ws

ηc
, (9.104)

w =
290.042 kJ

kg

0.9
, (9.105)

w = 322.269
kJ

kg
. (9.106)

Thus, we have the actual work per unit mass. So the actual enthalpy at state 2 can be derived from
the first law:

h2 = h1 + w =

(

311.67
kJ

kg

)

+

(

322.269
kJ

kg

)

= 633.939
kJ

kg
. (9.107)

Now, knowing h2, we can again interpolate Table A.8 of BS to find the final temperature T2 to be

T2 = 606.263 K. (9.108)

We had to add more energy to achieve the non-isentropic compression relative to the isentropic com-
pression.
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Chapter 10

Cycles

Read BS, Chapters 11, 12

In this chapter, we will delve more deeply into some thermodynamic cycles.

10.1 Rankine

Large electric power plants typically utilize a vapor power cycle. Regardless of the heat
source, be it nuclear or combustion of coal, oil, natural gas, wood chips, etc., the remaining
details of these plants are similar. Typically a pure working fluid, usually water, is circulated
through a cycle, and that fluid trades heat and work with its surroundings. We sketch a
typical power plant cycle for electricity generation in Fig. 10.1. The ideal Rankine cycle was
first described in 1859 by William John Macquorn Rankine, long after the steam engine was
in wide usage. Expanding on our earlier discussion of Sec. 6.5, the cycle has the following
steps:

• 1 → 2: isentropic compression in a pump,

• 2 → 3: isobaric heating in a boiler,

• 3 → 4: isentropic expansion in a turbine, and

• 4 → 1: isobaric cooling in a condenser.

Two variants of the T − s diagram are given in Fig. 10.2. The first is more efficient as it has
the appearance of a Carnot cycle. However, it is impractical, as it induces liquid water in
the turbine, which can damage its blades. So the second is more common.

The thermal efficiency is

η =
Ẇnet

Q̇H

=
Ẇturbine + Ẇpump

Q̇boiler

. (10.1)
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Figure 10.1: Rankine cycle schematic.

This reduces to

η =
ṁ ((h3 − h4) + (h1 − h2))

ṁ (h3 − h2)
, (10.2)

= 1 − h4 − h1

h3 − h2

, (10.3)

= 1 − qout,condenser

qin,boiler

. (10.4)

Note that because the Rankine cycle is not a Carnot cycle, we have qout,condenser/qin,boiler 6=
T1/T3.

Power plants are sometimes characterized by their

• back work ratio: bwr, the ratio of pump work to turbine work.

Here,

bwr =
|pump work|
|turbine work| =

h2 − h1

h3 − h4

. (10.5)

We model the pump work as an isentropic process. Recall our analysis for isentropic pumps
which generated Eq. (9.46). The Gibbs equation gives Tds = dh− vdP . If ds = 0, we have

dh = vdP, (10.6)
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Figure 10.2: T − s for two Rankine cycles.

Thus, for the pump

h2 − h1 = v(P2 − P1), (10.7)

since v is nearly constant, so the integration is simple.
It might be tempting to make the Rankine cycle into a Carnot cycle as sketched in

Fig. 10.3. However, it is practically difficult to build a pump to handle two-phase mixtures.

s

T

1

2 3

4

Figure 10.3: Rankine-Carnot cycle.

The gas phase can seriously damage the pump. Some features which could be desirable for
a Rankine cycle include
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• high power output: One can enhance this by raising the fluid to a high temperature
during the combustion process or by pumping the fluid to a high pressure. Both
strategies soon run into material limits; turbine blades melt and pipes burst. Another
strategy is to lower the condenser pressure, which means that one must maintain a
vacuum, which can be difficult.

• high thermal efficiency: The key design strategy here lies in 1) increasing component
efficiencies, and 2) rendering the overall cycle as much like a Carnot cycle as is feasible.
Modern power plants have had revolutionary increases in overall thermal efficiency
because of enhancements which make the process more Carnot-like.

There are some important loss mechanisms in the Rankine cycle which inhibit efficiency.
They include

• Turbine losses: These are the major losses. To avoid these losses requires detailed
consideration of fluid mechanics, material science, and heat transfer and is beyond
the scope of classical thermodynamics. Thermodynamics develops broad measures of
turbine efficiency such as ηturbine = (h3 − h4)/(h3 − h4s).

• Pump losses: Again, fluid mechanics, machine design, and material science are required
to analyze how to actually avoid these losses. Thermodynamics characterizes them by
pump efficiency, ηpump = (h2s − h1)/(h2 − h1).

• Heat transfer losses from components.

• Pressure drop in pipes.

• Incomplete fuel combustion.

• Pollution removal devices.

• Loss of heat to surroundings in the condenser.

One simple design strategy to make the system more Carnot-like is to use

• Reheat: a design strategy in which steam is extracted from the turbine before it is
fully expanded, then sent to the boiler again, and re-expanded through the remainder
of the turbine.

This has the effect of making the system more like a Carnot cycle. A schematic and T − s
diagram for the Rankine cycle with reheat is given in Fig. 10.4.

Example 10.1
Consider water in a Rankine power cycle with reheat. The first turbine has water enter at P3 =

8000 kPa, T3 = 480 ◦C. The water expands to 700 kPa, undergoes reheat, and then expands again to
8 kPa. The mass flow rate is ṁ = 2.63× 105 kg/hr. We have ηt = 0.88 for each turbine, and ηp = 0.80
for the pump. Find the net power generated, η, and the heat transfer to the condenser.
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Figure 10.4: Rankine cycle with reheat schematic and T − s diagram.

Let us consider the big picture first. The net specific power will be the positive effect of the two
turbines and the negative effect of the pump:

wnet = (h3 − h4)
︸ ︷︷ ︸

turbine 1

+(h5 − h6)
︸ ︷︷ ︸

turbine 2

+(h1 − h2)
︸ ︷︷ ︸

pump

. (10.8)

Now, the heat input for the reheat is in two stages:

qin = (h3 − h2) + (h5 − h4). (10.9)

Lastly, the heat rejection in the condenser is

qout = h6 − h1. (10.10)

Let us start at the entrance of the first turbine, at 3. We are given P3 and T3, so we consult the
tables and find

h3 = 3348.4
kJ

kg
, s3 = 6.6586

kJ

kg K
. (10.11)

We are given P4 = 7 bar = 700 kPa. Now, let us get the ideal behavior of the turbine: s4s = s3 =
6.6586 kJ/kg/K. At this condition, we find state 4 is a two-phase mixture. At 700 kPa, we find
sf = 1.9922 kJ/kg/K, sg = 6.7080 kJ/kg/K. So

x4s =
s4s − sf

sg − sf
=

(

6.6586 kJ
kg K

)

−
(

1.9922 kJ
kg K

)

(

6.7080 kJ
kg K

)

−
(

1.9922 kJ
kg K

) = 0.9895. (10.12)

We can thus get h4s by consulting the tables to find

h4s = hf + x4shfg =

(

697.22
kJ

kg

)

+ (0.9895)

(

2066.3
kJ

kg

)

= 2741.8
kJ

kg
. (10.13)

Now, ηt = (h3 − h4)/(h3 − h4s), so

h4 = h3 − ηt(h3 − h4s), (10.14)

=

(

3348.4
kJ

kg

)

− (0.88)

((

3348.4
kJ

kg

)

−
(

2741.8
kJ

kg

))

, (10.15)

= 2814.6
kJ

kg
. (10.16)
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Now, state 5 is after the reheat, which was isobaric at P4 = P5 = 700 kPa, and the reheating returns the
temperature to T5 = 480 ◦C. From interpolation of the superheat tables, we find h5 = 3361.15 kJ/kg,
s5 = 6.73695 kJ/kg/K. After expansion in the second turbine, we have s6s = s5 = 6.73695 kJ/kg.
And we were given P6 = 8 kPa. We consult the saturation tables to find at this pressure sf =
0.5926 kJ/kg/K, sg = 8.2287 kJ/kg/K. Thus,

x6s =
s6s − sf

sg − sf
=

(

6.73695 kJ
kg K

)

−
(

0.5926 kJ
kg K

)

(

8.2287 kJ
kg K

)

−
(

0.5926 kJ
kg K

) = 0.804645. (10.17)

The tables then give the necessary information to compute h6s:

h6s = hf + x6shfg =

(

173.88
kJ

kg

)

+ (0.804645)

(

2403.1
kJ

kg

)

= 2107.52
kJ

kg
. (10.18)

Now, the actual h6 is found via

h6 = h5 − ηt(h5 − h6s) =

(

3361.15
kJ

kg

)

− (0.88)

((

3361.15
kJ

kg

)

−
(

2107.52
kJ

kg

))

= 2257.96
kJ

kg
.(10.19)

Now, the tables give us

h1 = hf = 173.88
kJ

kg
, v1 = vf = 0.001084

m3

kg
. (10.20)

For the pump, we have P1 = P6 = 8 kPa and P2 = P3 = 8000 kPa. So

ηp =
ws

wp
, (10.21)

wp =
ws

ηp
, (10.22)

=
v1(P2 − P1)

ηp
, (10.23)

=

(

0.001084 m3

kg

)

((8000 kPa) − (8 kPa))

0.8
, (10.24)

= 10.83
kJ

kg
. (10.25)

So

h2 = h1 + wp, (10.26)

=

(

173.88
kJ

kg

)

+

(

10.83
kJ

kg

)

, (10.27)

= 184.709
kJ

kg
. (10.28)
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Now, substitute all these values into Eq. (10.8) and get

wnet =

((

3348.4
kJ

kg

)

−
(

2814.6
kJ

kg

))

︸ ︷︷ ︸

turbine 1

+

((

3361.15
kJ

kg

)

−
(

2257.96
kJ

kg

))

︸ ︷︷ ︸

turbine 2

+

((

173.88
kJ

kg

)

−
(

184.709
kJ

kg

))

︸ ︷︷ ︸

pump

, (10.29)

= 1626.11
kJ

kg
. (10.30)

On a mass basis, we have

Ẇ = ṁwnet =

(

2.63 × 105 kg

hr

)(
hr

3600 s

)(

1626.11
kJ

kg

)

= 1.19 × 105 kW. (10.31)

From Eq. (10.9), the heat added is

qin =

((

3348.4
kJ

kg

)

−
(

184.709
kJ

kg

))

︸ ︷︷ ︸

first boiling

+

((

3361.15
kJ

kg

)

−
(

2814.6
kJ

kg

))

︸ ︷︷ ︸

second boiling

, (10.32)

= 3710.18
kJ

kg
. (10.33)

So the cycle’s thermal efficiency is

η =
wnet

qin
=

1626.11 kJ
kg

3710.18 kJ
kg

= 0.438282. (10.34)

The heat per unit mass rejected in the condenser is from Eq. (10.10):

qout =

(

2257.96
kJ

kg

)

−
(

173.88
kJ

kg

)

= 2084.08
kJ

kg
. (10.35)

So the power rejected as heat is

Q̇L = ṁqout =

(

2.63 × 105 kg

hr

)(
hr

3600 s

)(

2084.08
kJ

kg

)

= 1.52 × 105 kW. (10.36)

Example 10.2
Repeat the previous analysis without reheat.
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In this case state 4 would be taken down to 8 kPa. We would have

x4s =
s4s − sf

sg − sf
=

(

6.6586 kJ
kg K

)

−
(

0.5926 kJ
kg K

)

(

8.2287 kJ
kg K

)

−
(

0.5926 kJ
kg K

) = 0.794. (10.37)

We can thus get h4s by consulting the tables to find

h4s = hf + x4shfg =

(

173.88
kJ

kg

)

+ (0.794)

(

2403.1
kJ

kg

)

= 2082.87
kJ

kg
. (10.38)

Now

h4 = h3 − ηt(h3 − h4s), (10.39)

=

(

3348.4
kJ

kg

)

− (0.88)

((

3348.4
kJ

kg

)

−
(

2082.87
kJ

kg

))

, (10.40)

= 2234.73
kJ

kg
. (10.41)

We then get

wnet = h3 − h4 − wp =

(

3348.4
kJ

kg

)

−
(

2234.73
kJ

kg

)

−
(

10.83
kJ

kg

)

= 1102.84
kJ

kg
. (10.42)

We also get

qin = h3 − h2 =

(

3348.4
kJ

kg

)

−
(

184.709
kJ

kg

)

= 3163.69
kJ

kg
. (10.43)

So

η =
wnet

qin
=

1102.84 kJ
kg

3163.69 kJ
kg

= 0.348593. (10.44)

The thermal efficiency without reheat (0.348593) is less than that with reheat (0.438282). The reheat
altered the topology of the T − s diagram to make it more Carnot-like, and thus generated a more
efficient use of resources.

Example 10.3
A Rankine power cycle with water as the working fluid has ηt = ηp = 0.88. The turbine inlet

pressure and temperature are at P3 = 1200 psia, T3 = 1000 ◦F . The condenser pressure is at P4 =
1 psia. The steam generator provides Q̇H = 2× 109 Btu/hr. In the condenser the cooling water enters
at 60 ◦F , and we wish to keep the exit cooling water temperature at 80 ◦F . Find the net power, the
thermal efficiency, and the mass flow rate of cooling water, ṁcw.

