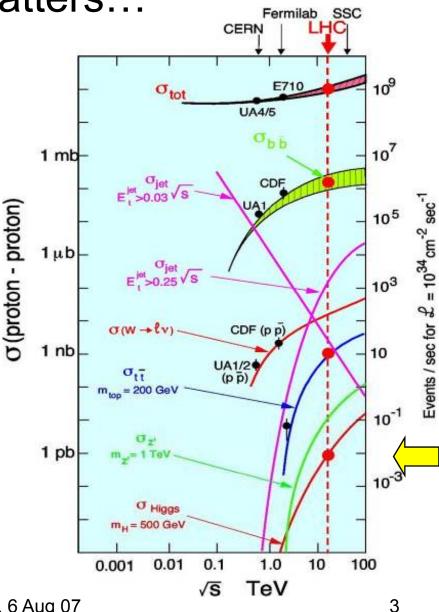


Trigger Introduction

Ricardo Gonçalo, RHUL BNL Analysis Jamboree – Aug. 6, 2007

Outline:

- Why it matters
- How it works
- Trigger rates
- Trigger menus
 - TAPM meeting tomorrow



Why it matters...

- Much of ATLAS physics means cross sections at least ~10⁶ times smaller than total cross section
- For the Higgs group, think ~10⁶ times smaller than total cross section
- 25ns bunch crossing interval (40 MHz)
- Offline storing/processing: ~200 Hz
 - ~5 events per million crossings!
- In one second at design luminosity:
 - 40 000 000 bunch crossings
 - ~2000 W events
 - ~500 Z events
 - ~10 top events
 - ~0.1 Higgs events?
 - 200 events written out

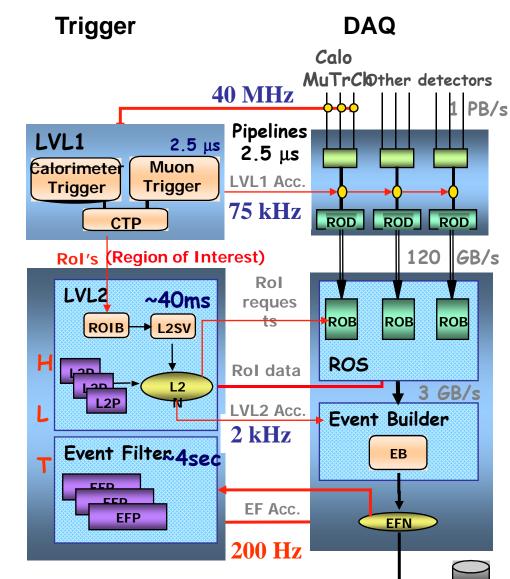
BNL Jamboree, 6 Aug 07

Rate

• Estimated with background: to first order, all events are background!

$$R[s^{-1}] = L[cm^{-2} \cdot s^{-1}] \times \sigma[cm^{2}]$$

- Overall limits:
 - ~50 kHz @ L1
 - ~1 kHz @ L2
 - ~200 Hz @ EF
- Must use all available output rate to the full:
 - >200 Hz not sustainable
 - <200 Hz means wasted data</p>
- Example: for e25i use di-jet sample with p_T>17GeV
 - No contamination from lower p_T jets expected
 - Passed events from $\pi^0 \rightarrow \gamma \gamma$, jets, e from heavy-flavour decays etc
 - Assumes rate of other processes much smaller


• Three trigger levels:

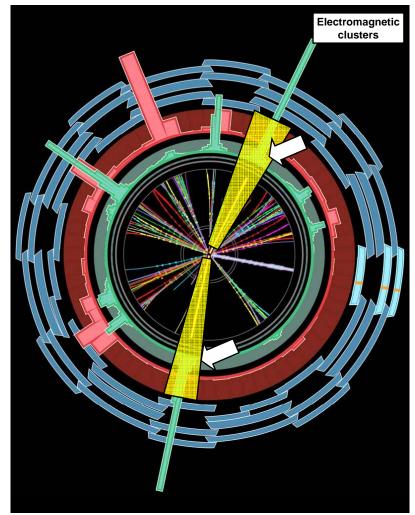
- - Hardware based
 - Calorimeter and muons only
 - Latency 2.5 µs
 - Output rate ~75 kHz
- Level 2: ~500 farm nodes(*)
 - Only detector "Regions of Interest" (Rol) processed -Seeded by level 1

