

MEC - Mestrado Integrado em Engenharia Civil

LEGM - Licenciatura Bolonha em Engenharia Geológica e de Minas

TERMODINÂMICA E ESTRUTURA DA MATÉRIA 2012 - 2013

Simulação de exame, 17 de Maio de 2013

I - Questões teóricas

- 1 No verão, um campista a dormir ao relento a uma temperatura constante de 20ºC perde calor por convecção e radiação
- 2 O comprimento de onda de uma bola de futebol com massa de 450g chutada a uma velocidade de 30ms-1 é $4,9x10^{-35}$ m
- 3 A temperatura do Sol, ao emitir luz com uma intensidade máxima de comprimento de onda 500nm (verde), é aproximadamente $T=\frac{2,897768\times10^{-3}mK}{\lambda_{max}}$ =5795≈5800 K

II - Questão

Considere um gabinete com 5x5 m² de área e altura de 3 m, com uma janela vidro de 1 m2, com condutividade térmica de 0,95 W/(m.K), uma espessura de 0,5cm e uma emissividade de 0,85. Num dia típico de inverno, em que a temperatura exterior é de 10°C, pretende-se que a temperatura interior seja mantida a 20°C. Tendo em atenção notas abaixo para resolver este problema:

a) Calcule a quantidade de calor que é preciso gerar dentro do gabinete para o manter a 20°C.

Como sabemos as temperaturas das superfícies interior e exterior do vidro, segundo a lei de Fourier $\ddot{q}=k\frac{T_{int}-T_{ext}}{L}$, logo o fluxo de calor através da janela é de 1900 W/m². Como a área da janela é de A=1, a taxa de calor perdido pela janela é de 1900 W.

b) Verifique se um radiador de 2000 W é suficiente para garantir a temperatura interior (0,5 valor)

Qualquer tipo de radiador de 2000 W, com eficiência igual ou superior a 95% (1900W) é suficiente para manter a temperatura da sala.

Considere agora que de noite, os estores não são fechados, que a temperatura exterior se mantém igual a 10ºC e que a temperatura equivalente do céu são -3ºC.

c) Quais as perdas por radiação da janela? (1 valor)

Segundo a lei de Stefan-Boltzmann, e considerando que toda a radiação emitida pela janela chega ao céu, temos que

$$\dot{q} = A\varepsilon\sigma(T_{ext}^4 - T_{ceu}^4) = 1 \times 0.95 \times 5.67 \times 10^{-8} \times (283^4 - 270^4) = 59 W$$

uma vez que a temperatura da face exterior da janela é sempre 10ºC

d) O utilizador do gabinete saiu ao final do dia e desligou o radiador. No dia seguinte, passado 12 horas a perder calor nas condições das alíneas anteriores, qual era a temperatura quando o utilizador entrou no gabinete? (1 valor)

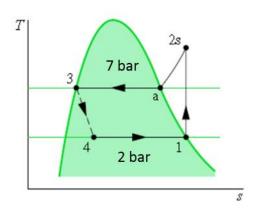
Durante a noite o gabinete irá estar a perder calor por condução e a sua temperatura irá baixar uma vez que não há outra fonte de energia que não seja a energia interna do ar do gabinete. A variação de energia interna no gabinete é de $\Delta U = mC_v\Delta T = \rho VC_v\Delta T$. A questão que teremos de analisar primeiro é se o calor perdido por condução é suficiente para levar a temperatura da sala até aos 10° C. Como quer a potência perdida por condução quer a variação de energia interna dependem linearmente da diferença de temperaturas, uma potência inicial de 1900 W e uma potência final de 0 W (quando atingem o equilíbrio) resultam numa potência média de 950W. Estes 950 W resultariam numa diminuição da temperatura da sala calculável da seguinte forma:

A energia perdida durante 12 horas é de
$$q=950\times3600\times12=41$$
 MJ, então $\Delta U=Q=41$ MJ $\Leftrightarrow \Delta T=\frac{Q}{\rho VC_v}=\frac{41\times10^6}{1,2\times5\times5\times3\times1012}=\frac{41\times10^6}{91080}=450$ °C, ou seja, é uma energia mais que suficiente para levar a sala de 20ºC a 10ºC

Apesar de haver sempre calor radiado para o céu, como assumimos que a convecção é tão grande que a temperatura da superfície do vidro é sempre igual à temperatura do ar exterior, essas perdas são constantemente repostas pelo ambiente.