We interpolate the steam tables to find

h3 = 1499.6
Btu

lbm
, s3 = 1.6297

Btu

lbm ◦R
. (10.45)
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For an isentropic turbine, we have s4s = s3 = 1.6297 Btu/lbm/ ◦R. At P4 = 1 psia, we find state 4s is
a two-phase mixture:

x4s =
s4 − sf

sg − sf
=

(
1.6297 Btu

lbm ◦R

)
−
(
0.1327 Btu

lbm ◦R

)

(
1.9779 Btu

lbm ◦R

)
−
(
0.1327 Btu

lbm ◦R

) = 0.811. (10.46)

Thus,

h4s = hf + x4shfg =

(

69.74
Btu

lbm

)

+ (0.811)

(

1036
Btu

lbm

)

= 909.9
Btu

lbm
. (10.47)

Now, for the actual turbine, we get

h4 = h3 − ηt(h3 − h4s), (10.48)

=

(

1499.7
Btu

lbm

)

− (0.88)

((

1499.7
Btu

lbm

)

−
(

909.9
Btu

lbm

))

, (10.49)

= 979.9
Btu

lbm
. (10.50)

Now, after the condenser, we take x1 = 0, so h1 = hf , s1 = sf , and v1 = vf , all at P1 = 1 psia. These
are

h1 = 69.74
Btu

lbm
, s1 = 0.1327

Btu

lbm ◦R
, v1 = 0.01614

ft3

lbm
. (10.51)

Now,

wp =
ws

ηp
, (10.52)

=
v(P4 − P3)

ηp
, (10.53)

=

(

0.01614 ft3

lbm

)((

1200 lbf
in2

)

−
(

1 lbf
in2

))

0.88

144 in2

ft2
Btu

778 ft lbf
, (10.54)

= 4.07
Btu

lbm
. (10.55)

Now,

h2 = h1 + wp =

(

69.74
Btu

lbm

)

+

(

4.07
Btu

lbm

)

= 73.81
Btu

lbm
. (10.56)

In the boiler, we have

Q̇H = ṁ(h3 − h2), (10.57)

ṁ =
Q̇H

h3 − h2
, (10.58)

=
2 × 109 Btu

hr
(
1499.7 Btu

lbm

)
−
(
73.81 Btu

lbm

)
hr

3600 s
, (10.59)

= 390
lbm

s
. (10.60)

We also note

Q̇H =

(

2 × 109 Btu

hr

)
hr

3600 s
= 5.556 × 105 Btu

s
. (10.61)
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Now, the net power is the sum of the turbine and pump work:

Ẇnet = ṁ ((h3 − h4) + (h1 − h2)) , (10.62)

=

(

390
lbm

s

)((

1499.6
Btu

lbm

)

−
(

979.9
Btu

lbm

))

+

((

69.74
Btu

lbm

)

−
(

73.81
Btu

lbm

))

,(10.63)

= 2.01 × 105 Btu

s
. (10.64)

The thermal efficiency is thus

η =
Ẇnet

Q̇H

=
2.01 × 105 Btu

s

5.556 × 105 Btu
s

= 0.3618. (10.65)

The cooling water and the water in the Rankine cycle exchange heat in the condenser. This is
sketched in Fig. 10.5. The first law for the heat exchanger is

mh
4

mh
1

T
hot

 = 80 oF T
cold = 60 oF 

cooling water

Rankine cycle water
. .

m
cw

.m
cw

.

Figure 10.5: Rankine cycle condenser/heat exchanger.

dEcv

dt
︸ ︷︷ ︸

=0

= Q̇cv
︸︷︷︸

=0

− Ẇcv
︸︷︷︸

=0

+ṁ(h4 − h1) + ṁcwcP (Tcold − Thot), (10.66)

0 = ṁ(h4 − h1) + ṁcwcP (Tcold − Thot), (10.67)

ṁcw =
ṁ(h4 − h1)

cP (Thot − Tcold)
, (10.68)

=

(
390 lbm

s

) ((
979 Btu

lbm ◦R

)
−
(
69.74 Btu

lbm ◦R

))

(
1.00 Btu

lbm ◦R

)
((80 ◦F ) − (60 ◦F ))

, (10.69)

= 17730
lbm

s
. (10.70)

10.2 Brayton

Gas turbine power plants, both stationary and those for jet engines operate on the Brayton
cycle. The cycle is named after George Brayton, an American mechanical engineer. Brayton
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Figure 10.6: George Brayton (1830-1892), American mechanical engineer from Exeter, New
Hampshire; image from http://www.braytonenergy.net/about.
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Figure 10.7: Schematic of Brayton cycle along with P − v and T − s diagrams.

is depicted in Fig. 10.6. It has many similarities to the Rankine cycle. A schematic and
T − s and P − v diagrams for the Brayton cycle for a power plant is illustrated in Fig. 10.7.

The Brayton cycle is outlined as follows:

• 1 → 2: isentropic compression (W added),

• 2 → 3: isobaric heat addition (Q added),

• 3 → 4: isentropic expansion (W extracted), and

• 4 → 1: isobaric heat rejection (passive exhaust).

Note, the work extracted is greater than the work added, i.e.

|h3 − h4| > |h2 − h1|. (10.71)
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Often we will be dealing with a CPIG, in which case ∆h = cP ∆T . If so, then we can say

|T3 − T4| > |T2 − T1|. (10.72)

Another reason for this is that

• isobars diverge in T − s space as s increases.

This is easy to understand when we recall the Gibbs equation, Tds = dh − vdP. On an
isobar, we have dP = 0, so

Tds = dh, on isobar, (10.73)

Tds = cPdT, if IG, (10.74)

∂T

∂s

∣
∣
∣
∣
P

=
T

cP
. (10.75)

Since at a given s, a high T isobar sits above a low T isobar, and the slope of the isobar is
proportional to T , it is easily seen how they must diverge. This is illustrated in Fig. 10.8.
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Figure 10.8: Sketch of diverging isobars for CPIG in T − s plane.

There are other classes of Brayton cycle plants. Schematics are shown next.

• Turbojet. In the turbojet, the kinetic energy of the fluid becomes important at two
points in the cycle. In the compression, the freestream fluid, entering the compressor
at the flight speed, has its pressure increased by the so-called “ram effect” where the
fluid decelerates. Second, the point of the turbojet is to produce thrust, which requires
a significant exit velocity. The turbine work is used solely to power the compressor.
See Fig. 10.9.

• Turbojet with afterburners. We are limited in an ordinary turbojet by how much heat
can be added to the flow in combustion because such flow typically must pass through
the turbine blades, which suffer material degradation if the fluid is too hot. However,
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Figure 10.9: Sketch of turbojet schematic and associated T − s plane.

we can add heat after the turbine in so-called afterburners. This releases chemical
energy, turns it into fluid potential energy in the form of high P/ρ, and then converts
to kinetic energy in the nozzle. This can enhance the thrust, though it can be shown
it is not particularly efficient. A sketch is given in Fig. 10.10.
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Figure 10.10: Sketch of turbojet with afterburners schematic and associated T − s plane.

• Ramjet. A ramjet is much simpler. The compressor and turbine are removed. We
rely on the ram compression effect alone for compression and convert as much of the
thermal energy as possible into mechanical energy used to generate thrust force. A
sketch is given in Fig. 10.11.

Let us consider an

• Air standard analysis: a common set of assumptions used for idealized cyclic
devices.
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Figure 10.11: Sketch of ramjet schematic and associated T − s plane.

The air standard make many compromises in order to admit some simple analysis tools to
be used to make simple estimates for the performance of a variety of devices. Actual design
calculations would have to remedy the many shortcomings. But it is useful for a framework
of understanding. We take the air standard to entail

• The working fluid is air. This ignores any effect of the properties of the fuel or any
other fluid which is mixed with the air.

• The working fluid is an ideal gas. We will often assume it is a CPIG, but sometimes
not.

• We will ignore all details of the combustion process and treat it as a simple heat
addition.

Often in cycle analysis, the formal sign convention is ignored. We take the following

• Turbine work: wt = h3 − h4. Here, the sign convention is maintained.

• Compressor work: wc = h2 − h1. Here, the sign convention is ignored.

• Heat addition: qin = h3 − h2. Here, the sign convention is maintained.

• Heat rejection: qout = h4 − h1. Here, the sign convention is ignored.

The cycle efficiency is

η =

(h3 − h4)
︸ ︷︷ ︸

turbine

− (h2 − h1)
︸ ︷︷ ︸

compressor

h3 − h2
︸ ︷︷ ︸

combustor

. (10.76)
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Rearranging Eq. (10.76), we can also say

η = 1 −

h4 − h1
︸ ︷︷ ︸

heat rejected

h3 − h2
︸ ︷︷ ︸

heat added

. (10.77)

The back work ratio, bwr, is

bwr =
wc

wt

=
h2 − h1

h3 − h4

. (10.78)

Note the back work ratio will be seen to be much larger for gas phase power cycles than it
was for vapor cycles. For Brayton cycles, we may see bwr ∼ 0.4. For Rankine cycles, we
usually see bwr ∼ 0.01.

Now, if we have a CPIG, we get ∆h =
∫
cPdT to reduce to ∆h = cP ∆T . So Eq. (10.76)

reduces to

η =
cP (T3 − T4) − cP (T2 − T1)

cP (T3 − T2)
, (10.79)

=
T3 − T4 − T2 + T1

T3 − T2

, (10.80)

= 1 − T4 − T1

T3 − T2

, (10.81)

= 1 − T1

T2

(
T4

T1

− 1
T3

T2

− 1

)

. (10.82)

Now, 1 → 2 is isentropic. Recall for a CPIG which is isentropic that T2/T1 = (P2/P1)
(k−1)/k.

We also have 3 → 4 to be isentropic, so T3/T4 = (P3/P4)
(k−1)/k. But P2 = P3 and P1 = P4.

So

T2

T1

=
T3

T4

, (10.83)

T4

T1

=
T3

T2

. (10.84)

So

η = 1 − T1

T2

, (10.85)

= 1 − 1
(

P2

P1

) k−1

k

. (10.86)

A plot of η versus the pressure ratio P2/P1 for k = 7/5 is plotted in Fig. 10.12. As the
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Figure 10.12: Thermal efficiency versus pressure ratio for air standard Brayton cycle, k =
7/5.

pressure ratio P2/P1 rises, the thermal efficiency increases for the Brayton cycle. It still is
much less than unity for P2/P1 = 20. To approach unity, high pressure ratios are needed;
η = 0.9 requires P2/P1 ∼ 3200. Note in terms of temperature, the efficiency looks like that
for a Carnot cycle, but it is not. The highest temperature in the Brayton cycle is T3, so the
equivalent Carnot efficiency would be 1 − T1/T3.

Example 10.4
Consider a CPIG air standard Brayton cycle with fixed inlet conditions P1 and T1. We also fix the

maximum temperature as the metallurgical limit of the turbine blades, Tmax. Find the pressure ratio
which maximizes the net work. Then find the pressure ratio which maximizes the thermal efficiency.

We have

T2 = T1

(
P2

P1

) k−1

k

, T3 = Tmax, T4 = T3

(
P4

P3

) k−1

k

. (10.87)

We also have P4 = P1 and P2 = P3. So

T4 = Tmax

(
P1

P2

) k−1

k

= Tmax

(
P2

P1

) 1−k
k

. (10.88)

Let us let the modified pressure ratio θ be defined such that

θ ≡
(

P2

P1

) k−1

k

. (10.89)

Really θ is the temperature ratio, T2/T1. When the pressure ratio goes up, the temperature ratio goes
up.
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Now, the net work is

wnet = (h3 − h4) − (h2 − h1), (10.90)

= cP (T3 − T4 − T2 + T1), (10.91)

= cP (Tmax − Tmaxθ−1 − T1θ + T1), (10.92)

= cP T1

(
Tmax

T1
− Tmax

T1
θ−1 − θ + 1

)

. (10.93)

To find the maximum wnet we take dwnet/dθ and set to zero:

dwnet

dθ
= cP T1

(
Tmax

T1
θ−2 − 1

)

, (10.94)

0 = cP T1

(
Tmax

T1
θ−2 − 1

)

, (10.95)

θ = ±
√

Tmax

T1
. (10.96)

We take the positive root, since a negative pressure ratio does not make sense:

θ =

√

Tmax

T1
. (10.97)

The second derivative tells us whether our critical point is a maximum or a minimum.

d2wnet

dθ2
= −2cP Tmaxθ−3. (10.98)

When θ > 0, d2wnet/dθ2 < 0, so we have found a maximum of wnet. The maximum value is

wnet = cP

(

Tmax − Tmax

(
Tmax

T1

)
−1/2

− T1

(
Tmax

T1

)1/2

+ T1

)

, (10.99)

= cP T1

(

Tmax

T1
− Tmax

T1

(
Tmax

T1

)
−1/2

−
(

Tmax

T1

)1/2
)

, (10.100)

= cP T1

(

Tmax

T1
− 2

(
Tmax

T1

)1/2
)

. (10.101)

Note wnet = 0 when θ = 1 and when θ = Tmax/T1.
Now, when is the thermal efficiency maximum? Consider

η = 1 − θ−1, (10.102)

dη

dθ
=

1

θ2
. (10.103)

At a maximum, we must have dη/dθ = 0. So we must have θ → ∞ in order to have η reach a maximum.
But we are limited to θ ≤ Tmax/T1. So the efficiency at our highest allowable θ is

η = 1 − 1
Tmax

T1

= 1 − T1

Tmax
. (10.104)

But at the value of peak efficiency, the net work is approaching zero! So while this is highly efficient,
it is not highly useful!

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


314 CHAPTER 10. CYCLES

Lastly, what is the efficiency at the point where we maximize work?

η = 1 −
√

T1

Tmax
. (10.105)

A plot of scaled net work, wnet/cP /T1 versus modified pressure ratio, (P2/P1)
(k−1)/k is given for

Tmax/T1 = 10 in Fig. 10.13. For this case the θ which maximizes wnet is θ =
√

10 = 3.162. At that

2 4 6 8 10

1

2

3

4

5

w
net

/(c
P
 T

1
)

θ = (P
2
/P

1
)((k-1)/k)

4.675

3.162

Figure 10.13: Scaled net work versus modified pressure ratio for Brayton cycle with
Tmax/T1 = 10.

value of θ, we find wnet/cP /T1 = 4.675.

Example 10.5
Consider the Brayton power cycle for a space craft sketched in Fig. 10.14. The working fluid is

argon, which is well modeled as a CPIG over a wide range of T and P . We take the pressure in the
heating process to be isobaric, P2 = P3 = 140 kPa, and the pressure in the cooling process to be
isobaric, P4 = P1 = 35 kPa. We are given that T1 = 280 K, T3 = 1100 K. The compressor and turbine
both have component efficiencies of ηt = ηc = 0.8. We are to find the net work, the thermal efficiency,
and a plot of the process on a T − s diagram.

For argon, we have

R = 0.20813
kJ

kg K
, cP = 0.5203

kJ

kg K
, k =

5

3
∼ 1.667. (10.106)

Note that cP = kR/(k − 1).
Let us start at state 1. We first assume an isentropic compressor. We will quickly relax this to

account for the compressor efficiency. But for an isentropic compressor, we have for the CPIG

(
P2

P1

) k−1

k

=
T2s

T1
. (10.107)

Here, T2s is the temperature that would be realized if the process were isentropic. We find

T2s = T1

(
P2

P1

) k−1

k

= (280 K)

(
140 kPa

35 kPa

) 5/3−1

5/3

= 487.5 K. (10.108)
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Figure 10.14: Schematic of Brayton power cycle for spacecraft.

