

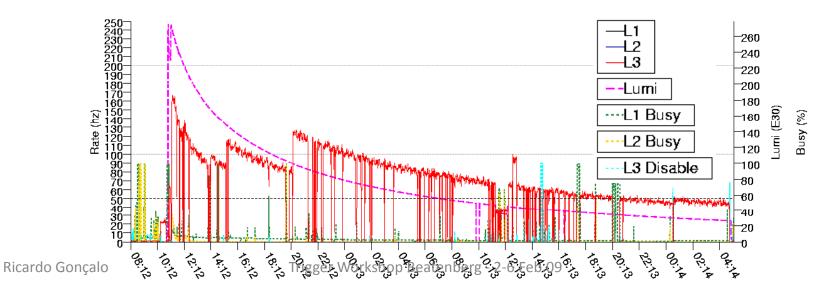
Trigger Tools for Physics Analysis

Some use cases

Building a data sample

Event by event analysis

Input from across the Atlantic

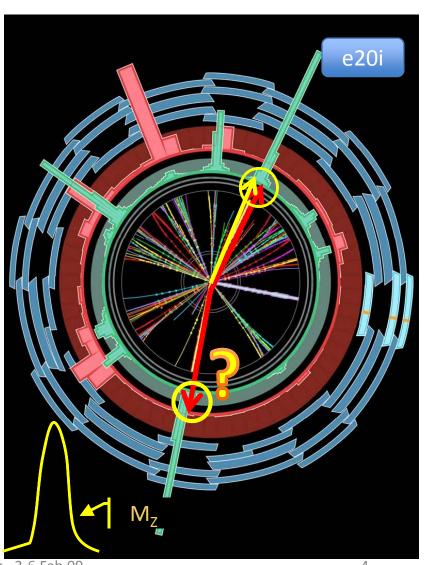

conclusions

Thank you! Michael Begel, Gustaaf Brooijmans, Tomasz Bold, Till Eifert, Sinead Farringdon, Teresa Fonseca, Simon George, Rasmus Mackeprang, Srini Rajagopalan, Joerg Stelzer, et al. Data selection and normalization
Tag and probe
Trigger efficiency correction
Menu for Monte Carlo generation

USE CASES

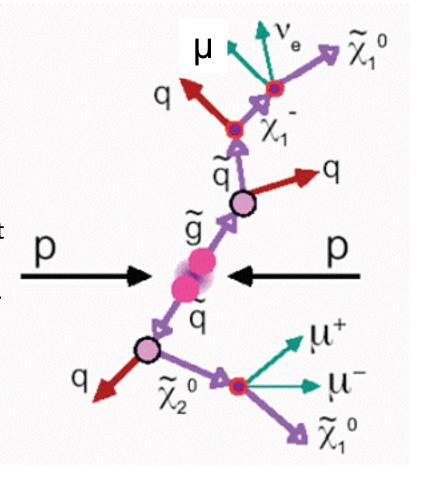
Selecting and normalising a data set

- Analysis may rely on a specific trigger or group of triggers (OR) to select events
- Trigger decision used to stream events
- Tag database can be used to build up dataset based on trigger decision
- Normalising a dataset:
 - Need to either take the trigger efficiency into account
 - Or guarantee that the trigger efficiency with respect to the offline selection is ≈100%
 - Efficiency of prescaled trigger needs further correction
 - Prescale factor may change frequently constant for each luminosity block
 - · too frequent changes should probably be limited, at least in the beginning
 - The situation becomes more complicated for an OR of several prescaled triggers...
 - Similar issues in other experiments, but with prescale periods longer than luminosity blocks



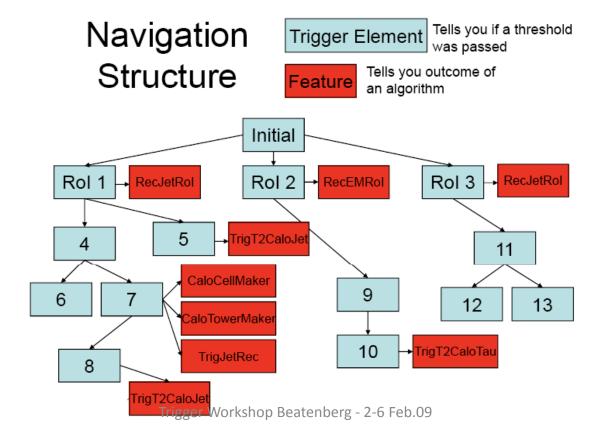
Tag and probe

- Tag & Probe:
- Selected events with singlelepton trigger
- Offline: select Z->l⁺l⁻ events
 - Reconstruct >=2 leptons
 - Apply m_z and fiducial cuts etc
- Match one of the 2 leptons with a trigger lepton passing single trigger
- Search for second matching trigger lepton
- Count successes in 2nd matching