Nota:

- Considere para efeitos deste problema que as superfícies do vidro estão à mesma temperatura que o ar (dentro e fora), que não há trocas de calor entre o ar da sala e as paredes, o chão e o tecto, e que toda a radiação perdida pela janela vai para o céu.
- Considere que o ar a 20ºC tem uma densidade de 1,2 kg/m3 e uma calor específico é de 1,012 kJ/(kg.K)


III - Questão (5 valores)

Considere um ciclo de refrigeração de compressão ideal em que o fluído frigorígeno R134a opera nas seguintes condições:

- O vapor saturado entra no compressor a 2 bar
- Líquido saturado sai do condensador a 7 bar
- O caudal mássico é de 0,083 kg/s

a) Desenhe o diagrama Ts do ciclo (0,5 valores)

b) Calcule a potência do compressor em kW (2 valor) No estado 1, à entrada do compressor temos, o refrigerante está em vapor saturado a 2 bar, logo diretamente da tabela temos que h_1 = 241.30 kJ/kg e s_1 = 0,9253 kJ/kg

A pressão no estado 2 temos que p_2 =7 bar. Se a compressão for isentrópica temos que s_2 = s_1 =0,9353 kJ/kg. Por interpolação nas tabela

$$h_2 = 265.37 + (275.93 - 265.37) \times \frac{s_{2-0,9197}}{0,9539 - 0,9197} = 265,5$$

Finalmente, temos que $\frac{\dot{W_c}}{\dot{m}} = h_2 - h_1 logo$

$$\dot{W}_c = 0.083 \times (265.5 - 241.30) = 2.0 \, kJ$$

c) Calcule o calor libertado no condensador (1,5 valor)

No estado 3, temos que o frigorígeno está em estado de líquido saturado a 7 bar, logo da tabela temos que h3 = 86.78 kJ/kg.

$$\frac{\dot{Q_{out}}}{m} = h_2 - h_3 logo \ \dot{Q_{out}} = 0.083 \times (270.19 - 86.78) = 14.8 \ kJ$$

d) Calcule o coeficiente de performance se estiver o equipamento for uma bomba de calor (1 valor)

O coeficiente de performance de um ciclo frigorífico é $COP_{BC} = \frac{Q_H}{W_{ciclo}} = \frac{15,22}{2,39} = 7,4$

Nota:

TABLE A-11 Properties of Saturated Refrigerant 134a (Liquid-Vapor): Pressure Table

		Specific Volume m³/kg		Internal Energy kJ/kg		Enthalpy kJ/kg			Entropy kJ/kg·K		
Press. bar	Temp. °C	Sat. Liquid $v_{ m f} imes 10^3$	Sat. Vapor v _e	Sat. Liquid u _f	Sat. Vapor u _s	Sat. Liquid h _f	Evap.	Sat. Vapor h _g	Sat. Liquid s _f	Sat. Vapor Sg	Pre <i>ss.</i> bar
2.0 2.4 2.8	-10.09 -5.37 -1.23	0.7532 0.7618 0.7697	0.0993 0.0834 0.0719	36.69 42.77 48.18	221.43 224.07 226.38	36.84 42.95 48.39	204.46 201.14 198.13	241.30 244.09 246.52	0.1481 0.1710 0.1911	0.9253 0.9222 0.9197	2.0 2.4 2.8
3.2 3.6 4.0 5.0 6.0	2.48 5.84 8.93 15.74 21.58	0.7770 0.7839 0.7904 0.8056 0.8196	0.0632 0.0564 0.0509 0.0409 0.0341	53.06 57.54 61.69 70.93 78.99	228.43 230.28 231.97 235.64 238.74	53.31 57.82 62.00 71.33 79.48	195.35 192.76 190.32 184.74 179.71	248.66 250.58 252.32 256.07 259.19	0.2089 0.2251 0.2399 0.2723 0.2999	0.9177 0.9160 0.9145 0.9117 0.9097	3.2 3.6 4.0 5.0 6.0
7.0	26.72	0.8328	0.0292	86.19	241.42	86.78	175.07	261.85	0.3242	0.9080	7.0