Now, ηc = ws/wcompressor, so

wcompressor =
ws

ηc
=

h2s − h1

ηc
=

cP (T2s − T1)

ηc
=

(

0.5203 kJ
kg K

)

(487.5 K − 280 K)

0.8
= 135.0

kJ

kg
. (10.109)

Now wcompressor = h2 − h1 = cP (T2 − T1), so

T2 = T1 +
wcompressor

cP
= (280 K) +

135.0 kJ
kg

0.5203 kJ
kg K

= 539.5 K. (10.110)

Notice that T2 > T2s. The inefficiency (like friction) is manifested in more work being required to
achieve the final pressure than that which would have been required had the process been ideal.

In the heater, we have

qH = h3 − h2 = cP (T3 − T2) =

(

0.5203
kJ

kg K

)

((1100 K) − (539.5 K)) = 291.6
kJ

kg
. (10.111)
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Now, consider an ideal turbine:

T4s

T3
=

(
P4

P3

) k−1

k

, (10.112)

T4s = T3

(
P4

P3

) k−1

k

, (10.113)

= (1100 K)

(
35 kPa

140 kPa

) 5/3−1

5/3

, (10.114)

= 631.7 K. (10.115)

But for the real turbine,

ηt =
wturbine

ws
, (10.116)

wturbine = ηtws, (10.117)

= ηt(h3 − h4s), (10.118)

= ηtcP (T3 − T4s), (10.119)

= (0.8)

(

0.5203
kJ

kg K

)

((1100 K) − (631.7 K)) = 194.9
kJ

kg
. (10.120)

Thus, since wturbine = h3 − h4 = cP (T3 − T4), we get

T4 = T3 −
wturbine

cP
= (1100 K) −

194.9 kJ
kg

0.5203 kJ
kg K

= 725.4 K. (10.121)

Note that T4 is higher than would be for an isentropic process. This indicates that we did not get all
the possible work out of the turbine. Note also that some of the turbine work was used to drive the
compressor, and the rest wnet is available for other uses. We find

wnet = wturbine − wcompressor =

(

194.9
kJ

kg

)

−
(

135.0
kJ

kg

)

= 59.9
kJ

kg
. (10.122)

Now, for the cooler,

qL = h4 − h1 = cP (T4 − T1) =

(

0.5203
kJ

kg K

)

((725.4 K) − (280 K)) = 231.7
kJ

kg
. (10.123)

We are now in a position to calculate the thermal efficiency for the cycle.

η =
wnet

qH
, (10.124)

=
wturbine − wcompressor

qH
, (10.125)

=
cP ((T3 − T4) − (T2 − T1))

cP (T3 − T2)
, (10.126)

=
(T3 − T4) − (T2 − T1)

T3 − T2
, (10.127)

=
((1100 K) − (725.4 K)) − ((539.5 K) − (280 K))

(1100 K) − (539.6 K)
, (10.128)

= 0.205. (10.129)
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If we had been able to employ a Carnot cycle operating between the same temperature bounds, we
would have found the Carnot efficiency to be

ηCarnot = 1 − T1

T3
= 1 − 280 K

1100 K
= 0.745 > 0.205. (10.130)

A plot of the T − s diagram for this Brayton cycle is shown in Fig. 10.15. Note that from 1 to 2

s

T

P = 35 
kPa

P = 14
0 k

Pa

1

2

3

4

2s

4s

Figure 10.15: T − s diagram of Brayton power cycle for spacecraft with turbine and com-
pressor inefficiencies.

(as well as 3 to 4) there is area under the curve in the T − s diagram. But the process is adiabatic!
Recall that isentropic processes are both adiabatic and reversible. The 1-2 process is an example of a
process that is adiabatic but irreversible. So the entropy change is not due to heat addition effects but
instead is due to other effects.

Example 10.6
We are given a turbojet flying with a flight speed of 300 m/s. The compression ratio of the

compressor is 7. The ambient air is at Ta = 300 K, Pa = 100 kPa. The turbine inlet temperature is
1500 K. The mass flow rate is ṁ = 10 kg/s. All of the turbine work is used to drive the compressor.
Find the exit velocity and the thrust force generated. Assume an air standard with a CPIG; k =
1.4, cP = 1.0045 kJ/kg/K.

A plot of the T − s diagram for this Brayton cycle is shown in Fig. 10.16. We first calculate the
ram compression effect:

h1 +
1

2
v
2
1

︸︷︷︸

∼0

= ha +
1

2
v
2
a. (10.131)
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Figure 10.16: T − s diagram of Brayton cycle in a turbojet engine.

We typically neglect the kinetic energy of the flow once it has been brought to near rest within the
engine. So we get

h1 − ha =
1

2
v
2
a, (10.132)

cP (T1 − Ta) =
1

2
v
2
a, (10.133)

T1 = Ta +
v2
a

2cP
, (10.134)

= (300 K) +

(
300 m

s

)2

2
(

1.0045 kJ
kg K

)
kJ

1000 m2

s2

, (10.135)

= 344.8 K. (10.136)

Now, consider the isentropic compression in the compressor. For this, we have

T2

T1
=







P2

P1
︸︷︷︸

=7







k−1

k

, (10.137)

T2 = (344.8 K)(7)
1.4−1

1.4 , (10.138)

= 601.27 K. (10.139)
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Let us calculate P2/Pa, which we will need later. From the isentropic relations,

P2

Pa
=

(
T2

Ta

) k
k−1

, (10.140)

=

(
601.27 K

300 K

) 1.4
1.4−1

, (10.141)

= 11.3977. (10.142)

We were given the turbine inlet temperature, T3 = 1500 K. Now, the compressor work must equal
the turbine work. This amounts to, ignoring the sign convention,

wc = wt, (10.143)

h2 − h1 = h3 − h4, (10.144)

cP (T2 − T1) = cP (T3 − T4), (10.145)

T2 − T1 = T3 − T4, (10.146)

T4 = T3 − T2 + T1, (10.147)

T4 = (1500 K) − (601.27 K) + (344.8 K), (10.148)

T4 = 1243.5 K. (10.149)

Now, we use the isentropic relations to get T5. Process 3 to 5 is isentropic with P5/P3 = Pa/P2 =
1/11.3977 , so we have

P5

P3
=

(
T5

T3

) k
k−1

, (10.150)

T5 = T3

(
P5

P3

) k−1

k

, (10.151)

T5 = (1500 K)

(
1

11.3977

) 1.4−1

1.4

, (10.152)

T5 = 748.4 K. (10.153)

Now, we need to calculate the exhaust velocity. Take an energy balance through the nozzle to get

h4 +
1

2
v
2
4

︸︷︷︸

∼0

= h5 +
1

2
v
2
5, (10.154)

h4 = h5 +
1

2
v
2
5, (10.155)

v5 =
√

2(h4 − h5), (10.156)

=
√

2cP (T4 − T5), (10.157)

=

√
√
√
√2

(

1.0045
kJ

kg K

)

((1243.5 K) − (748.4 K))
1000 m2

s2

kJ
kg

, (10.158)

= 997.3
m

s
. (10.159)

Now, Newton’s second law for a control volume can be shown to be in one dimension with flow with
one inlet and exit.

d

dt
(ρv) = Fcv + ṁvi − ṁve. (10.160)
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It says the time rate of change of momentum in the control volume is the net force acting on the control
volume plus the momentum brought in minus the momentum that leaves. We will take the problem to
be steady and take the force to be the thrust force. So

Fcv = ṁ(ve − vi), (10.161)

= ṁ(v5 − va), (10.162)

=

(

10
kg

s

)((

997.3
m

s

)

−
(

300
m

s

))

, (10.163)

= 6973 N. (10.164)

10.3 Refrigeration

A simple way to think of a refrigerator is a cyclic heat engine operating in reverse. Rather
than extracting work from heat transfer from a high temperature source and rejecting heat
to a low temperature source, the refrigerator takes a work input to move heat from a low
temperature source to a high temperature source.

A common refrigerator is based on a vapor-compression cycle. This is a Rankine cycle
in reverse. While one could employ a turbine to extract some work, it is often impractical.
Instead the high pressure gas is simply irreversibly throttled down to low pressure.

One can outline the vapor-compression refrigeration cycle as follows:

• 1 → 2: isentropic compression

• 2 → 3: isobaric heat transfer to high temperature reservoir in condenser,

• 3 → 4: adiabatic expansion in throttling valve, and

• 4 → 1: isobaric (and often isothermal) heat transfer from a low temperature reservoir
to an evaporator.

A schematic and associated T − s diagram for the vapor-compression refrigeration cycle is
shown in Figure 10.17. One goal in design of refrigerators is low work input. There are two
main strategies in this:

• Design the best refrigerator to minimize Q̇in. This really means reducing the conductive
heat flux through the refrigerator walls. One can use a highly insulating material. One
can also use thick walls. Thick walls will reduce available space for storage however.
This is an example of a design trade-off.

• For a given Q̇in, design the optimal thermodynamic cycle to minimize the work nec-
essary to achieve the goal. In practice, this means making the topology of the cycle
as much as possible resemble that of a Carnot refrigerator. Our vapor compression
refrigeration cycle is actually close to a Carnot cycle.
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Figure 10.17: Schematic and T − s diagrams for the vapor-compression refrigeration cycle.

The efficiency does not make sense for a refrigerator as 0 ≤ η ≤ 1. Instead, much as our
earlier analysis for Carnot refrigerators, a coefficient of performance, β, is defined as

β =
what one wants

what one pays for
, (10.165)

=
qL
wc

. (10.166)

Note that a heat pump is effectively the same as a refrigerator, except one desires qH
rather than qL. So for a heat pump, the coefficient of performance, β′, is defined as

β′ =
qH
wc

. (10.167)

Example 10.7
R-134a, a common refrigerant, enters a compressor at x1 = 1, T1 = −15 ◦C. At the compressor

inlet, the volume flow rate is 1 m3/min. The R-134a leaves the condenser at T3 = 35 ◦C, P3 = 1000 kPa.
Analyze the system.

We have the state at 1, knowing x1 and T1. The tables then give

h1 = 389.20
kJ

kg
, s1 = 1.7354

kJ

kg K
, v1 = 0.12007

m3

kg
. (10.168)
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The process 2 to 3 is along an isobar. We know P3 = 1000 kPa, so P2 = 1000 kPa. We assume an
isentropic compression to state 2, where P2 = 1000 kPa. We have s2 = s1 = 1.7354 kJ/kg/K. We
interpolate the superheat tables to get

h2 = 426.771
kJ

kg
. (10.169)

State 3 is a subcooled liquid, and we have no tables for it. Let us approximate h3 as hf at T3 = 35 ◦C,
which is

h3 ∼ 249.10
kJ

kg
. (10.170)

In the expansion valve, we have

h4 = h3 = 249.10
kJ

kg
. (10.171)

Now,

ṁ = ρAv =
Av

v1
=

(

1 m3

min

0.12007 m3

kg

)(
min

60 s

)

= 0.138808
kg

s
. (10.172)

Now, the compressor power is

Ẇ = ṁ(h2 − h1) =

(

0.138808
kg

s

)((

426.771
kJ

kg

)

−
(

389.20
kJ

kg

))

= 5.2152 kW. (10.173)

The refrigeratory capacity is

Q̇in = ṁ(h1 − h4) =

(

0.138808
kg

s

)((

389.20
kJ

kg

)

−
(

249.10
kJ

kg

))

= 19.447 kW. (10.174)

With a 5.2152 kW input, we will move 19.447 kW out of the refrigerator.
How much heat exits the back side?

Q̇H = ṁ(h2 − h3) =

(

0.138808
kg

s

)((

426.771
kJ

kg

)

−
(

249.10
kJ

kg

))

= 24.6622 kW. (10.175)

Note that

Q̇H = Q̇in + Ẇ , (10.176)

24.6622 kW = (19.447 kW ) + (5.2152 kW ). (10.177)

The coefficient of performance is

β =
Q̇in

Ẇ
=

19.447 kW

5.2152 kW
= 3.72891. (10.178)

We could also say

β =
Q̇in

Q̇H − Q̇in

, (10.179)

=
1

Q̇H

Q̇in
− 1

. (10.180)

Because we do not have a Carnot refrigerator for this problem, we realize that Q̇H/Q̇in 6= T3/T1.

The University of Notre Dame Power Plant also serves as a generator of chilled water for
air conditioning campus buildings. This is effectively a refrigerator on a grand scale, though
we omit details of the actual system here. A photograph of one of the campus chillers is
shown in Fig. 10.18.
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Figure 10.18: Chiller in the University of Notre Dame power plant, 14 June 2010.
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Chapter 11

Mathematical foundations

Read BS, Chapter 14.2-14.6, 17.5, 17.6

This chapter will serve as an introduction to some of the mathematical underpinnings of
thermodynamics. Though the practicality is not immediately obvious to all, this analysis
is a necessary precursor for building many useful and standard theories. Important among
those are theories to describe chemical reactions, which have widespread application in a
variety of engineering scenarios, including combustion, materials processing, and pollution
control.

11.1 Maxwell relations

We begin with a discussion of the so-called Maxwell1 relations, named after the great nine-
teenth century physicist, James Clerk Maxwell, shown in Fig. 11.1.

Figure 11.1: James Clerk Maxwell (1831-1879) Scottish physicist; image from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Maxwell.html.

