

Nome	
Número	
Sala	

MEC - Mestrado Integrado em Engenharia Civil / LEGM - Licenciatura Bolonha em Engenharia Geológica e de Minas

TERMODINÂMICA E ESTRUTURA DA MATÉRIA 2013 - 2014

1ª Teste, 14 de Abril de 2014, 16h-17h15min

INSTRUÇÕES

- Identifique todas as folhas do teste com nome, número e sala
- O teste tem a duração máxima de 1h15min;
- Os alunos podem entrar no teste até quinze minutos depois do exame se iniciar (20h15min);
- Os alunos podem desistir do teste ao fim de meia hora (20h30), entregando a folha inicial do teste assinada com a palavra "Desisto";
- As respostas referentes ao **Grupo I** devem ser dadas na **1º página do enunciado** devidamente identificada

Grupo I (6 valores)

Indique a resposta correta assinalando a \bigcirc com uma cruz \otimes . Cada resposta certa corresponde a 1 valores; cada resposta errada desconta 0, 5 valores; quem não responder tem 0 valores.

1 – Um sistema aberto é caracterizado por:				
a)	Ter trocas de calor e de massa com o exterior	\bigcirc		
b)	Trocas de energia e de massa com o exterior	\bigcirc		
c)	Trocas de trabalho e de massa com o exterior	\bigcirc		
2 – Nun	n sistema fechado cilindro-pistão ocorre um processo à pressão constante de 10 bar, onde			
o volun	ne aumenta 2 m³. Neste caso:			
a)	Foi realizado trabalho	\bigcirc		
b)	Não foi realizado trabalho	\bigcirc		
c)	É impossível de determinar	\bigcirc		
3 – O ca	alor específico a volume constante de um gás ideal é			
a)	Igual ao calor específico a volume constante	\bigcirc		
b)	Inferior ao calor específico a volume constante	\bigcirc		
c)	Depende do gás ideal	\bigcirc		
4 – Um gás ideal com uma pressão de $1 imes 10^5 \ Pa$, temperatura de 300 K e um volume de $1 \ cm^3$				
sofre um processo isotérmico. Se a pressão do estado final se reduzir a metade, significa que:				
a)	O volume final é igual ao inicial	\bigcirc		
b)	O volume final é metade do inicial	\bigcirc		
c)	O volume final é o dobro do inicial	\bigcirc		
5 – Num processo termodinâmico real, a transferência de entropia entre o sistema e o exterior:				
a)	é sempre positiva	\bigcirc		
b)	pode ser positiva, negativa ou igual a 0	\bigcirc		
c)	pode ser positiva ou igual a 0	\bigcirc		
6 – A junta de dilatação de uma ponte com 100 m de comprimento tem a dimensão de 3,6cm.				
Sabendo que entre o inverno e o verão, a amplitude térmica é de 30°C, a ponte é feita de				
a)		\bigcirc		
b)	Aço ($\alpha = 10.8 \times 10^{-6} K^{-1}$)	\bigcirc		
c)	Betão ($\alpha = 12 \times 10^{-6} K^{-1}$)	\bigcirc		

Nome	
Número	
Sala	

Grupo II (14 valores)

Considere que na piscina de uma vivenda localizada em Lisboa, com uma área de 15 m² e um volume de 30 m³, a temperatura média da água no início da manhã de dia de verão é de 20°C.

Notas: $\mathcal{C}_{\acute{a}gua}(20\,^{\circ}\mathrm{C}) = 4,182 kJ/kg^{\circ}\mathcal{C} \; \rho_{\acute{a}gua}(20\,^{\circ}\mathrm{C}) = 0,998 \; kg/L.$

- a) Assuma que a piscina é um sistema fechado. Qual a quantidade de energia que a piscina necessita de receber durante o dia para que se consiga aquecer toda a água até aos 22,5°C? Justifique todos os cálculos. (3 Valores)
- b) Assumindo que a energia solar recebida no verão é de 20MJ/m2/dia, qual a temperatura ao final de um dia de verão? (2 Valores)
- c) Se quisesse instalar um sistema solar para aquecer a água da piscina até aos 25°C, qual seria a área necessária de colectores solares? (2 Valores)
- d) Imagine que em vez de um sistema solar, está a pensar optar por uma bomba de calo com um COP de 4. Qual seria o valor de potência eléctrica que essa bomba de calor necessitaria de ter para aquecer a água em apenas 4 horas? (2 Valores)
- a) Sabendo que durante a noite a piscina perde calor para a atmosfera e retoma a temperatura inicial e que variação de entropia do sistema é de -70,58kJ, calcule a variação de entropia no universo. Considere que a temperatura de fronteira do sistema é 20 °C e do exterior é de 15°C (5 valores)

Formulário de TEM (14 de Abril 2014)

Definições gerais	Gases Perfeitos
$W = \int_{1}^{2} P dV$ $h = u + Pv$ $c_{v} = \left(\frac{\delta u}{\delta T}\right)_{v}$ $c_{p} = \left(\frac{\delta h}{\delta T}\right)_{p}$ Expansão linear: $\Delta L = \propto L\Delta T$	$PV = nRT, n \ n^{o} \ moles$ $R = 8,3145 \ m^{3} \ Pa \ K^{-1} mol^{-1}$ $PV = mR_{gas}T \ , R_{gas} = R/M_{gas},$ $c_{v} = \frac{3}{2}R \ c_{p} = \frac{5}{2}R \ C_{p} = C_{v} + R$ $\Delta s = u \overline{C_{v}} ln \left(\frac{T_{2}}{T_{1}}\right) - R ln \left(\frac{v_{2}}{v_{1}}\right) \Delta s = \overline{C_{p}} ln \left(\frac{T_{2}}{T_{1}}\right) - R ln \left(\frac{P_{2}}{P_{1}}\right)$ $\mathbf{1^{3} \ Lei \ da \ Termodinâmica}$ $Sistemas \ fechados:$ $\Delta E = Q - W \ , \Delta E = \Delta PE + \Delta KE + \Delta U$ $Sistemas \ abertos:$ $Q - W = \sum \dot{m}_{out} \left(h_{out} + \frac{v_{out}^{2}}{2} + gz_{out}\right) - \sum \dot{m}_{in} \left(h_{in} + \frac{v_{in}^{2}}{2} + gz_{in}\right)$
2ªLei da Termodinâmica	Rendimentos de ciclos de Carnot:
$\eta = 1 - \frac{Q_C}{Q_H} \le 1 - \frac{T_C}{T_H}$ $\Delta S \ge \oint_1^2 \frac{\delta Q}{T} \Delta S = \oint_1^2 \frac{\delta Q}{T} + S_{gen}$	$\eta_{max} = 1 - \frac{T_C}{T_H}$ $COP_{BC_{max}} = \frac{T_H}{T_H - T_C}COP_{BC} = \frac{Q_H}{W}$
$S_{universo} = \Delta S_{sistema} + \Delta S_{exterior} \ge 0$ $TdS = dU + PdV$	$COP_{F_{max}} = \frac{T_C}{T_H - T_C}COP_F = \frac{Q_C}{W}$ $COP_{BC_{max}} = COP_{F_{max}} + 1$
Para sólidos e líquidos: $\Delta s = Cln\left(\frac{r_2}{r_1}\right)$ [kJ/(kg K)]	