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-			s kJ/kg·K				~
Sat. 0.09933 221.43 241.30 0.9253 0.02978 244.51 265.37 0.9197 -10 0.09938 221.50 241.38 0.9256 0.02979 244.51 265.37 0.9197 0 0.10438 229.23 250.10 0.9582 0.03157 253.83 275.93 0.9539 10 0.10922 237.05 258.89 0.9898 0.03482 272.31 296.69 1.0182 20 0.11394 244.99 267.78 1.0206 0.03634 281.57 307.01 1.0487 30 0.11856 253.06 276.77 1.0508 0.03781 290.88 317.35 1.0784 40 0.12311 261.26 285.88 1.0804 0.03924 300.27 327.74 1.1074 50 0.12758 269.61 295.12 1.1094 0.04064 309.74 338.19 1.1358 60 0.13639 286.74 314.02 1.1661 0.04335 328.98		-			'a				
10 0.10922 237.05 258.89 0.9898 0.03482 272.31 296.69 1.0182 20 0.11394 244.99 267.78 1.0206 0.03634 281.57 307.01 1.0487 30 0.11856 253.06 276.77 1.0508 0.03781 290.88 317.35 1.0784 40 0.12311 261.26 285.88 1.0804 0.03924 300.27 327.74 1.1074 50 0.12758 269.61 295.12 1.1094 0.04064 309.74 338.19 1.1358 60 0.13201 278.10 304.50 1.1380 0.04201 319.31 348.71 1.1637 70 0.13639 286.74 314.02 1.1661 0.04468 338.76 370.04 1.2179 90 0.14504 304.47 333.48 1.2212 0.04599 348.66 380.86 1.2444 100 0.14932 313.57 343.43 1.2483 0.04729 358.68	-10	0.09933 0.09938	221.43 221.50	241.30 241.38	0.9256	0.02979	244.51	265.37	0.9197
40 0.12311 261.26 285.88 1.0804 0.03924 300.27 327.74 1.1074 50 0.12758 269.61 295.12 1.1094 0.04064 309.74 338.19 1.1358 60 0.13201 278.10 304.50 1.1380 0.04201 319.31 348.71 1.1637 70 0.13639 286.74 314.02 1.1661 0.04335 328.98 359.33 1.1910 80 0.14073 295.53 323.68 1.1939 0.04468 338.76 370.04 1.2179 90 0.14504 304.47 333.48 1.2212 0.04599 348.66 380.86 1.2444 100 0.14932 313.57 343.43 1.2483 0.04729 358.68 391.79 1.2706	10 20	0.10922 0.11394	237.05 244.99	258.89 267.78	0.9898 1.0206	0.03482	272.31	296.69	1.0182
60 0.13201 278.10 304.50 1.1380 0.04201 319.31 348.71 1.1637 70 0.13639 286.74 314.02 1.1661 0.04335 328.98 359.33 1.1910 80 0.14073 295.53 323.68 1.1939 0.04468 338.76 370.04 1.2179 90 0.14504 304.47 333.48 1.2212 0.04599 348.66 380.86 1.2444 100 0.14932 313.57 343.43 1.2483 0.04729 358.68 391.79 1.2706	40	0.12311	261.26	285.88	1.0804	0.03924	300.27	327.74	1.1074
90 0.14504 304.47 333.48 1.2212 0.04599 348.66 380.86 1.2444 100 0.14932 313.57 343.43 1.2483 0.04729 358.68 391.79 1.2706	60 70	0.13201 0.13639	278.10 286.74	304.50 314.02	1.1380 1.1661	0.04335	328.98	359.33	1.1910
	90	0.14504	304.47	333.48	1.2212	0.04729	358.68	391.79	1.2706