1J. C. Maxwell, 1871, Theory of Heat, reprinted 2001, Dover, Mineola, New York, p. 169.
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Recall that if z = z(x, y), we have Eq. (4.3):

dz =
∂z

∂x

∣
∣
∣
∣
y

dx+
∂z

∂y

∣
∣
∣
∣
x

dy. (11.1)

Recall if dz = M(x, y)dx+N(x, y)dy, the requirement for an exact differential is

∂z

∂x

∣
∣
∣
∣
y

= M,
∂z

∂y

∣
∣
∣
∣
x

= N, (11.2)

∂2z

∂y∂x
=
∂M

∂y

∣
∣
∣
∣
x

,
∂2z

∂x∂y
=
∂N

∂x

∣
∣
∣
∣
y

. (11.3)

These equations are the same as Eqs. (4.7,4.8). Because order of differentiation does not mat-
ter for functions which are continuous and differentiable, we must have for exact differentials,
Eq. (4.9):

∂N

∂x

∣
∣
∣
∣
y

=
∂M

∂y

∣
∣
∣
∣
x

. (11.4)

Compare the Gibbs equation, Eq. (8.59), to our equation for dz:

du = −Pdv + Tds, (11.5)

dz = Mdx+Ndy. (11.6)

We see the equivalences

z → u, x→ v, y → s, M → −P, N → T, (11.7)

and just as one expects z = z(x, y), one then expects the natural, or canonical form of

u = u(v, s). (11.8)

Application of Eq. (11.4) to the Gibbs equation, Eq. (8.59), gives then

∂T

∂v

∣
∣
∣
∣
s

= − ∂P

∂s

∣
∣
∣
∣
v

. (11.9)

Equation (11.9) is known as a Maxwell relation. Moreover, specialization of Eq. (11.2) to
the Gibbs equation gives

∂u

∂v

∣
∣
∣
∣
s

= −P, ∂u

∂s

∣
∣
∣
∣
v

= T. (11.10)
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11.2 Functions of two independent variables

Consider a general implicit function linking three variables, x, y, z:

f(x, y, z) = 0. (11.11)

In x − y − z space, this will represent a surface. If the function can be inverted, it will be
possible to write the explicit forms

x = x(y, z), y = y(x, z), z = z(x, y). (11.12)

Differentiating the first two of Eqs. (11.12) gives

dx =
∂x

∂y

∣
∣
∣
∣
z

dy +
∂x

∂z

∣
∣
∣
∣
y

dz, (11.13)

dy =
∂y

∂x

∣
∣
∣
∣
z

dx+
∂y

∂z

∣
∣
∣
∣
x

dz. (11.14)

Now, use Eq. (11.14) to eliminate dy in Eq. (11.13):

dx =
∂x

∂y

∣
∣
∣
∣
z

(
∂y

∂x

∣
∣
∣
∣
z

dx+
∂y

∂z

∣
∣
∣
∣
x

dz

)

︸ ︷︷ ︸

=dy

+
∂x

∂z

∣
∣
∣
∣
y

dz, (11.15)

(

1 − ∂x

∂y

∣
∣
∣
∣
z

∂y

∂x

∣
∣
∣
∣
z

)

dx =

(

∂x

∂y

∣
∣
∣
∣
z

∂y

∂z

∣
∣
∣
∣
x

+
∂x

∂z

∣
∣
∣
∣
y

)

dz, (11.16)

0dx+ 0dz =

(
∂x

∂y

∣
∣
∣
∣
z

∂y

∂x

∣
∣
∣
∣
z

− 1

)

︸ ︷︷ ︸

=0

dx+

(

∂x

∂y

∣
∣
∣
∣
z

∂y

∂z

∣
∣
∣
∣
x

+
∂x

∂z

∣
∣
∣
∣
y

)

︸ ︷︷ ︸

=0

dz. (11.17)

Since x and z are independent, so are dx and dz, and the coefficients on each in Eq. (11.17)
must be zero. Therefore, from the coefficient on dx in Eq. (11.17), we have

∂x

∂y

∣
∣
∣
∣
z

∂y

∂x

∣
∣
∣
∣
z

− 1 = 0, (11.18)

∂x

∂y

∣
∣
∣
∣
z

∂y

∂x

∣
∣
∣
∣
z

= 1, (11.19)

∂x

∂y

∣
∣
∣
∣
z

=
1

∂y
∂x

∣
∣
z

, (11.20)
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and also from the coefficient on dz in Eq. (11.17), we have

∂x

∂y

∣
∣
∣
∣
z

∂y

∂z

∣
∣
∣
∣
x

+
∂x

∂z

∣
∣
∣
∣
y

= 0, (11.21)

∂x

∂z

∣
∣
∣
∣
y

= − ∂x

∂y

∣
∣
∣
∣
z

∂y

∂z

∣
∣
∣
∣
x

, (11.22)

∂x

∂z

∣
∣
∣
∣
y

∂y

∂x

∣
∣
∣
∣
z

∂z

∂y

∣
∣
∣
∣
x

= −1. (11.23)

If one now divides Eq. (11.13) by a fourth differential, dw, one gets

dx

dw
=

∂x

∂y

∣
∣
∣
∣
z

dy

dw
+
∂x

∂z

∣
∣
∣
∣
y

dz

dw
. (11.24)

Demanding that z be held constant in Eq. (11.24) gives

∂x

∂w

∣
∣
∣
∣
z

=
∂x

∂y

∣
∣
∣
∣
z

∂y

∂w

∣
∣
∣
∣
z

, (11.25)

∂x
∂w

∣
∣
z

∂y
∂w

∣
∣
z

=
∂x

∂y

∣
∣
∣
∣
z

, (11.26)

∂x

∂w

∣
∣
∣
∣
z

∂w

∂y

∣
∣
∣
∣
z

=
∂x

∂y

∣
∣
∣
∣
z

. (11.27)

If x = x(y, w), one then gets

dx =
∂x

∂y

∣
∣
∣
∣
w

dy +
∂x

∂w

∣
∣
∣
∣
y

dw. (11.28)

Divide now by dy while holding z constant so

∂x

∂y

∣
∣
∣
∣
z

=
∂x

∂y

∣
∣
∣
∣
w

+
∂x

∂w

∣
∣
∣
∣
y

∂w

∂y

∣
∣
∣
∣
z

. (11.29)

These general operations can be applied to a wide variety of thermodynamic operations.

11.3 Legendre transformations

The Gibbs equation, Eq. (8.59): du = −Pdv+ Tds, is the fundamental equation of classical
thermodynamics. It is a canonical form which suggests the most natural set of variables in
which to express internal energy u are v and s:

u = u(v, s). (11.30)
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However, v and s may not be convenient for a particular problem. There may be other
combinations of variables whose canonical form gives a more convenient set of independent
variables for a particular problem. An example is the enthalpy, Eq. (5.52):

h = u+ Pv. (11.31)

Differentiating the enthalpy gives

dh = du+ Pdv + vdP. (11.32)

We repeat the analysis used to obtain Eq. (8.66) earlier. Use Eq. (11.32) to eliminate du in
the Gibbs equation, Eq. (8.59), to give

dh− Pdv − vdP
︸ ︷︷ ︸

=du

= −Pdv + Tds, (11.33)

dh = Tds+ vdP. (11.34)

So the canonical variables for h are s and P . One then expects

h = h(s, P ). (11.35)

This exercise can be systematized with the Legendre transformation, details of which we
will omit. The interested student can consult Zia, et al.2 or Abbott and van Ness.3 The
transformation is named after Adrien-Marie Legendre, whose work was not motivated by
thermodynamic concerns, but has found application in thermodynamics. The only known
image of Legendre is shown in Fig. 11.2.

Figure 11.2: Adrien-Marie Legendre (1752-1833) French mathematician; image from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Legendre.html.

2R. K. P. Zia, E. F. Redish, and S. R. McKay, 2009, “Making sense of the Legendre transform,” Ameri-

can Journal of Physics, 77(7): 614-622.
3M. M. Abbott and H. C. van Ness, 1972, Thermodynamics, Schaum’s Outline Series in Engineering,

McGraw-Hill, New York.
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The basic outline of the Legendre transformation is as follows. The form du = −Pdv +
Tds, suggests u is the fundamental dependent variable, v and s are the canonical independent
variables, with −P and T serving as so-called conjugate variables. We seek transformations
which can render conjugate variables to be canonical variables. We can achieve this by
defining new dependent variables as the difference between the original dependent variable
and simple second order combinations of the canonical and conjugate variables. For the
Gibbs equation, there are only three combinations, −Pv, Ts, and −Pv + Ts, which are
dimensionally consistent with u. We subtract each of these from u to define new dependent
variables as follows: They are

h = h(P, s) = u− (−Pv) = u+ Pv, enthalpy, (11.36)

a = a(v, T ) = u− (Ts) = u− Ts, Helmholtz free energy, (11.37)

g = g(P, T ) = u− (−Pv + Ts) = u+ Pv − Ts, Gibbs free energy. (11.38)

The Helmholtz free energy was developed by Helmholtz.4 It is symbolized by a in recognition
of the German word arbeit, or “work.” An image of the original appearance of the notion
from Helmholtz’s 1882 work is shown in Fig. 11.3. The notation F is our Helmholtz free
energy a; U is our u; J is our mechanical equivalent of heat J; ϑ is our temperature T ; and
S is our entropy s.

The Gibbs free energy was introduced by Gibbs.5 An image of a somewhat roundabout
appearance of the Gibbs free energy from Gibbs’ 1873 work is shown in Fig. 11.4. Here, ǫ is
our u, E is our U , η is our s, and H is our S.

It has already been shown for the enthalpy that dh = Tds + vdP , so that the canonical
variables are s and P . One then also has

dh =
∂h

∂s

∣
∣
∣
∣
P

ds+
∂h

∂P

∣
∣
∣
∣
s

dP, (11.39)

from which one deduces that

T =
∂h

∂s

∣
∣
∣
∣
P

, v =
∂h

∂P

∣
∣
∣
∣
s

. (11.40)

From Eq. (11.40), a second Maxwell relation can be deduced by differentiation of the first
with respect to P and the second with respect to s:

∂T

∂P

∣
∣
∣
∣
s

=
∂v

∂s

∣
∣
∣
∣
P

. (11.41)

4H. Helmholtz, 1882, “Die Thermodynamik chemischer Vorgänge,” Sitzungsberichte der Königlich

Preuβischen Akademie der Wissenschaften zu Berlin, 1: 22-39.
5J. W. Gibbs, 1873, “A method of geometrical representation of the thermodynamic properties of sub-

stances by means of surfaces,” Transactions of the Connecticut Academy of Arts and Sciences, 2: 382-404.
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Figure 11.3: Image of the original 1882 appearance of the Helmholtz free energy.

The relations for Helmholtz and Gibbs free energies each supply additional useful relations
including two new Maxwell relations. First consider the Helmholtz free energy

a = u− Ts, (11.42)

da = du− Tds− sdT, (11.43)

= (−Pdv + Tds) − Tds− sdT, (11.44)

= −Pdv − sdT. (11.45)

So the canonical variables for a are v and T . The conjugate variables are −P and −s. Thus

da =
∂a

∂v

∣
∣
∣
∣
T

dv +
∂a

∂T

∣
∣
∣
∣
v

dT. (11.46)

So one gets

−P =
∂a

∂v

∣
∣
∣
∣
T

, −s =
∂a

∂T

∣
∣
∣
∣
v

. (11.47)

and the consequent Maxwell relation

∂P

∂T

∣
∣
∣
∣
v

=
∂s

∂v

∣
∣
∣
∣
T

. (11.48)
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Figure 11.4: Image of the original 1873 appearance of a combination of terms which is now
known as the Gibbs free energy.

For the Gibbs free energy

g = u+ Pv
︸ ︷︷ ︸

=h

−Ts, (11.49)

= h− Ts, (11.50)

dg = dh− Tds− sdT, (11.51)

= (Tds+ vdP )
︸ ︷︷ ︸

=dh

−Tds− sdT, (11.52)

= vdP − sdT. (11.53)

Many find some of these equations to have sufficient appeal to cast them in concrete. The
extensive version of Eq. (11.51), unfortunately restricted to the isothermal limit, is depicted
in the floor of University of Notre Dame’s Jordan Hall of Science atrium, see Fig. 11.5.

So for Gibbs free energy, the canonical variables are P and T , while the conjugate vari-
ables are v and −s. One then has g = g(P, T ), which gives

dg =
∂g

∂P

∣
∣
∣
∣
T

dP +
∂g

∂T

∣
∣
∣
∣
P

dT. (11.54)

So one finds

v =
∂g

∂P

∣
∣
∣
∣
T

, −s =
∂g

∂T

∣
∣
∣
∣
P

. (11.55)
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Figure 11.5: Figure cast in the atrium floor of the University of Notre Dame’s Jordan Hall
of Science containing an isothermal extensive version of Eq. (11.51), among other things.

u = u h = u+ Pv a = u− Ts g = u+ Pv − Ts
du = −Pdv + Tds dh = Tds+ vdP da = −Pdv − sdT dg = vdP − sdT

u = u(v, s) h = h(s, P ) a = a(v, T ) g = g(P, T )
− ∂P

∂s

∣
∣
v

= ∂T
∂v

∣
∣
s

∂T
∂P

∣
∣
s
= ∂v

∂s

∣
∣
P

∂P
∂T

∣
∣
v

= ∂s
∂v

∣
∣
T

∂v
∂T

∣
∣
P

= − ∂s
∂P

∣
∣
T

Table 11.1: Summary of Maxwell relations and their generators.

The resulting Maxwell relation is then

∂v

∂T

∣
∣
∣
∣
P

= − ∂s

∂P

∣
∣
∣
∣
T

. (11.56)

Table 11.1 gives a summary of the Maxwell relations and their generators. An image
showing the first published appearance of the Maxwell relations is given in Fig. 11.6. In
Fig. 11.6, the “thermodynamic function” φ is our s, and θ is our T . Note that typography
for partial derivatives was non-existent in most texts of the nineteenth century.

11.4 Specific heat capacity

Recall from Eqs. (5.63, 5.66) that specific heat capacities are defined as

cv =
∂u

∂T

∣
∣
∣
∣
v

, (11.57)

cP =
∂h

∂T

∣
∣
∣
∣
P

. (11.58)
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Figure 11.6: Maxwell’s relations as first written by Maxwell, 1871.

