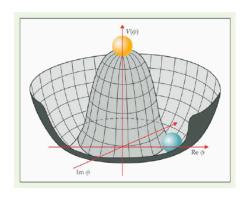
HH \rightarrow 4b benchmark for the HTT

Ana Luísa Carvalho, Ricardo Gonçalo

Cofinanciado por:

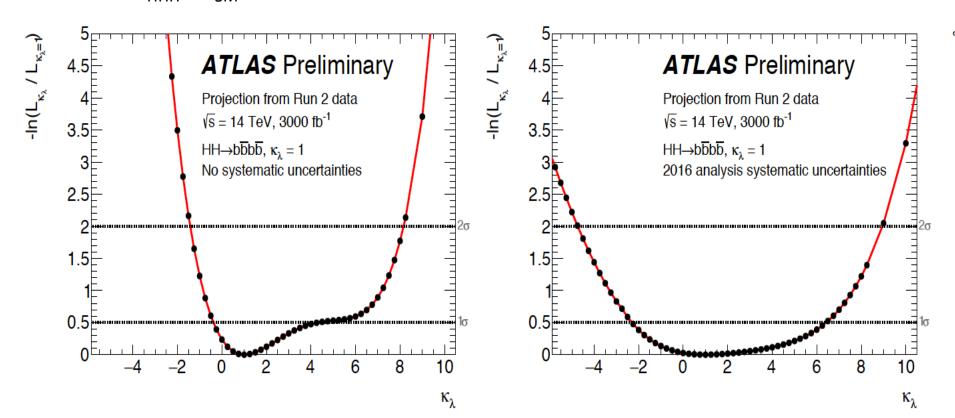


Outline

- Why HH → 4b
- Parameterization of b-tagging performance
- MC samples
- Some control plots
- Initial rate estimation

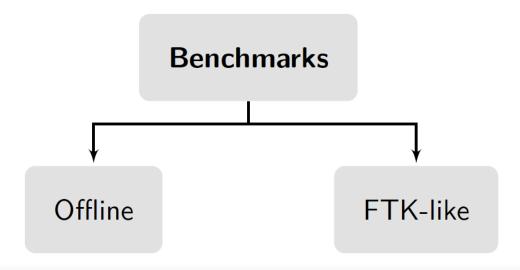
$hh \rightarrow 4b$ trigger prospects - overview

 $hh \rightarrow 4b$: key benchmark channel for HL-LHC


Sensitivity to shape of Higgs potential

► How can this channel benefit from improved b-tagging at the trigger provided by the HTT?

Goal: Understand how the b-tagging performance of HTT influences the triggers used in the searches for $hh \rightarrow 4b$ as well as the sensitivity of the offline analysis


Current estimates

- Current prospects for di-Higgs at HL-LHC (ATL-PHYS-PUB-2018-053)
 - bbγγ, bbττ, bbbb for 3000 /fb
 - -3.0σ significance
 - − Uncertainty on $\mu_{HH} \approx 30 40\%$
 - $-\lambda_{HHH}/\lambda_{SM}$ expected 1±0.7

Strategy - I

- ▶ Start from **UpgradePerformanceFunctions**: given the truth flavor, p_T and η of a jet return the expected offline b-tagging efficiency for the HL-LHC runs
- ▶ Use this parameterization as **baseline**: what is the signal acceptance and background rejection if the b-tagging at the trigger were as good as the offline b-tagging?
- Worsen b-tagging efficiency and mistag rates to emulate performance at the trigger

Strategy - II

FTK-like b-tagging parameterization:

- Charm and light mistag rates increased by a factor of 2 w.r.t. offline (left plot tells us this assumption is not ridiculous)
- ► B-tagging efficiency parameterized according to right plot

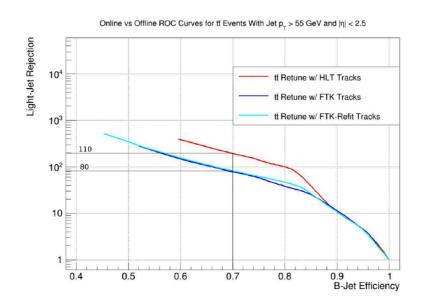


Figure: MV2c10 b-tagging efficiency vs light-jet rejection for FTK (100k events). Christopher Milke preliminary plot [1]

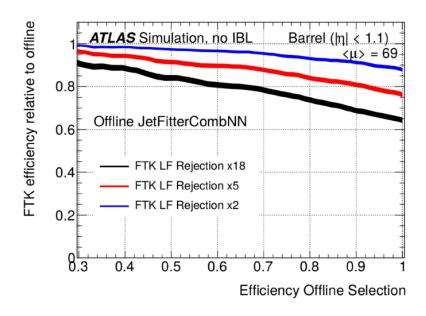
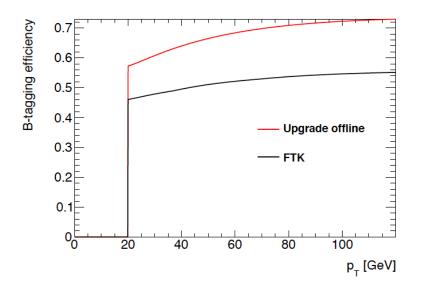