Formulário

Leis da termodinâmica	Ciclo Frigorífico
$W = \int_{1}^{2} P dV$	$COP_F = \frac{Q_C}{W_{ciclo}} = \frac{Q_C}{Q_H - Q_C}$
	V_{ciclo} $Q_H - Q_C$
$c_v = \left(\frac{\delta u}{\delta T}\right)_v$	$COP_{BC} = \frac{Q_H}{W_{ciclo}} = \frac{Q_H}{Q_H - Q_C}$
$c_p = \left(\frac{\delta h}{\delta T}\right)_p$	$COP_{BC} = 1 + COP_F$
p $(\delta T)_{p}$ 1ª Lei da Termodinâmica:	$COP_{F,Carnot} = \frac{1}{T_H/T_C - 1}$
1 Let ad Territodinamical	, and the second

$$\Delta E = Q - W[J]$$

$$\Delta E = \Delta PE + \Delta KE + \Delta U$$

$$TdS = dU + PdV$$

1ª Lei da Termodinâmica: (sistemas abertos):

$$\dot{Q}-\dot{W}=\Sigma \dot{m}_{out}\left(h_{out}+\frac{{v_{out}}^2}{2}+gz_{out}\right)-\Sigma \dot{m}_{in}\left(h_{in}+\frac{{v_{in}}^2}{2}+gz_{in}\right)$$

2ªLei da Termodinâmica:

$$\eta = 1 - \frac{Q_C}{Q_H} \le 1 - \frac{T_C}{T_H}$$

$$dS = \frac{dQ}{T}$$

$$\Delta S \ge \oint_1^2 \frac{\delta Q}{T}$$

$$S_{gen} = \Delta S_{sistema} + \Delta S_{exterior} \ge 0$$

Transmissão de calor

$COP_{BC, Carnot} = \frac{1}{1 - {^TC}/_{T.v.}}$

$$\frac{\dot{W_c}}{\dot{m}} = h_2 - h_1$$

$$\frac{Q_{out}}{m} = h_2 - h_3$$
$$h_4 = h_3$$

$$h_4 = h_3$$

$$\frac{\dot{Q_{in}}}{\dot{m}} = h_1 - h_4$$

Lei de Fourier $\dot{q}=kA\frac{T_1-T_2}{L}$ $\ddot{q}=k\frac{T_1-T_2}{L}$

Resistividade Térmica: $R = \frac{L}{kA}$

Lei de arrefecimento de Newton: $\dot{q} =$

$$hA(T_s-T_f), \ddot{q}=h(T_s-T_f)$$

Lei de Stefan-Boltzmann $\ddot{q}=arepsilon\sigma T^4~\dot{q}=$

$$A_1 \epsilon \sigma (T_1^4 - T_2^4)$$

Constante de Boltzmann $\sigma = 5.67 \times 10^{-1}$

 $^8W/m^2K^4$

Lei de Wien
$$T = \frac{2,897768 \times 10^{-3} mK}{\lambda_{max}}$$

Física Quântica e Estrutura da Matéria

Energia de um fotão: E = hfConstante de Plank: $h = 6,626 \times 10^{-34} Js$ Momento linear de um fotão: $p = \frac{h}{c}$

Onda de uma partícula $\lambda = \frac{h}{n}$

$$\frac{1}{\lambda_n} = RZ^2 \left(\frac{1}{nf^2} - \frac{1}{ni^2} \right)$$
, $R = 1.097 \times 10^7 \, m^{-1}$