Then perform operations on the Gibbs equation, Eq. (8.59):

du = Tds− Pdv, (11.59)

∂u

∂T

∣
∣
∣
∣
v

= T
∂s

∂T

∣
∣
∣
∣
v

, (11.60)

cv = T
∂s

∂T

∣
∣
∣
∣
v

. (11.61)

Likewise, operating on Eq. (8.66), we get,

dh = Tds+ vdP, (11.62)

∂h

∂T

∣
∣
∣
∣
P

= T
∂s

∂T

∣
∣
∣
∣
P

, (11.63)

cP = T
∂s

∂T

∣
∣
∣
∣
P

. (11.64)

One finds further useful relations by operating on the Gibbs equation, Eq. (8.59):

du = Tds− Pdv, (11.65)

∂u

∂v

∣
∣
∣
∣
T

= T
∂s

∂v

∣
∣
∣
∣
T

− P, (11.66)

= T
∂P

∂T

∣
∣
∣
∣
v

− P. (11.67)
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So one can then say

u = u(T, v), (11.68)

du =
∂u

∂T

∣
∣
∣
∣
v

dT +
∂u

∂v

∣
∣
∣
∣
T

dv, (11.69)

= cvdT +

(

T
∂P

∂T

∣
∣
∣
∣
v

− P

)

dv. (11.70)

For an ideal gas, one has

∂u

∂v

∣
∣
∣
∣
T

= T
∂P

∂T

∣
∣
∣
∣
v

− P = T

(
R

v

)

− RT

v
, (11.71)

= 0. (11.72)

Consequently, u is not a function of v for an ideal gas, so u = u(T ) alone. Since h = u+Pv,
h for an ideal gas reduces to h = u+RT . Thus,

h = u(T ) +RT = h(T ). (11.73)

Now, return to general equations of state. With s = s(T, v) or s = s(T, P ), one gets

ds =
∂s

∂T

∣
∣
∣
∣
v

dT +
∂s

∂v

∣
∣
∣
∣
T

dv, (11.74)

ds =
∂s

∂T

∣
∣
∣
∣
P

dT +
∂s

∂P

∣
∣
∣
∣
T

dP. (11.75)

Now, using Eqs. (11.41, 11.56, 11.61, 11.64) one gets

ds =
cv
T
dT +

∂P

∂T

∣
∣
∣
∣
v

dv, (11.76)

ds =
cP
T
dT − ∂v

∂T

∣
∣
∣
∣
P

dP. (11.77)

Subtracting Eq. (11.77) from Eq. (11.76), one finds

0 =
cv − cP
T

dT +
∂P

∂T

∣
∣
∣
∣
v

dv +
∂v

∂T

∣
∣
∣
∣
P

dP, (11.78)

(cP − cv)dT = T
∂P

∂T

∣
∣
∣
∣
v

dv + T
∂v

∂T

∣
∣
∣
∣
P

dP. (11.79)

Now, divide both sides by dT and hold either P or v constant. In either case, one gets

cP − cv = T
∂P

∂T

∣
∣
∣
∣
v

∂v

∂T

∣
∣
∣
∣
P

. (11.80)
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Also, since ∂P/∂T |v = −(∂P/∂v|T )(∂v/∂T |P ), Eq. (11.80) can be rewritten as

cP − cv = −T
(
∂v

∂T

∣
∣
∣
∣
P

)2
∂P

∂v

∣
∣
∣
∣
T

. (11.81)

Now, since T > 0, (∂v/∂T |P )2 > 0, and for all known materials ∂P/∂v|T < 0, we must have

cP > cv. (11.82)

Example 11.1
For a CIIG, prove Mayer’s relation, Eq. (5.81), cP (T ) − cv(T ) = R.

For the ideal gas, Pv = RT , one has

∂P

∂T

∣
∣
∣
∣
v

=
R

v
,

∂v

∂T

∣
∣
∣
∣
P

=
R

P
. (11.83)

So, substituting these into Eq. (11.80), we get

cP − cv = T
R

v

R

P
, (11.84)

= T
R2

RT
, (11.85)

= R. (11.86)

This holds even if the ideal gas is calorically imperfect. That is,

cP (T ) − cv(T ) = R, Q.E.D. (11.87)

For the ratio of specific heats for a general material, one can use Eqs. (11.61) and (11.64)
to get

k =
cP
cv

=
T ∂s

∂T

∣
∣
P

T ∂s
∂T

∣
∣
v

, then apply Eq. (11.20) to get (11.88)

=
∂s

∂T

∣
∣
∣
∣
P

∂T

∂s

∣
∣
∣
∣
v

, then apply Eq. (11.22) to get (11.89)

=

(

− ∂s

∂P

∣
∣
∣
∣
T

∂P

∂T

∣
∣
∣
∣
s

)(

− ∂T

∂v

∣
∣
∣
∣
s

∂v

∂s

∣
∣
∣
∣
T

)

, (11.90)

=

(
∂v

∂s

∣
∣
∣
∣
T

∂s

∂P

∣
∣
∣
∣
T

)(
∂P

∂T

∣
∣
∣
∣
s

∂T

∂v

∣
∣
∣
∣
s

)

, (11.91)

=
∂v

∂P

∣
∣
∣
∣
T

∂P

∂v

∣
∣
∣
∣
s

. (11.92)

The first term can be obtained from P − v − T data. The second term is related to the
isentropic sound speed of the material, which is also a measurable quantity.
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11.5 The first law and coordinate transformations

One can apply standard notions from the mathematics of coordinate transformations to the
first law of thermodynamics. Recall the primitive form of the first law Eq. (5.3):

∮
δQ =

∮
δW . In intensive form, this becomes

∮

δq =

∮

δw. (11.93)

We also know that δq = Tds and δw = Pdv, so that

∮

Tds =

∮

Pdv. (11.94)

Geometrically, one could say that an area in the T − s plane has the same value in the P − v
plane. Moreover, because the cyclic integral is direction-dependent, one must insist that an
area in the T −s plane maintain its orientation in the P −v plane. As an example, a rotation
of a two-dimensional geometric entity preserves area and orientation, while a reflection of
the same entity preserves area, but not orientation.

Now we can consider equations of state to be coordinate mappings; for example, consider
the general equations of state

T = T (P, v), (11.95)

s = s(P, v). (11.96)

These are mappings which take points in the P−v plane into the T−s plane. The differentials
of Eqs. (11.95,11.96) are

dT =
∂T

∂P

∣
∣
∣
∣
v

dP +
∂T

∂v

∣
∣
∣
∣
P

dv, (11.97)

ds =
∂s

∂P

∣
∣
∣
∣
v

dP +
∂s

∂v

∣
∣
∣
∣
P

dv. (11.98)

In matrix form, we could say

(
dT
ds

)

=

(
∂T
∂P

∣
∣
v

∂T
∂v

∣
∣
P

∂s
∂P

∣
∣
v

∂s
∂v

∣
∣
P

)

︸ ︷︷ ︸

=J

·
(
dP
dv

)

. (11.99)

Here, we have defined the Jacobian matrix of the mapping from the standard mathematics
of coordinate transformations:

J =

(
∂T
∂P

∣
∣
v

∂T
∂v

∣
∣
P

∂s
∂P

∣
∣
v

∂s
∂v

∣
∣
P

)

. (11.100)
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In a standard result from mathematics, for a coordinate transformation to be area- and
orientation-preserving, its Jacobian determinant, J must have a value of unity:

J ≡ detJ =

∣
∣
∣
∣

∂T
∂P

∣
∣
v

∂T
∂v

∣
∣
P

∂s
∂P

∣
∣
v

∂s
∂v

∣
∣
P

∣
∣
∣
∣
= 1. (11.101)

Expanding the Jacobian determinant, we require

J =
∂T

∂P

∣
∣
∣
∣
v

∂s

∂v

∣
∣
∣
∣
P

− ∂T

∂v

∣
∣
∣
∣
P

∂s

∂P

∣
∣
∣
∣
v

= 1. (11.102)

For general mathematical background of Jacobians and coordinate transformations, the in-
terested reader can consult a variety of sources, for example, Kaplan.6

Example 11.2
Show a CPIG has a mapping from the T −s plane to the P −v plane which is area- and orientation-

preserving.

For a CPIG, it is easily shown that

T (P, v) =
Pv

R
, (11.103)

s(P, v) = so + cP ln

(
v

vo

)

+ cv ln

(
P

Po

)

. (11.104)

Calculating J , we find

J =
( v

R

)(cP

v

)

−
(

P

R

)(cv

P

)

, (11.105)

=
cP − cv

R
=

R

R
= 1. (11.106)

11.6 The van der Waals gas

A van der Waals gas is a common model for a non-ideal gas, introduced earlier in Sec. 3.4.2.1.
It can capture some of the behavior of a gas as it approaches the vapor dome. Its form is

P (T, v) =
RT

v − b
− a

v2
, (11.107)

where b accounts for the finite volume of the molecules, and a accounts for intermolecular
forces.

6W. Kaplan, 2003, Advanced Calculus, Fifth Edition, Addison-Wesley, Boston, pp. 90-95, pp. 331-336.
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If we select

a =
27

64

R2T 2
c

Pc

, b =
RTc

8Pc

, (11.108)

where Tc and Pc are the critical point temperature and pressure, respectively, we approximate
some physical behavior well, namely

• at the critical point ∂P/∂v|T = 0; that is an isotherm has a zero slope in the P − v
plane at the critical point, and

• at the critical point ∂2P/∂v2|T = 0; that is an isotherm has a point of inflection in the
P − v plane at the critical point.

It is also easy to show that at the critical point, we have

vc = 3b =
3

8

RTc

Pc

. (11.109)

Example 11.3
Show an isotherm has a slope of zero in the P − v plane at the critical point for a van der Waals

model.

Taking a partial derivative of Eq. (11.107), we see that

∂P

∂v

∣
∣
∣
∣
T

= − RT

(v − b)2
+

2a

v3
. (11.110)

At the critical point, this has value

∂P

∂v

∣
∣
∣
∣
T

∣
∣
∣
∣
critical point

= − RTc

(vc − b)2
+

2a

v3
c

. (11.111)

Now, substitute values for a, b, and vc for the van der Waals gas to get

∂P

∂v

∣
∣
∣
∣
T

∣
∣
∣
∣
critical point

= − RTc
(

3
8

RTc

Pc
−
(

RTc

8Pc

))2 +
2
(

27
64

R2T 2
c

Pc

)

(
3
8

RTc

Pc

)3 , (11.112)

∂P

∂v

∣
∣
∣
∣
T

∣
∣
∣
∣
critical point

= − RTc
(

1
4

RTc

Pc

)2 +
RTc

(
27
32

RTc

Pc

)

(
3
8

RTc

Pc

)3 , (11.113)

∂P

∂v

∣
∣
∣
∣
T

∣
∣
∣
∣
critical point

=
RTc
(

RTc

Pc

)2

(

− 1
(

1
4

)2 +

(
27
32

)

(
3
8

)3

)

, (11.114)

∂P

∂v

∣
∣
∣
∣
T

∣
∣
∣
∣
critical point

=
P 2

c

RTc

(

−16 +

(
27

32

)(
512

27

))

= 0. (11.115)

One could similarly take the second derivative and show the critical point is a point of inflection.
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Example 11.4
Consider the van der Waals equation for water.

For water, we have Tc = 374.15 ◦C = 647.3 K and Pc = 22120 kPa. We also have M =
18.015 kg/kmole. So

R =
R

M
=

8.314 kJ
kmole K

18.015 kg
kmole

= 0.4615
kJ

kg K
. (11.116)

Thus, our constants are

a =
27
(

0.4615 kJ
kg K

)2

(647.3 K)2

64 (22120 kPa)
= 1.70201

kPa m6

kg2
, (11.117)

b =

(

0.4615 kJ
kg K

)

(647.3 K)

8(22120 kPa)
= 0.00168813

m3

kg
. (11.118)

So our van der Waals equation of state for water is

P =

(

0.4615 kJ
kg K

)

T

v −
(

0.00168813 m3

kg

) −

(

1.70201 kPa m6

kg2

)

v2
. (11.119)

Some isotherms for water, as predicted by the van der Waals equation, are given along with the actual
data for the vapor dome in Fig. 11.7. Obviously, the van der Waals predictions are not valid inside the
vapor dome, where isotherms must be isobars.

The critical volume is predicted by the van der Waals equation to be

vc = 3b =
3

8

RTc

Pc
=

3

8

(

0.4615 kJ
kg K

)

(647.3 K)

22120 kPa
= 0.00506439

m3

kg
. (11.120)

The actual data from Table B.1.2 of BS gives vc = 0.003155 m3/kg, so clearly the van der Waals equation
has some inaccuracy, even near the critical point. This inaccuracy is clearly seen in Fig. 11.7 as the
isotherm corresponding to T = Tc = 647.3 K has its zero-slope inflection point at P = Pc = 22120 kPa,
slightly displaced from the measured value of vc.

Example 11.5
Find a general expression for u(T, v) if

P (T, v) =
RT

v − b
− a

v2
. (11.121)

Proceed as before: First we have

du =
∂u

∂T

∣
∣
∣
∣
v

dT +
∂u

∂v

∣
∣
∣
∣
T

dv, (11.122)
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Figure 11.7: Isotherms for water as predicted by the van der Waals equation along with
actual data for the vapor dome.

recalling that

∂u

∂T

∣
∣
∣
∣
v

= cv,
∂u

∂v

∣
∣
∣
∣
T

= T
∂P

∂T

∣
∣
∣
∣
v

− P. (11.123)

Now, for the van der Waals gas, we have

∂P

∂T

∣
∣
∣
∣
v

=
R

v − b
, (11.124)

T
∂P

∂T

∣
∣
∣
∣
v

− P =
RT

v − b
− P, (11.125)

=
RT

v − b
−
(

RT

v − b
− a

v2

)

=
a

v2
. (11.126)

So we have

∂u

∂v

∣
∣
∣
∣
T

=
a

v2
, (11.127)

u(T, v) = −a

v
+ f(T ). (11.128)

Here, f(T ) is some as-of-yet arbitrary function of T . To evaluate f(T ), take the derivative with respect
to T holding v constant:

∂u

∂T

∣
∣
∣
∣
v

=
df

dT
= cv. (11.129)
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Since f is a function of T at most, here cv can be a function of T at most, so we allow cv = cv(T ).
Integrating, we find f(T ) as

f(T ) = C +

∫ T

To

cv(T̂ )dT̂ , (11.130)

where C is an integration constant. Thus, u is

u(T, v) = C +

∫ T

To

cv(T̂ )dT̂ − a

v
. (11.131)

Taking C = uo + a/vo, we get

u(T, v) = uo +

∫ T

To

cv(T̂ )dT̂ + a

(
1

vo
− 1

v

)

. (11.132)

We also find

h = u + Pv = uo +

∫ T

To

cv(T̂ )dT̂ + a

(
1

vo
− 1

v

)

+ Pv, (11.133)

h(T, v) = uo +

∫ T

To

cv(T̂ )dT̂ + a

(
1

vo
− 1

v

)

+
RTv

v − b
− a

v
. (11.134)

Example 11.6
Consider an isothermal compression of water at T = 400 ◦C from P1 = 8000 kPa to P2 =

10000 kPa. Analyze this using a van der Waals model. Compare some results to those from an
ideal gas model and those from a steam table model.

At state 1, we have T1 = 400 ◦C = 673.15 K. Note that T1 > Tc. Now, we also have P1 = 8000 kPa.
Note that P1 < Pc. Let us find an estimate for v1 from the van der Waals equation, Eq. (11.119):

P1 = 8000 kPa =

(

0.4615 kJ
kg K

)

(673.15 K)

v1 −
(

0.00168813 m3

kg

) −

(

1.70201 kPa m6

kg2

)

v2
1

. (11.135)

Omitting units, Eq. (11.135) expands to −3.59151×10−7 +0.000212751v1−0.0405208v2
1 +v3

1 = 0. This
cubic equation has three roots:

v1 = 0.00291758 ± 0.00135727i
m3

kg
, non-physical, (11.136)

v1 = 0.0346857
m3

kg
, physical. (11.137)

The two non-physical roots are a complex conjugate pair. In other cases, they might appear to be
physical, but will still be nothing more than mathematical relics with no physical meaning. At this
state, the ideal gas law, v1 = RT1/P1 predicts a value of v1,ideal gas = 0.0388327 m3/kg. Data from the
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steam tables show that v1,steam tables = 0.03432 m3/kg. So the van der Waals equation gives a better
prediction of v1 than does an ideal gas assumption.