 - Average execution time ~40 ms(*)
 - Output rate up to ~2 kHz
- Event Builder: ~100 farm nodes(*)
- Event Filter (EF):~1600 farm nodes(*)
 - Seeded by level 2
 - Potential full event access

 - Average execution time ~4 s(*)
 - Output rate up to ~200 Hz

(*) 8CPU (four-core dual-socket farm nodes at ~2GHz

Event Size ~1.5 MB

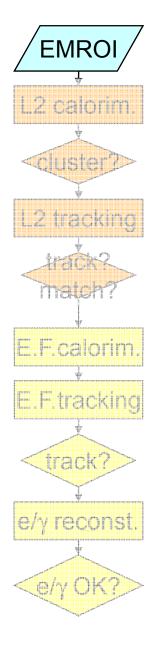

amboree, 6 Aug 07

5

300 MB/s

Selection method

Event rejection possible at each step

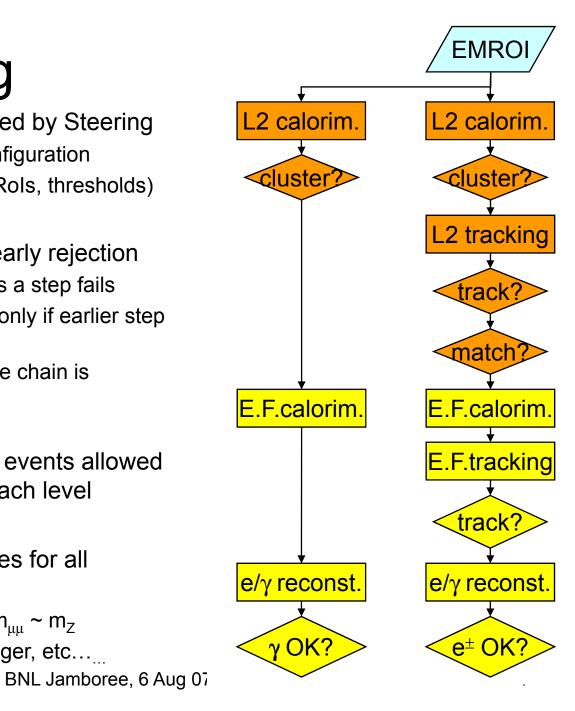


Ricardo Goncalo, RHUL

Level1 **Region of Interest** is found and position in EM calorimeter is passed to Level 2

Level 2 seeded by Level 1 Fast reconstruction algorithms Reconstruction within Rol

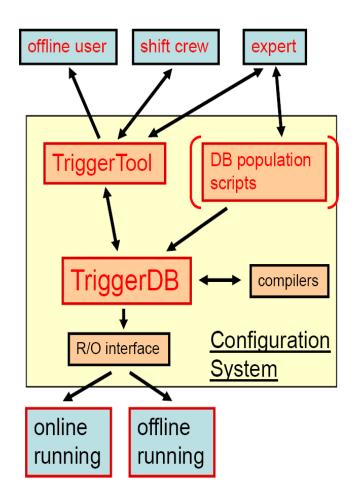
Ev.Filter seeded by Level 2 Offline reconstruction algorithms Refined alignment and calibration



BNL Jamboree, 6 Aug 07

Steering

- Algorithm execution managed by Steering
 - Based on static trigger configuration
 - And dynamic event data (Rols, thresholds)
- Step-wise processing and early rejection
 - Chains stopped as soon as a step fails
 - Reconstruction step done only if earlier step successful
 - Event passes if at least one chain is successful
- Prescale (1 in N successful events allowed to pass) applied at end of each level
- Specialized algorithm classes for all situations
 - Topological: e.g. 2 μ with $m_{\mu\mu} \sim m_Z$
 - Multi-objects: e.g. 4-jet trigger, etc....