Need to be able to match offline objects with online objects:

- ✓ Minimal info needed is RoI η and φ
- ✓ Better matching would need trigger objects (muon hits, perigee, etc)

Another example (artificial?... not so much)


- X₂⁰ cross section:
 - σ = $(N_{obs}-N_{bkg})/(A ε_{trig} ε_{off} L)$
 - Trigger and offline muon efficiency determined per initial muon (tag&probe)
 - Select events with >= 2 μ to increase stats
 - Find μμ pair in one side of event and identify X_2^0
 - Correct trigger efficiency ε_{trig} for events with 3 muons
- Needs to match trigger and offline objects to avoid miscalculation

Trigger Navigation

- Trigger event processing coded into navigation tree: chains, sequences, trigger elements navigation is 'snapshot' of event at end of trigger processing
- Data produced during trigger processing ("features") attached to nodes of navigation tree ("trigger elements")
- Navigation tree and features stored in HLTResult objects (into ESD, AOD, DPD)
- Allows to "navigate" to data produced somewhere in trigger chain

Ricardo Gonçalo

6

Menus for Monte Carlo generation

- Related issue:
 - What trigger menu to use when generating MC samples?
 - What menu composition?
 - What prescale set?
- For MC samples to be compared with data in store:
 - Menu composition determined by triggers active during running period
 - Prescale set:
 - May be possible to determine an average prescale factor, p, for each trigger
 - Prescale per lumi block, p_i , weighted according to integrated luminosity per block L_i
 - Assumes instantaneous luminosity doesn't change by a huge factor
 - Otherwise need to divide sample into smaller chunks according to instantaneous luminosity?

Data quality
Trigger configuration
Luminosity and prescales

BUILDING A DATA SAMPLE

Need to know...

- Data quality check:
 - Use data quality flags
 - Different analysis will need different parts of detector active and working well
- Configuration: necessary trigger/set of triggers active in the menu
 - Determines which stream to run on
 - And with convenient configuration selection cuts consistent with offline analysis cuts
 - Efficiency (Is it adequate to the analysis? Object based/simulation?)
 - Prescale factors (Fixed? Changing?)
- Integrated luminosity: how much in selected runs?
 - To normalise distributions and compare with MC
 - To calculate cross sections

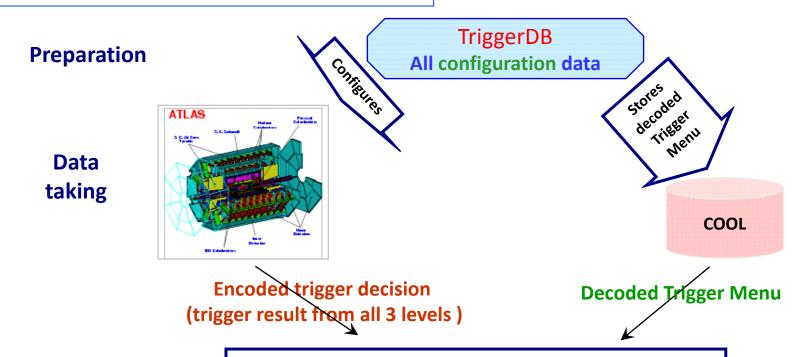
Data quality flags

- Filled by online shifter, automatically by DQMF, verified by offline shifter
 - Stored in COOL per lumi block
 - Analysed in user analysis jobs, DPD making, etc
- Flags have several states
 - Red, Green, Yellow, Black, White
- Expected in trigger (ongoing):
 - one flag per slice
 - one flag per detector system
 - one for L1Calo, L1 muon
- Should be possible to run job on:
 - Physics.egamma stream
 - From run X to run Y
 - Requiring e.g. Pixel, SCT and TRT >=yellow

Red: bad

Green: good

Yallow partially bad, some channels missing, hole in calo, etc **Black**: disabled, not in partition


White: in partition

Grey: or blue, undefined, tried to

check quality but couldn't

PIXEC	SCTB	SCTEA	SCTEC	TRTB	TRTEA	TRTEC
G	G	G	G	U	U	U
G	G	G	G	G	G	G
G	G	G	G	U	U	U
n.a.	R	R	R	G	G	G
n.a.	R	R	R	G	G	G
n.a.	R	R	R	G	G	G
n.a.	R	R	R	G	G	G
n.a.	G	G	G	G	G	G

Configuration Data Flow

Reconstruction/ Trigger aware analysis

Trigger Result

• passed?, passed through?, prescaled?, last successful step in trigger execution?