At state 2, we have T2 = 400 ◦C = 673.15 K and P2 = 10000 kPa. Again, we find an estimate for
v2 from the van der Waals equation, Eq. (11.119):

P2 = 10000 kPa =

(

0.4615 kJ
kg K

)

(673.15 K)

v2 −
(

0.00168813 m3

kg

) −

(

1.70201 kPa m6

kg2

)

v2
2

. (11.138)

Again, we find three roots:

v2 = 0.0029749 ± 0.00136715i
m3

kg
, non-physical, (11.139)

v2 = 0.0268045
m3

kg
, physical. (11.140)

At this state, the ideal gas law, v2 = RT2/P2 predicts a value of v2,ideal gas = 0.0310662 m3/kg. Data
from the steam tables show that v2,steam tables = 0.02641 m3/kg. So again, the van der Waals equation
gives a better prediction of v2 than does an ideal gas assumption.

The first law of thermodynamics tells us

u2 − u1 = 1q2 − 1w2. (11.141)

Since we can compute u2 − u1 and 1w2, the first law lets us get the heat transfer 1q2. Let us first
compute the work:

1w2 =

∫ 2

1

Pdv, (11.142)

=

∫ 2

1

(
RT

v − b
− a

v2

)

dv, (11.143)

= RT1 ln
v2 − b

v1 − b
+ a

(
1

v2
− 1

v1

)

, (11.144)

=

(

0.461504
kJ

kg K

)

(673.15 K) ln

(

0.0268045 m3

kg

)

−
(

0.00168813 m3

kg

)

(

0.0346857 m3

kg

)

−
(

0.00168813 m3

kg

)

+

(

1.70201
kPa m6

kg2

)(

1

0.0268045 m3

kg

− 1

0.0346857 m3

kg

)

, (11.145)

= −70.3563
kJ

kg
. (11.146)

The work in compression is negative. From the tables, we could estimate the work via numerical
integration along an isotherm. We only have two data points from the tables, so the estimate is simple

1w2 ∼ Pave(v2 − v1). This gives (9000 kPa)(0.02641 m3/kg − 0.03432 m3/kg) = −71.19 kJ/kg.

Now, let us find u2 − u1. Note if we had an ideal gas, this would be zero, since it is an isothermal
process. However, the van der Waals gas has u(T, v), and since v changes, so does u. From Eq. (11.132),
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we can deduce that

u2 − u1 =

∫ T2

T1

cv(T )dT

︸ ︷︷ ︸

=0

−a

(
1

v2
− 1

v1

)

, (11.147)

= −
(

1.70201
kPa m6

kg2

)(

1

0.0268045 m3

kg

− 1

0.0346857 m3

kg

)

, (11.148)

= −14.4277
kJ

kg
. (11.149)

We can compare this with u2−u1 from the steam tables, which give (2832.38 kJ/kg)−(2863.75 kJ/kg) =
−31.37 kJ/kg.

So the heat transfer is

1q2 = u2 − u1 + 1w2, (11.150)

=

(

−14.4277
kJ

kg

)

+

(

−70.3563
kJ

kg

)

, (11.151)

= −84.7839
kJ

kg
. (11.152)

This compares with an estimate based on the tables of 1q2 = −102.56 kJ/kg.
Now, let us get the entropy change. We start with the Gibbs equation, Eq. (8.59): du = Tds−Pdv.

Rearranging, we get

Tds = du + Pdv. (11.153)

We can differentiate Eq. (11.132) to get

du = cv(T )dT +
a

v2
dv. (11.154)

Substitute Eq. (11.154) into Eq. (11.153) to get

Tds = cv(T )dT +
(

P +
a

v2

)

dv. (11.155)

Now, we know from the van der Waals equation, Eq. (11.107), that P + a/v2 = (RT )/(v − b), so
Eq. (11.155) reduces to

Tds = cv(T )dT +
RT

v − b
dv, (11.156)

ds =
cv(T )

T
dT +

R

v − b
dv, (11.157)

s2 − s1 =

∫ 2

1

cv(T )

T
dT + R ln

v2 − b

v1 − b
. (11.158)

For the isothermal changes of this problem, we have simply

s2 − s1 = R ln
v2 − b

v1 − b
, (11.159)

=

(

0.461504
kJ

kg K

)

ln

(

0.0268045 m3

kg

)

−
(

0.00168813 m3

kg

)

(

0.0346857 m3

kg

)

−
(

0.00168813 m3

kg

) , (11.160)

= −0.12591
kJ

kg K
. (11.161)
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The estimate of the entropy change from the tables is s2 − s1 = 6.2119 kJ/kg/K − 6.3633 kJ/kg/K =
−0.1514 kJ/kg/K.

Note that for this isothermal problem

s2 − s1 =

∫ 2

1

δq

T
=

1q2

T
=

−84.7839 kJ
kg

673.15 K
= −0.125951

kJ

kg K
. (11.162)

Thermal energy left the system, and its entropy went down. This thermal energy entered the surround-
ings, which needed to have Tsurr ≤ 673.15 K for this process to occur. Had Tsurr = 673.15 K, the
heat transfer process would have been slow, and the entropy of the surroundings would have risen by
precisely enough to balance the loss in the system, keeping the entropy of the universe constant. The
lower the surroundings temperature, the higher the total entropy change of the universe would have
been.

Example 11.7
Find cP − cv for a van der Waals gas.

We start with Eq. (11.80):

cP − cv = T
∂P

∂T

∣
∣
∣
∣
v

∂v

∂T

∣
∣
∣
∣
P

. (11.163)

Now, ∂v/∂T |P is difficult to compute for a van der Waals gas. But its reciprocal is not. Therefore let
us seek

cP − cv = T
∂P
∂T

∣
∣
v

∂T
∂v

∣
∣
P

. (11.164)

Now, for the van der Waals equation

P =
RT

v − b
− a

v2
, (11.165)

we easily get
∂P

∂T

∣
∣
∣
∣
v

=
R

v − b
. (11.166)

We also solve for T to get

T =
(v − b)(a + Pv2)

Rv2
. (11.167)

Leaving out details, one can show that

∂T

∂v

∣
∣
∣
∣
P

=
Pv3 − av + 2ab

Rv3
. (11.168)

Eliminating P , one can then show, leaving out details, that

∂T

∂v

∣
∣
∣
∣
P

=
RTv3 − 2ab2 + 4abv − 2av2

Rv3(v − b)
. (11.169)
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Substituting for cP − cv, it is seen, omitting many algebraic details, that

cP − cv = R

(

1

1 − 2a(v−b)2

RTv3

)

. (11.170)

Thus, Mayer’s relation, Eq. (5.81), does not hold for the van der Waals gas. Note that when a = 0,
Mayer’s relation again holds, even for b 6= 0.

11.7 Adiabatic sound speed

With help from the mass, linear momentum, and energy equations, along with validation
from experiment, it can be shown that the speed of sound waves, c, is given by the formula

c =

√

∂P

∂ρ

∣
∣
∣
∣
s

. (11.171)

As the entropy is constant for such a calculation, this is sometimes called the adiabatic sound
speed.

Let us calculate c. From the Gibbs equation, Eq. (8.60), we have

Tds = du+ Pdv. (11.172)

Now, since v = 1/ρ, we get dv = −(1/ρ2)dρ, and Eq. (11.172) can be rewritten as

Tds = du− P

ρ2
dρ. (11.173)

Now, for simple compressible substances, we can always form u = u(P, ρ). Thus, we also
have

du =
∂u

∂P

∣
∣
∣
∣
ρ

dP +
∂u

∂ρ

∣
∣
∣
∣
P

dρ. (11.174)

Now, use Eq. (11.174) to eliminate du in Eq. (11.173) so to get

Tds =
∂u

∂P

∣
∣
∣
∣
ρ

dP +
∂u

∂ρ

∣
∣
∣
∣
P

dρ

︸ ︷︷ ︸

=du

−P

ρ2
dρ, (11.175)

Tds =
∂u

∂P

∣
∣
∣
∣
ρ

dP +

(
∂u

∂ρ

∣
∣
∣
∣
P

− P

ρ2

)

dρ. (11.176)
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Now, to find c =
√

∂P/∂ρ|s, take ds = 0, divide both sides by dρ, and solve for ∂P/∂ρ|s in
Eq. (11.176) so as to get

∂P

∂ρ

∣
∣
∣
∣
s

=
− ∂u

∂ρ

∣
∣
∣
P

+ P
ρ2

∂u
∂P

∣
∣
ρ

. (11.177)

Now, Eq. (11.177) is valid for a general equation of state. Let us specialize it for a CPIG.
For the CPIG, we have

u = cvT + constant, (11.178)

= cv

(
P

ρR

)

+ constant, (11.179)

=
cv

cP − cv

P

ρ
+ constant, (11.180)

=
1

cP

cv
− 1

P

ρ
+ constant, (11.181)

=
1

k − 1

P

ρ
+ constant. (11.182)

Thus, we have for the CPIG

∂u

∂P

∣
∣
∣
∣
ρ

=
1

k − 1

1

ρ
, (11.183)

∂u

∂ρ

∣
∣
∣
∣
P

=
−1

k − 1

P

ρ2
. (11.184)

Now, substitute Eqs. (11.183, 11.184) into Eq. (11.177) to get

∂P

∂ρ

∣
∣
∣
∣
s

=

1
k−1

P
ρ2 + P

ρ2

1
k−1

1
ρ

, (11.185)

=
P

ρ
+ (k − 1)

P

ρ
, (11.186)

= k
P

ρ
, (11.187)

= kRT. (11.188)

Thus,

c2 =
∂P

∂ρ

∣
∣
∣
∣
s

= kRT, (11.189)

c =
√
kRT =

√

k
P

ρ
. (11.190)
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Compare this to the isothermal sound speed:

cT =

√

∂P

∂ρ

∣
∣
∣
∣
T

=
√
RT. (11.191)

By use of the ideal gas law, one can also say

cT =

√

P

ρ
. (11.192)

This is the form Newton used in 1687 to estimate the sound speed; however, he probably
used an approach different from assuming Boyle’s law and taking derivatives. Newton’s
approach was corrected by Laplace in 1816 who generated what amounts to our adiabatic
prediction, long before notions of thermodynamics were settled. Laplace is depicted in
Fig. 11.8. Laplace’s notions rested on an uncertain theoretical foundation; he in fact adjusted

Figure 11.8: Pierre-Simon Laplace (1749-1827), French mathematician
and physicist who improved Newton’s sound speed estimates; image from
http://www-history.mcs.st-and.ac.uk/∼history/Biographies/Laplace.html.

his theory often, and it was not until thermodynamics was well established several decades
later that our understanding of sound waves clarified. The interested reader can consult
Finn.7

Example 11.8
At T = 300 K, estimate the adiabatic sound speed and compare it to the isothermal sound speed.

The adiabatic sound speed is

c =
√

kRT =

√
(

7

5

)(

287
J

kg K

)

(300 K) = 347
m

s
. (11.193)

7B. S. Finn, 1964, “Laplace and the speed of sound,” Isis, 55(1): 7-19.
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The isothermal sound speed is

cT =
√

RT =

√
(

287
J

kg K

)

(300 K) = 293
m

s
. (11.194)

Newton’s published estimate in the first edition of his Principia was 968 ft/s = 295 m/s. In his
second edition, he adjusted his estimate to 979 ft/s = 298 m/s. However, it was well known at that
time that the measured speed of sound in air was roughly 1100 ft/s = 335 m/s. Newton put forth
some speculations to try to come to agreement with experiment, but these did not stand the test of
time. Careful experiment with the local temperature carefully monitored shows conclusively that the
adiabatic sound speed better predicts the data observed in nature than the isothermal sound speed.

Lastly, we recall Eq. (11.92), valid for general materials, k = (∂v/∂P |T )(∂P/∂v|s). This actually
allows us to relate adiabatic and isothermal sound speeds for general materials. Slightly rearranging
Eq. (11.92) and using ρ = 1/v, we get

k =
∂P
∂v

∣
∣
s

∂P
∂v

∣
∣
T

=

dρ
dv

∂P
∂ρ

∣
∣
∣
s

dρ
dv

∂P
∂ρ

∣
∣
∣
T

=
− 1

v2

∂P
∂ρ

∣
∣
∣
s

− 1
v2

∂P
∂ρ

∣
∣
∣
T

=

∂P
∂ρ

∣
∣
∣
s

∂P
∂ρ

∣
∣
∣
T

=

(
c

cT

)2

. (11.195)

That is to say, the ratio of specific heats k is also the ratio of the square of the ratio of the adiabatic
and isothermal sound speeds.

We close this section with the relevant passage from a translation of Newton’s Principia.8

The title page and a portion of the original 1687 Latin text are depicted in Fig. 11.9. Note
the 1687 Latin text employs a slightly different numbering system for the “Problem” than
does the translation.

8I. Newton, 1934, Principia, Cajori’s revised translation of Motte’s 1729 translation, U. California Press,
Berkeley. Link to the 1726 edition in the original Latin.
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Figure 11.9: Images from the original 1687 edition of Newton’s Principia; images from
http://www.ntnu.no/ub/spesialsamlingene/ebok/02a019654.html.

Proposition L. Problem XII

To find the distances of the pulses

Let the number of the vibrations of the body, by whose tremor the pulses are
produced, be found to any given time. By that number divide the space which a
pulse can go over in the same time, and the part found will be the breadth of one
pulse. Q.E.I.