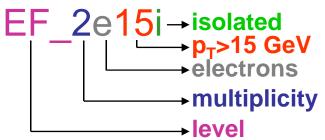

Ricardo Goncalo, RHUL

Configuration

- Trigger configuration:
 - Active triggers
 - Their parameters
 - Prescale factors
 - Passthrough fractions
 - Consistent over three trigger levels
- Needed for:
 - Online running
 - Event simulation
 - Offline analysis
- Relational Database (TriggerDB) for online running
 - User interface (TriggerTool)
 - Browse trigger list (menu) through key
 - Read and write menu into XML format
 - Menu consistency checks
- After run, configuration becomes conditions data (Conditions Database)
 - For use in simulation & analysis

Trigger algorithms

- High-Level Trigger algorithms organised in groups ("slices"):
 - Minimum bias, e/ γ , τ , μ , jets, B physics, B tagging, E_T^{miss}, cosmics, plus combined-slice algorithms
- For commissioning
 - Cosmics slice used to exercise trigger already started!
- For initial running:
 - Crucial to have minimum bias, e/ γ , τ , μ , jets
 - B physics will take advantage of initial low-lumi conditions (not bandwidth-critical)
 - Lower event rate allow low transverse momentum thresholds needed for B physics
 - E_T^{miss} and B-jet tagging will require significant understanding of the detector
- Will need to understand trigger efficiencies and rates <u>using real data</u>
 - Zero bias triggers (passthrough)
 - Minimum bias:
 - Coincidence in scintillators placed in front of calo.
 - Counting inner-detector hits
 - Prescaled loose triggers
 - "Tag-and-probe" method, etc


- 1. Select good offline $Z \rightarrow \mu \mu/ee$
- Randomly select "tag" lepton; if triggered, use second lepton as "probe"
- 3. $\varepsilon = #(triggered probes)/#(all)$

Ricardo Goncalo, RHUL

BNL Jamboree, 6 Aug 07

Trigger Menus

- 12.0.6-7 used for CSC production;
 - Use CSC-06 configuration:
 - Stream tests use ~different menu (STR-01)
- Main physics trigger signatures:

Slice	HLT signatures	Starting from L1 items:	Comments
Electron	2e15i, e25i, e60	2EM15, 2EM25, EM60	No isolation in L1 items; e25i ~realistic
Photon	2g20i, g60	2EM15I, EM60	Start from L1 items with isolation
Muon	mu6, mu20i	MU06, MU20	No isol; mu20i ~realistic; L1 p _T ordering
Tau	tau10i, tau15i, tau20i, tau25i, tau35i	TAU10i, TAU15i, TAU20i, TAU25i, TAU35i	
Jet	j160, 2j120, 3j65, 4j50	J45, 2J45, 3J45, 4J45	L1_J45 not realistic
ETmiss	met10	TAU05	Starts from L1 tau

- In addition, technical or "expert" signatures for performance studies
 - tauNoCut, e10, jet20...
 - Needed in practice to allow trigger rerunning (must produce trigger objects)
- In 13.0.x around 90 signatures being developed aimed at an initial data taking

Trigger	p_T threshold(*)	Obs	Trigger	p_T threshold(*)
Electron	5,10,15,	Prescale	ΣE_{T} (jets)	?
Electron	20,25,100	No presc	E_{T}^{miss}	12, 20, 24, 32,
Di-electron	5,10	Prescale		36, 44
Di-electron	15	No presc	E _T ^{miss}	52, 72
Photon	10,15,20	Prescale	J/Ψ→ee	Topological
Photon	20	No presc	μμ	4
Di-photon	10	Prescale	$J/\Psi \rightarrow \mu \mu$	Topological
Di-photon	20	No presc	BsDsPhiPi	Topological
Jets	5,10,18,23,35,42,70	Prescale	ΒγΧ	
Jets	100	No presc	e + E _T ^{miss}	18+12
3 Jets	10,18	B-tag	μ + E _T ^{miss}	15+12
4 Jets	10, 18	B-tag	$Jet + E_{T}^{miss}$	20+30
4 Jets	23	Express	2 Jets + E _T ^{miss}	42+30
τ	10, 15, 20, 35		Jet+ E _T ^{miss} +e	42+32+15
Di- τ	10+15,10+20,10+25		Jet+ E_T^{miss} + μ	42+32+15
			4 Jet + e	23+15
Muon	4, 6, 10, 11, 15, 20, 40	Muon	4 Jet + μ	23+15
N4	4 0 40 44 45 00 40	spectr.	$\tau + E_T^{miss}$	15+32,25+32,
Muon	4, 6, 10, 11, 15, 20, 40	ID+Muon		35+20,35+32
Di-muon	4, 6, 10, 15, 20	Passtthr.	τ + e	10+10
ΣE _T	100, 200, 304	prescale	τ + μ	10+6
ΣE_{T}	380	No presc	2τ+e	10+10