Figure: FTK b-tagging efficiency w.r.t. to offline

B-tagging parameterizations

0.7 — Upgrade offline — FTK

0.3 — 0.1 — 0.5 — 1.5 2 2.5 3 3.5 4 4.5 — η|

Figure: B-tagging efficiency for true b-jets as a function of the jet's p_T

Figure: B-tagging efficiency for true b-jets as a function of the jet's η

	B-tag efficiency	C-mistag	L-mistag
Offline	0.72	0.05	0.001
FTK-like	0.56	0.1	0.002

Table: Summary of b-tagging efficiency and mistag rates. Values for $p_T=50$ GeV and $\eta=0$

Technical details

Samples

- ▶ Full simulation upgrade xAOD's with $<\mu>\sim$ 200, $\sqrt{s}=$ 14 TeV
- ▶ Signal: $pp \rightarrow G(800 \text{ GeV}) \rightarrow hh \rightarrow 4b \text{ (no SM samples available)}$
- Background: dijets (dominant)
- Jet collection: AntiKt4EMPFlowJets
- ► Geometry: ATLAS-P2-ITK-20-00-00

Framework:

Using EventLoop with AnalysisBase 21.2.68

Control plots - jets pT

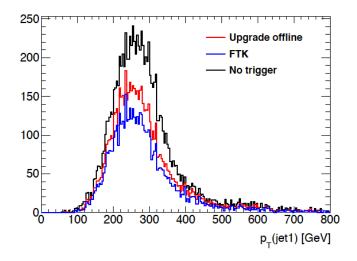


Figure: Leading jet p_T

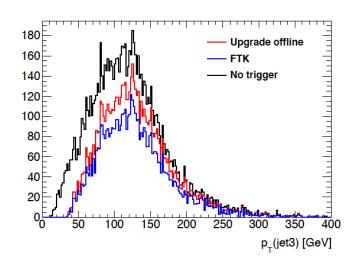


Figure: 3rd jet p_T

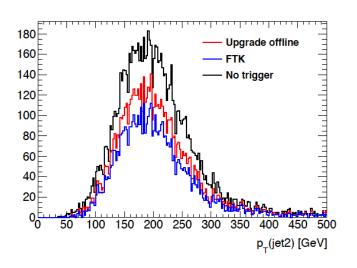


Figure: Sub-leading jet p_T

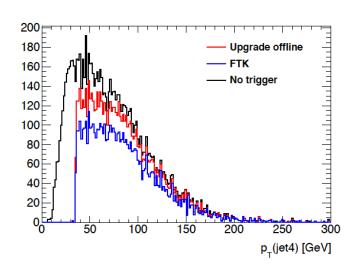


Figure: 4th jet p_T

Control plots - mass peaks

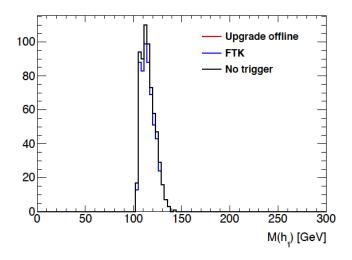
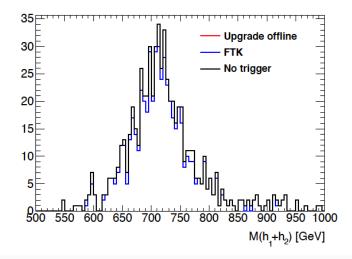



Figure: Leading Higgs mass

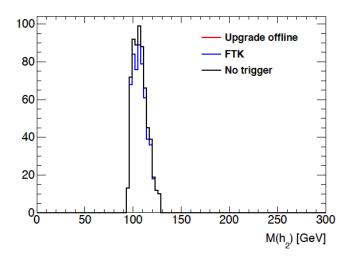


Figure: Sub-leading Higgs mass

- Identical peaks when no trigger selection is applied and when using offline b-tagging
- Less events when using FTK b-tagging, as expected

Preliminary results - trigger rates

Trigger chain: HLT_2b35_2j35_L1_4j15

Sample: Dijet JZ1 (20 $< p_T^{QCD \text{ truth jet}} < 80 \text{ GeV}$) (#events=999800)

$$\mathsf{Rate} = \mathcal{L} \times \epsilon_{\mathsf{trigger}} \times \sigma$$

Rate @
$$1.78e34 \text{ cm}^{-2}\text{s}^{-1}$$
 [Hz]

Offline	21 ± 3
FTK-like	18 ± 3

Table: HLT_2b35_2j35_L1_4j15 trigger rates for offline and FTK-like parameterizations

- Rates consistent within (statistical) uncertainties
- \blacktriangleright Number consistent with Run-II online rate of \sim 50 Hz
- Rate dominated by b-tagging efficiency (see next slide)

Caveats

- Limited statistics
- \triangleright Next p_T slices might slightly increase these numbers

Preliminary results - b-tagging purity

Trigger chain: HLT_2b35_2j35_L1_4j15

Sample: Dijet JZ1

$$Purity = \frac{\#true \ b\text{-jets}}{\#b\text{-tagged jets}}$$

	# b-tagged jets	# true b-jets	Purity
Offline	89 ± 13	78 ± 13	0.88 ± 0.19
FTK-like	80 ± 13	49 ± 11	0.61 ± 0.17

Table: Number of b-tagged jets, true b-jets and purity for events that pass the HLT_2b35_2j35_L1_4j15 trigger for offline and FTK-like parameterizations

Purity is higher for offline parameterization, as expected

Next steps

- Working on first version of HTT fast simulation
 - Based on easy to change parameterization
- Re-do analysis with non-resonant signal sample
- Significance estimate will be useful as HTT benchmark