Scholium

The last Propositions respect the motions of light and sounds; for since light
is propagated in right lines, it is certain that it cannot consist in action alone
(by Prop. XLI and XLII). As to sounds, since they arise from tremulous bodies,
they can be nothing else but pulses of the air propagated through it (by Prop.
XLIII); and this is confirmed by the tremors which sounds, if they be loud and
deep, excite in the bodies near them, as we experience in the sound of drums;
for quick and short tremors are less easily excited. But it is well known that any
sounds, falling upon strings in unison with the sonorous bodies, excite tremors
in those strings. This is also confirmed from the velocity of sounds; for since the
specific gravities of rain-water and quicksilver are to one another as about 1 to 13
2/3, and when the mercury in the barometer is at the height of 30 inches of our
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measure, the specific gravities of the air and of rain-water are to one another as
about 1 to 870, therefore the specific gravities of air and quicksilver are to each
other as 1 to 11890. Therefore when the height of the quicksilver is at 30 inches,
a height of uniform air, whose weight would be sufficient to compress our air to
the density we find it to be of, must be equal to 356700 inches, or 29725 feet of
our measure; and this is that very height of the medium, which I have called A in
the construction of the forgoing Proposition. A circle whose radius is 29725 feet
is 186768 feet in circumference. And since a pendulum 39 1/5 inches in length
completes one oscillation, composed of its going and return, in two seconds of
time, as is commonly known, it follows that a pendulum 29725 feet, or 256700
inches in length will perform a like oscillation in 190 3/4 seconds. Therefore in
that time a sound will go right onwards 186768 feet, and therefore in one second
979 feet.

But in this computation we have made no allowance for the crassitude of the solid
particles of the air, by which the sound is propagated instantaneously. Because
the weight of air is to the weight of water as 1 to 870, and because salts are almost
twice as dense as water; if the particles of air are supposed to be of about the same
density as those of water or salt, and the rarity of the air arises from the intervals
of the particles; the diameter of one particle of air will be to the interval between
the centres of the particles as 1 to about 9 or 10, and to the interval between the
particles themselves as 1 to 8 or 9. Therefore to 979 feet, which according to the
above calculation, a sound will advance forwards in one second of time, we may
add 979

9
, or about 109 feet, to compensate for the crassitude of the particles of

air: and then a sound will go forwards about 1088 feet in one second of time.

Moreover, the vapors floating in the air being of another spring, and a different
tone, will hardly, if at all, partake of the motion of the true air in which the
sounds are propagated. Now, if these vapors remain unmoved, that motion will
be propagated the swifter through the true air alone, and that as the square root
of the defect of the matter. So if the atmosphere consist of ten parts of true air
and one part of vapors, the motion of sounds will be swifter as the square root of
the ratio of 11 to 10, or very nearly in the entire ratio of 21 to 20, than if it were
propagated through eleven parts of true air: and therefore the motion of sounds
above discovered must be increased in that ratio. By this means the sound will
pass through 1142 feet in one second of time.

These things will be found true in spring and autumn, when the air is rarefied by
the gentle warmth of those seasons, and by that means its elastic force becomes
somewhat more intense. But in winter, when the air is condensed by the cold,
and its elastic force is somewhat more remitted, the motion of sounds will be
slower as the square root of the density; and, on the other hand, swifter in the
summer.

Now, by experiments it actually appears that sounds do really advance in one
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second of time about 1142 feet of English measure, or 1070 feet of French measure.

The velocity of sounds being known, the intervals of the pulses are known also.
For M. Sauveur, by some experiments that he made, found that an open pipe
about five Paris feet in length gives a sound of the same tone with a viol sting
that vibrates a hundred times in one second. therefore there are near 100 pulses
in a space of 1070 Paris feet, which a sound runs over in a second of time; and
therefore one pulse fills up a space of about 10 7/10 Paris feet, that is, about twice
the length of the pipe. From this it is probably that the breadths of the pulses, in
all sounds made in open pipes, are equal to twice the length of the pipes.

Moreover, from the Corollary of Prop. XLVII appears the reason why the sounds
immediately cease with the motion of the sonorous body, and why they are heard
no longer when we are at a great distance from the sonorous bodies that when we
are very near them. And besides, from the foregoing principles, it plainly appears
how it comes to pass that sounds are so mightily increased in speaking-trumpets;
for all reciprocal motion tends to be increased by the generating cause at each
return. And in tubes hindering the dilatation of the sounds, the motion decays
more slowly, and recurs more forcibly; and therefore is the more increased by the
new motion impressed at each return. And these are the principal phenomena of
sounds.

11.8 Introduction to compressible flow

We close these course notes with an opening to later coursework in which thermodynamics
and the adiabatic sound speed plays a critical role: compressible fluid mechanics. We only
sketch two critical results here and leave the details for another semester.

To see the importance of the sound speed for compressible flows, let us consider briefly
the equations of motion for a one-dimensional flow in a duct with area change. We ignore
effects of momentum and energy diffusion as embodied in viscosity and heat conduction.
The conservation laws of mass, linear momentum, and energy can be shown to be

∂

∂t
(ρA) +

∂

∂x
(ρvA) = 0, (11.196)

ρ

(
∂v

∂t
+ v

∂v

∂x

)

= −∂P
∂x

, (11.197)

(
∂u

∂t
+ v

∂u

∂x

)

= −P
(
∂v

∂t
+ v

∂v

∂x

)

. (11.198)

Note, we have not specified any equation of state. It can be shown that viscosity and heat
conduction, which we have neglected, are the only mechanisms to generate entropy in a
flow without shock waves. Since we have neglected these mechanisms, our equations are
isentropic as long as there are no shock waves. Note that Eq. (11.198) can be rewritten
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as du/dt = −Pdv/dt when we define the material derivative as d/dt = ∂/∂t + v∂/∂x.
Thus, Eq. (11.198) also says du = −Pdv. Comparing this to the Gibbs equation, Eq. (8.59),
du = Tds−Pdv, we see that our energy equation, Eq. (11.198), is isentropic, ds = 0. We can
thus replace Eq. (11.198) by ds/dt = ∂s/∂t+ v∂s/∂x = 0. We also take a general equation
of state P = P (ρ, s). So our governing equations, Eqs. (11.196-11.198) supplemented by the
general equation of state become

∂

∂t
(ρA) +

∂

∂x
(ρvA) = 0, (11.199)

ρ

(
∂v

∂t
+ v

∂v

∂x

)

= −∂P
∂x

, (11.200)

∂s

∂t
+ v

∂s

∂x
= 0, (11.201)

P = P (ρ, s). (11.202)

11.8.1 Acoustics

Let us first explore the acoustic limit in which disturbances to an otherwise stationary
material are small but non-zero. We restrict attention to purely isentropic flows, so s =
constant, and all its derivatives are zero. We first consider the state equation, Eq. (11.202)
so as to remove P from our analysis.

dP =
∂P

∂ρ

∣
∣
∣
∣
s

dρ+
∂P

∂s

∣
∣
∣
∣
ρ

ds, (11.203)

∂P

∂x
=

∂P

∂ρ

∣
∣
∣
∣
s

︸ ︷︷ ︸

=c2

∂ρ

∂x
+
∂P

∂s

∣
∣
∣
∣
ρ

∂s

∂x
︸︷︷︸

=0

, (11.204)

∂P

∂x
= c2

∂ρ

∂x
. (11.205)

We next consider Eq. (11.199) in the limit where A is a constant and Eq. (11.200) where
∂P/∂x is replaced in favor of ∂ρ/∂x via Eq. (11.205):

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (11.206)

ρ

(
∂v

∂t
+ v

∂v

∂x

)

= −c2 ∂ρ
∂x
. (11.207)

We next assume that the state variables ρ and v are the sum of a constant state and a
small perturbation:

ρ = ρo + ρ̃, (11.208)

v = 0 + ṽ. (11.209)
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The velocity is assumed to be perturbed about zero, the stationary state. We substitute
Eqs. (11.208-11.209) into Eqs. (11.206-11.207) to get

∂

∂t
(ρo + ρ̃) +

∂

∂x
((ρo + ρ̃) ṽ) = 0, (11.210)

(ρo + ρ̃)

(
∂ṽ

∂t
+ ṽ

∂ṽ

∂x

)

= −c2 ∂
∂x

(ρo + ρ̃) . (11.211)

We expand to get

∂ρo

∂t
︸︷︷︸

=0

+
∂ρ̃

∂t
+ ρo

∂ṽ

∂x
+

∂

∂x
(ρ̃ṽ)

︸ ︷︷ ︸

∼0

= 0, (11.212)

ρo





∂ṽ

∂t
+ ṽ

∂ṽ

∂x
︸︷︷︸

∼0




+ ρ̃

(
∂ṽ

∂t
+ ṽ

∂ṽ

∂x

)

︸ ︷︷ ︸

∼0

= −c2 ∂ρo

∂x
︸︷︷︸

=0

−c2 ∂ρ̃
∂x
. (11.213)

Neglecting small terms, we remain only with

∂ρ̃

∂t
+ ρo

∂ṽ

∂x
= 0, (11.214)

ρ0
∂ṽ

∂t
= −c2 ∂ρ̃

∂x
. (11.215)

Now, take the time derivative of Eq. (11.214) and the space derivative of Eq. (11.215) and
get

∂2ρ̃

∂t2
+ ρo

∂2ṽ

∂t∂x
= 0, (11.216)

ρo
∂2ṽ

∂x∂t
= −c2 ∂

2ρ̃

∂x2
. (11.217)

Next, realizing the order of the mixed second partial derivatives does not matter for functions
which are continuous and differentiable, we eliminate ∂2ṽ/∂t∂x and get

∂2ρ̃

∂t2
= c2

∂2ρ̃

∂x2
. (11.218)
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Taking P = Po + P̃ , we have

c2 = k
P

ρ
, (11.219)

= k
Po + P̃

ρo + ρ̃
, (11.220)

= k
Po

(

1 + P̃
Po

)

ρo

(

1 + ρ̃
ρo

) , (11.221)

= k
Po

ρo

(

1 +
P̃

Po

)(

1 − ρ̃

ρo

+ . . .

)

, (11.222)

= k
Po

ρo

(

1 +
P̃

Po

− ρ̃

ρo

+ . . .

)

. (11.223)

We retain only the most important term and take then

c2 = c2o + . . . , with c2o = k
Po

ρo

. (11.224)

So we get

∂2ρ̃

∂t2
= c2o

∂2ρ̃

∂x2
. (11.225)

This is the well known wave equation which is satisfied by the well known D’Alembert
solution:

ρ̃(x, t) = f(x+ cot) + g(x− cot). (11.226)

Here, f and g are arbitrary functions. In a physical problem, they are determined by the
actual initial and boundary conditions which are appropriate for the particular problem.
The so-called “phase” φ of f is φ = x+ cot. We can find the speed of a point with constant
phase by considering φ to be a constant, and taking appropriate derivatives:

φ = constant = x+ cot, (11.227)

dφ

dt
= 0 =

dx

dt
+ co, (11.228)

dx

dt
= −co. (11.229)

Thus, waves described by ρ̃(x, t) = f(x+ cot) are traveling to the left (negative x direction)
with speed co. Similarly the waves given by g(x− cot) are traveling to the right (positive x
direction) with speed co.

CC BY-NC-ND. 27 January 2014, J. M. Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


356 CHAPTER 11. MATHEMATICAL FOUNDATIONS

Example 11.9
Let us verify that ρ̃(x, t) = f(x + cot) satisfies the wave equation, Eq. (11.225). The proof for

g(x − cot) is similar.

We simply need to calculate derivatives and then substitute into the original equation. The appro-
priate derivatives are

∂ρ̃

∂t
= cof

′(x + cot), (11.230)

∂2ρ̃

∂t2
= c2

of
′′(x + cot), (11.231)

∂ρ̃

∂x
= f ′(x + cot), (11.232)

∂2ρ̃

∂x2
= f ′′(x + cot). (11.233)

Substituting into the wave equation, Eq. (11.225) gives

c2
of

′′(x + cot) = c2
of

′′(x + cot). (11.234)

The wave equation is satisfied.

11.8.2 Steady flow with area change

Let us now return to the full equations, Eqs. (11.199-11.202). In particular, we will now
consider potentially large fluid velocities, v; more specifically, the kinetic energy changes of
the flow may be as important as the internal energy changes. Let us also consider only
steady flows; thus, ∂/∂t = 0. Our governing equations, Eqs. (11.199-11.202), reduce to

d

dx
(ρvA) = 0, (11.235)

ρv
dv

dx
= −dP

dx
, (11.236)

ds

dx
= 0, (11.237)

P = P (ρ, s). (11.238)

Specializing Eq. (11.205) for steady flows, we have

dP

dx
= c2

dρ

dx
. (11.239)

Using Eq. (11.239), in the linear momentum equation, Eq. (11.236), and expanding the
mass equation, Eq. (11.235), our mass and linear momentum equations become

ρv
dA

dx
+ ρA

dv

dx
+ vA

dρ

dx
= 0, (11.240)

ρv
dv

dx
= −c2 dρ

dx
. (11.241)
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We next use Eq. (11.241) to eliminate dρ/dx in the mass equation, Eq. (11.240), to get

ρv
dA

dx
+ ρA

dv

dx
+ vA

(

−ρv
c2
dv

dx

)

= 0, (11.242)

1

A

dA

dx
+

1

v

dv

dx
− v

c2
dv

dx
= 0, (11.243)

1

v

dv

dx

(

1 − v2

c2

)

= − 1

A

dA

dx
, (11.244)

dv

dx
=

v

A
dA
dx

v2

c2
− 1

. (11.245)

We define the Mach number, M as the ratio of the local fluid velocity to the local adiabatic
sound speed:

M ≡ v

c
. (11.246)

So we can restate Eq. (11.245) as

dv

dx
=

v

A
dA
dx

M2 − 1
. (11.247)

Notice when the Mach number is unity, there is a potential singularity in dv/dx. This caused
great concern in the design of early supersonic vehicles. The only way to prevent the singular
behavior is to require at a sonic point, where M = 1, for dA/dx to be simultaneously zero.
Remarkably, this is precisely how nature behaves and is the reason why supersonic nozzles
are first converging, then diverging. At the point where dA/dx = 0, the flow becomes locally
sonic and can undergo a transition from subsonic to supersonic.