Obs

Prescale

No presc

B-phys

B-phys

B-phys

B-phys

B-phys

Prescale

No presc

Express

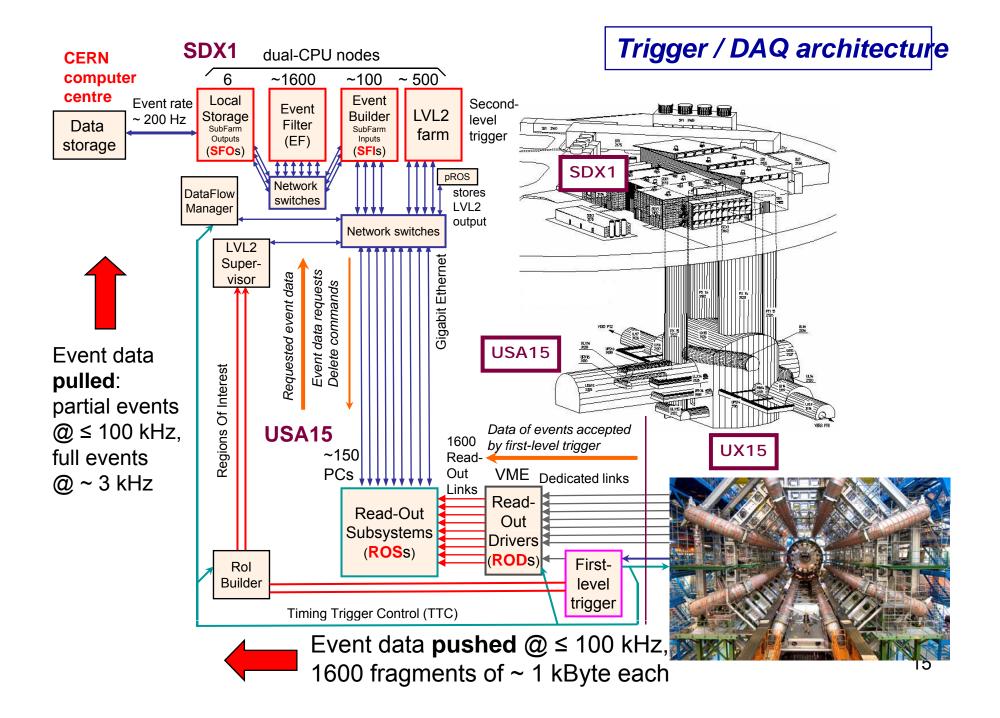
Express

Express

П

?

Backup slides


Ricardo Goncalo, RHUL

Trigger strategy for initial running

- Major effort ongoing to design a complete trigger list ("menu") for initial running
 - Commissioning of detector and trigger; early physics
 - Start with $\mathcal{L}=10^{31}$ cm⁻²s⁻¹ benchmark and scale accordingly
- Many sources of uncertainty:
 - Background rate (dijet cross section uncertainty up to factor ~2)
 - Beam-related backgrounds
 - New detector: alignment, calibration, noise, Level 1 performance (calo isolation?), etc
 - Event occupancy
- Must be conservative and be prepared to face much higher rates than expected
- Need many "handles" to understand the trigger:
 - Many low-threshold, prescaled triggers, several High Level triggers will run in "passthrough" mode (take the event even if trigger rejects it)
 - Monitoring framework (embedded in algorithms, flexible and with small overheads)
 - Redundant triggers
 - e.g. minimum bias selection with inner detector and with min.bias scintillators
- Expect the menu to evolve rapidly, especially once it faces real data

Prescaling

- Prescale factor of N means 1 in N passed events is accepted
 - Simply done with a counter: no bias, input events are random
- Can be applied to L1 items or HLT chains
- Affects efficiency and rate in the same way!
- Different prescales throughout run possible (desirable!):
 - Start with higher prescales and go to lower prescale set when rate is low enough
 - Try to maintain ~constant rate throughout fill to optimise use of available output rate capability