In terms of differentials, we can restate Eq. (11.247) as

dv

v
=

1

M2 − 1

dA

A
. (11.248)

Note, if the flow is subsonic, M < 1, with v > 0 and area increasing dA > 0, then dv < 0: area
increase in a subsonic nozzle generates velocity decrease. For supersonic flow, the opposite
is true: area increase in a supersonic nozzle generates velocity increase. One can see a
converging-diverging nozzle as well as its use in generating supersonic flow at its exit plane
in an image of a 2010 space shuttle launch depicted in Fig. 11.10.
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a) b)

Figure 11.10: a) diverging section of a nozzle for the space shuttle main engine; image
from http://en.wikipedia.org/wiki/Space Shuttle main engine, b) Launch of Space
Shuttle Atlantis, STS-132, 14 May 2010, with a crew including astronaut Michael T. Good,
BSAE 1984, MSAE 1986, University of Notre Dame; image from http://www.nasa.gov.
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Appendix: method of least squares

One important application of data analysis is the method of least squares. This method is
often used to fit data to a given functional form. The form is most often in terms of polyno-
mials, but there is absolutely no restriction; trigonometric functions, logarithmic functions,
Bessel functions can all serve as well. Here, we will restrict ourselves to strictly scalar
functions of the form

x = f(t; aj), j = 1, . . . ,M,

where x is a dependent variable, t is an independent variable, f is an assumed functional
form, and aj is a set of M constant parameters in the functional form. The analysis can
easily be extended for functions of many variables. General mathematical background is
given by Strang.9

Mathematically, the fundamental problem is given

• a set of N discrete data points, xi, ti, i = 1, . . . , N ,

• an assumed functional form for the curve fit f(t; aj) which has M parameters aj,
j = 1, . . . ,M ,

find the best set of parameter values aj so as to minimize the least squares error between the
curve fit and the actual data points. That is, the problem is to find aj, j = 1, . . . ,M , such
that

ℓ2 = ||xi − f(ti; aj)||2 ≡

√
√
√
√

N∑

i=1

(xi − f(ti; aj))
2,

is minimized. Here, ℓ2 represents a total error of the approximation. It is sometimes called a
“norm” of the approximation or an “L-two norm.” The notation || · ||2 represents the L-two
norm of a vector represented by “·.” In that it is a square root of the sum of squares, it can
be thought of as an unusual distance, as motivated by Pythagoras’10 theorem.

In the least squares method, one

• examines the data,

9G. Strang, 1988, Linear Algebra and its Application, Harcourt Brace Jovanovich, Orlando, Florida.
10Pythagoras of Samos, c. 570 B.C.-495 B.C., Ionian Greek philosopher and mathematician.
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• makes a non-unique judgment of what the functional form might be,

• substitutes each data point into the assumed form so as to form an over-constrained
system of equations,

• uses straightforward techniques from linear algebra to solve for the coefficients which
best represent the given data if the problem is linear in the coefficients aj,

• uses techniques from optimization theory to solve for the coefficients which best rep-
resent the given data if the problem is non-linear in aj.

The most general problem, in which the dependency aj is non-linear, is difficult, and
sometimes impossible. For cases in which the functional form is linear in the coefficients aj or
can be rendered linear via simple transformation, it is possible to get a unique representation
of the best set of parameters aj. This is often the case for common curve fits such as straight
line, polynomial, or logarithmic fits.

Let us first consider polynomial curve fits. Now, if one has say, ten data points, one can
in principle, find a ninth order polynomial which will pass through all the data points. Often
times, especially when there is much experimental error in the data, such a function may be
subject to wild oscillations, which are unwarranted by the underlying physics, and thus is
not useful as a predictive tool. In such cases, it may be more useful to choose a lower order
curve which does not exactly pass through all experimental points, but which does minimize
the error.

Unweighted least squares

This is the most common method used when one has equal confidence in all the data.

Example 11.1
Find the best straight line to approximate the measured data relating x to t.

t x
0 5
1 7
2 10
3 12
6 15

A straight line fit will have the form
x = a1 + a2t,

where a1 and a2 are the terms to be determined. Substituting each data point to the assumed form,
we get five equations in two unknowns:

5 = a1 + 0a2,

7 = a1 + 1a2,

10 = a1 + 2a2,

12 = a1 + 3a2,

15 = a1 + 6a2.
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This is an over-constrained problem, and there is no unique solution that satisfies all of the equations!
If a unique solution existed, then the curve fit would be perfect. However, there does exist a solution
which minimizes the error, as is often proved in linear algebra textbooks (and will not be proved here).
The procedure is straightforward. Rearranging, we get









1 0
1 1
1 2
1 3
1 6









(
a1

a2

)

=









5
7
10
12
15









.

This is of the form A · a = b. We then find

AT · A · a = AT · b,

a =
(
AT · A

)−1 · AT · b.

Substituting, we find that

(
a1

a2

)

=









(
1 1 1 1 1
0 1 2 3 6

)









1 0
1 1
1 2
1 3
1 6

















−1

(
1 1 1 1 1
0 1 2 3 6

)









5
7
10
12
15









=

(
5.7925
1.6698

)

.

So the best fit estimate is
x = 5.7925 + 1.6698 t.

The least squares error is ||A · a − b||2 = 1.9206. This represents what is known as the ℓ2 error norm
of the prediction. In matlab, this is found by the command norm(A ∗ a− b) where A, a, and b are the
coefficient matrix A, the solution a and the input vector b, respectively. If the curve fit were perfect,
the error norm would be zero.

A plot of the raw data and the best fit straight line is shown in Figure 11.11.

Weighted least squares

If one has more confidence in some data points than others, one can define a weighting
function to give more priority to those particular data points.

Example 11.2
Find the best straight line fit for the data in the previous example. Now however, assume that we

have five times the confidence in the accuracy of the final two data points, relative to the other points.
Define a square weighting matrix W:

W =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 5 0
0 0 0 0 5









.
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Figure 11.11: Plot of x− t data and best least squares straight line fit.

Now, we perform the following operations:

A · a = b,

W · A · a = W · b,

(W · A)
T · W · A · a = (W · A)

T · W · b,

a =
(

(W · A)
T · W · A

)
−1

(W · A)
T · W · b.

With the above values of W, direct substitution leads to

a =

(
a1

a2

)

=

(
8.0008
1.1972

)

.

So the best weighted least squares fit is

x = 8.0008 + 1.1972 t.

A plot of the raw data and the best fit straight line is shown in Figure 11.12.

When the measurements are independent and equally reliable, W is the identity matrix.
If the measurements are independent but not equally reliable, W is at most diagonal. If the
measurements are not independent, then non-zero terms can appear off the diagonal in W.
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Figure 11.12: Plot of x− t data and best weighted least squares straight line fit.

It is often advantageous, for instance in problems in which one wants to control a process in
real time, to give priority to recent data estimates over old data estimates and to continually
employ a least squares technique to estimate future system behavior. The previous example
does just that. A famous fast algorithm for such problems is known as a Kalman11 Filter.

Power law/logarithmic curve fits

It is extremely common and useful at times to fit data to either a power law form,
especially when the data range over wide orders of magnitude. For clean units, it is highly
advisable to scale both x and t by characteristic values. Sometimes this is obvious, and
sometimes it is not. Whatever the case, the following form can usually be found

x(t)

xc

= a1

(
t

tc

)a2

.

Here, x is a dependent variable, t is an independent variable, xc is a characteristic value of x
(perhaps its maximum), and tc is a characteristic value of t (perhaps its maximum), and a1

and a2 are curve fit parameters. This fit is not linear in the coefficients, but can be rendered
so by taking the logarithm of both sides to get

ln

(
x(t)

xc

)

= ln

(

a1

(
t

tc

)a2
)

= ln(a1) + a2 ln

(
t

tc

)

.

11Rudolf Emil Kálmán, 1930-, Hungarian-American electrical engineer.
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Often times one must not include values at t = 0 because of the logarithmic singularity
there.

Example 11.3
An experiment yields some data, shown next.

t(s) x(nm)
0.0 0.0

1 × 10−3 1 × 100

1 × 10−2 5 × 101

1 × 100 3 × 105

1 × 101 7 × 109

1 × 102 8 × 1010

A plot of the raw data is shown in Figure 11.13. Notice that the linear plot obscures the data at small
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m
)

b) a) 

Figure 11.13: Plot of x− t data in a) linear and b) log-log plots.

time, while the log-log plot makes the trends more clear. Now, to get a curve fit for the log-log plot, we
assume a power law form. We first eliminate the point at the origin, then scale the data, in this case
by the maximum values of t and x, and take appropriate logarithms to get to following values.

t(s) x(nm) t/tmax x/xmax ln
(

t
tmax

)

ln
(

x
xmax

)

1 × 10−3 1 × 100 1 × 10−5 1.25 × 10−11 −11.5129 −25.1053
1 × 10−2 5 × 101 1 × 10−4 6.25 × 10−10 −9.2013 −21.1933
1 × 100 3 × 105 1 × 10−2 3.75 × 10−6 −4.6052 −12.4938
1 × 101 7 × 109 1 × 10−1 8.75 × 10−2 −2.3026 −2.4361
1 × 102 8 × 1010 1 × 100 1 × 100 0.0000 0.0000
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Now, we prepare the system of linear equations to solve

ln

(
x

xmax

)

= ln a1 + a2 ln

(
t

tmax

)

,

−25.1053 = ln a1 + a2(−11.5129),

−21.1933 = ln a1 + a2(−9.2013),

−12.4938 = ln a1 + a2(−4.6052),

−2.4361 = ln a1 + a2(−2.3026),

0.0000 = ln a1 + a2(0.0000).

In matrix form, this becomes









1 −11.5129
1 −9.2013
1 −4.6052
1 −2.3026
1 −0.0000









(
ln a1

a2

)

=









−25.1053
−21.1933
−12.4938
−2.4361
0.0000









.

This is of the form

A · a = b.

As before, we multiply both sides by AT and then solve for a, we get

a =
(
AT · A

)−1 · AT · b.

Solving, we find

a =

(
0.4206
2.2920

)

.

So that

ln a1 = 0.4206, a2 = 2.2920,

or

a1 = 1.5228.

So the power law curve fit is

x(t)

8.000 × 1010 nm
= 1.5228

(
t

100 s

)2.2920

,

or

x(t) =
(
1.2183 × 1011 nm

)
(

t

100 s

)2.2920

.

A plot of the raw data and curve fit is shown in Figure 11.14.

Higher order curve fits

As long as the assumed form for the curve fit is linear in the coefficients, it is straightforward to
extend to high order curve fits as demonstrated in the following example.
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Figure 11.14: Plot of x − t data and power law curve fit: x(t) =

(1.2183 × 1011 nm)
(

t
100 s

)2.2920
.

Example 11.4

An experiment yields the data which follows.

t x
0.0 1.0
0.7 1.6
0.9 1.8
1.5 2.0
2.6 1.5
3.0 1.1

Find the least squares best fit coefficients a1, a2, and a3 if the assumed functional form is

1. x = a1 + a2t + a3t
2,

2. x = a1 + a2 sin
(

t
6

)
+ a3 sin

(
t
3

)
.

Plot on a single graph the data points and the two best fit estimates. Which best fit estimate has the
smallest least squares error?

• x = a1 + a2t + a3t
2 :
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We substitute each data point into the assumed form and get the following set of linear equations

1.0 = a1 + a2(0.0) + a3(0.0)2,

1.6 = a1 + a2(0.7) + a3(0.7)2,

1.8 = a1 + a2(0.9) + a3(0.9)2,

2.0 = a1 + a2(1.5) + a3(1.5)2,

1.5 = a1 + a2(2.6) + a3(2.6)2,

1.1 = a1 + a2(3.0) + a3(3.0)2.

This can be rewritten as










1 0.0 0.0
1 0.7 0.49
1 0.9 0.81
1 1.5 2.25
1 2.6 6.76
1 3.0 9.00















a1

a2

a3



 =











1.0
1.6
1.8
2.0
1.5
1.1











.

This is of the form

A · a = b.

As before, we multiply both sides by AT and then solve for a, we get

a =
(
AT · A

)−1 · AT · b.

Solving, we find

a =





0.9778
1.2679
−0.4090



 .

So the best quadratic curve fit to the data is

x(t) ∼ 0.9778 + 1.2679t − 0.4090t2.

The least squares error norm is

||A · a − x||2 = 0.0812.

• x = a1 + a2 sin
(

t
6

)
+ a3 sin

(
t
3

)
:

This form has applied a bit of intuition. The curve looks like a sine wave of wavelength 6 which has
been transposed. So we suppose it is of the form. The term a1 is the transposition; the term on a2 is
the fundamental frequency which fits in the domain; the term on a3 is the first harmonic, which we
have thrown in for good measure.
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We substitute each data point into the assumed form and get the following set of linear equations

1.0 = a1 + a2 sin

(
0.0

6

)

+ a3 sin

(
0.0

3

)

,

1.6 = a1 + a2 sin

(
0.7

6

)

+ a3 sin

(
0.7

3

)

,

1.8 = a1 + a2 sin

(
0.9

6

)

+ a3 sin

(
0.9

3

)

,

2.0 = a1 + a2 sin

(
1.5

6

)

+ a3 sin

(
1.5

3

)

,

1.5 = a1 + a2 sin

(
2.6

6

)

+ a3 sin

(
2.6

3

)

,

1.1 = a1 + a2 sin

(
3.0

6

)

+ a3 sin

(
3.0

3

)

.

This can be rewritten as 









1 0.0 0.0
1 0.1164 0.2312
1 0.1494 0.2955
1 0.2474 0.4794
1 0.4199 0.7622
1 0.4794 0.8415















a1

a2

a3



 =











1.0
1.6
1.8
2.0
1.5
1.1











.

This is of the form
A · a = b.

As before, we multiply both sides by AT and then solve for a, we get

a =
(
AT · A

)−1 · AT · b.

Solving, we find

a =





1.0296
−37.1423
21.1848



 .

So the best curve fit for this form is

x(t) ∼ 1.0296 − 37.1423 sin

(
t

6

)

+ 21.1848 sin

(
t

3

)

.

The least squares error norm is
||A · a − x||2 = 0.1165.

Since the error norm for the quadratic curve fit is less than that for the sinusoidal curve fit, the
quadratic curve fit is better in this case.

A plot of the raw data and the two best fit curves is shown in Figure 11.15.
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Figure 11.15: Plot of x − t data and two least squares curve fits x(t) ∼ 0.9778 + 1.2679t −
0.4090t2, and x(t) ∼ 1.0296 − 37.1423 sin (t/6) + 21.1848 sin (t/3).
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a primitive steam engine. Other devices which convert heat into work are described as well.

L. C. Woods, 1975, The Thermodynamics of Fluid Systems, Clarendon, Oxford.

This graduate text gives a good, detailed survey of the thermodynamics of irreversible processes,
especially related to fluid systems in which convection and diffusion play important roles.
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Carathèodory, C., 195
Carnot cycle, 249
Carnot heat engine, 199
Carnot, S., 15, 199, 249
Celsius

degrees, 36
Celsius scale, 37
change of state, 34
Charles’ law, 50
Charles, J., 50, 52
chemical energy, 111
chemical equilibrium, 34
chemical potential, 34
Clapeyron, É., 52
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