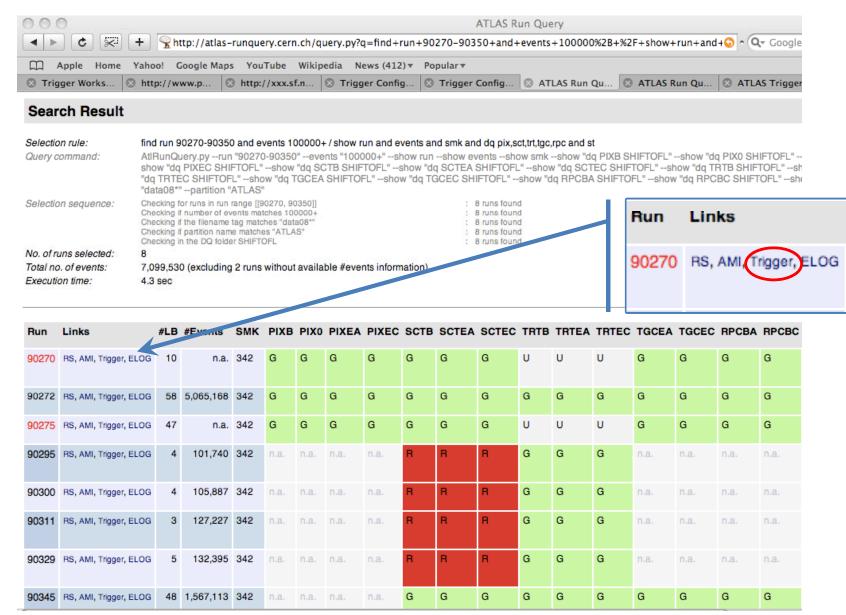
Trigger EDM

• Trigger objects for trigger selection studies

Trigger Configuration

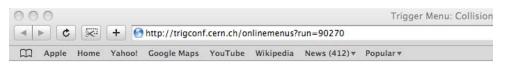
• Trigger names (version), prescales, pass throughs

Data formats:





With decreasing amount of detail


Examine runs, streams, DQ, trigger SMK, etc: http://atlas-runquery.cern.ch/

• Allows to browse the trigger menu used in that run

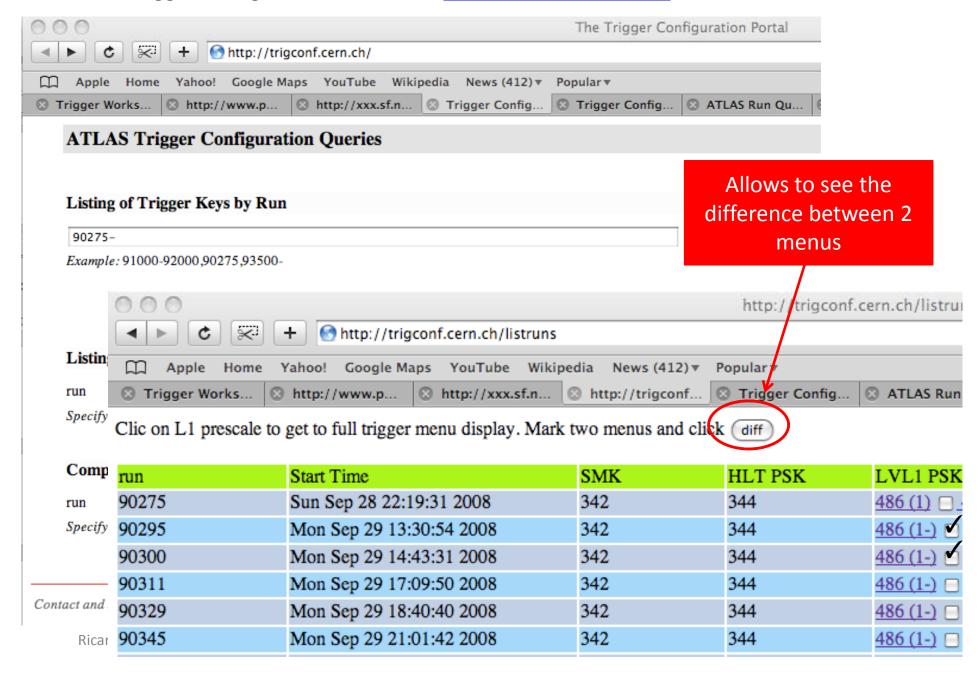
L2 configurations

Collision v1

SMK 342 HLT Prescales Key: 344 Lvl1 Prescales Key: 486

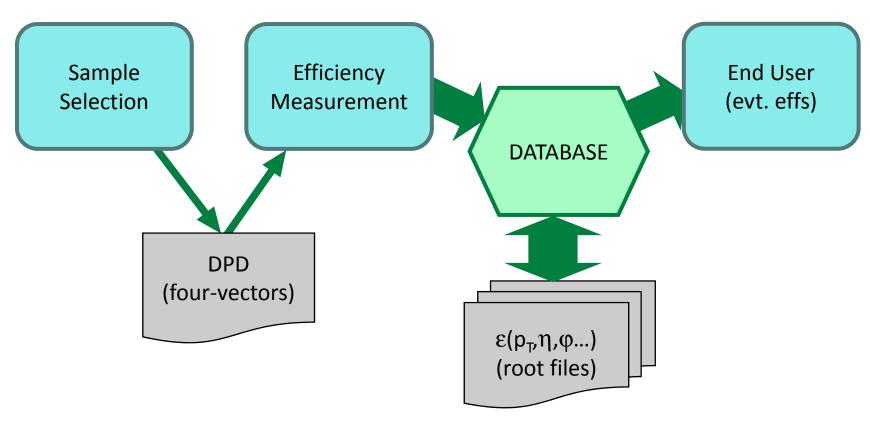
If more advanced browsing is needed please launch TriggerTool Follow this link if you have trouble to launch it.

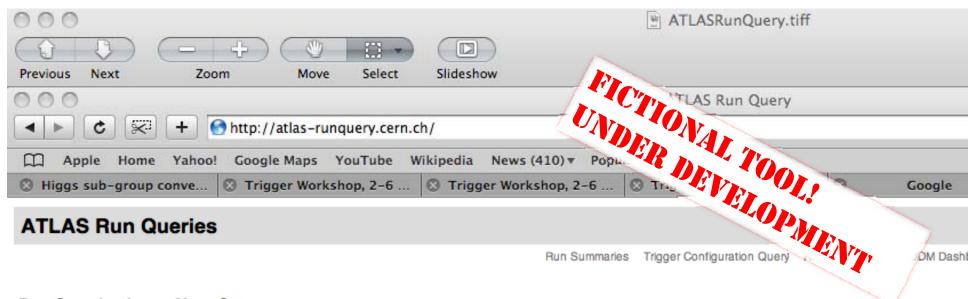
Streams


L1Calo | RNDM | TGCwBeam | MBTS_BCM_LUCID | RPCwBeam | CosmicMuons | IDCosmic | IDTracks | express | BPTX | Tile |

				L1Calo		
EF chain	PS	PT	STP	L2 chain	PS	
e10_loose	1	0	1	e10_loose	1 (
e10_loose_passL2	1	0	1	e10 loose passL2	1 (
e10 loose passEF	1	0	1	e10_loose_passEF	1 (
e10_medium	1	0	1	e10_medium	1 (
g <u>10</u>	1	0	1	g10	1 (
tau12_loose	1	0	1	tau12_loose	1 (
tau16i_loose	1	0	1	tau16i_loose	1 (
tauNoCut	1	0	1	tauNoCut	1 (
<u>J5</u>	1	0	1	<u>J5</u>	1	
<u>J10</u>	1	0	1	<u>J10</u>	1	
J70	1	0	1	J70	1	
<u>3J10</u>	1	0	1	<u>3J10</u>	1 1	3J10
FJ18	1	0	1	FJ18	1 0	FJ18
2FJ18	1	0	1	2FJ18	1 0	2FJ18
te150	1	0	1	te150	1 0	TE150
xe20	1	0	1	<u>xe20</u>	1 0	XE20
tau16i_EFxe30	1	0	1	tau16i_loose	1 0	TAU9
<u>J50</u>	1	0	1	<u>J23</u>	1 1	<u>J10</u>
vtxbeamspot_FSTracks	1	0	1	vtxbeamspot_FSTracks	1 0	1
te150_EFonly	1	0	1			
te150_EFonly_noMu	1	0	1			
trk9i	1	0	1	trk9i	1 0	TAU6
trk16i	1	0	1	trk16i	1 0	TAU9
trk9i_id	1	0	1	trk9i_id	1 0	TAU6
tauNoCut_TauRecNoTopo	1	0	1	tauNoCut TauRecNoTopo	1 0	TAU5
tauNoCut calo	1	0	1	tauNoCut calo	1 0	

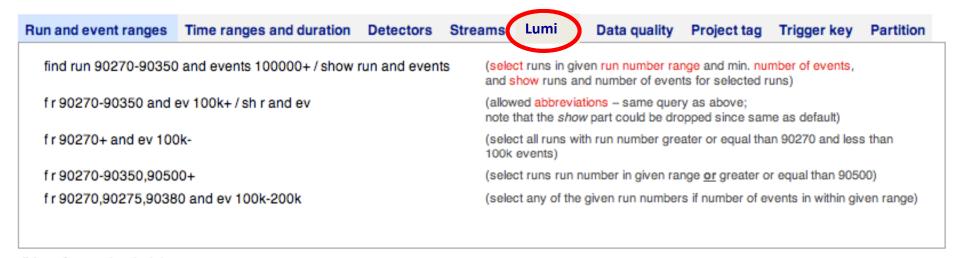
TrigL2CaloHypo/L2CaloHypo_e10_loose AcceptAll=False ET2thr=[90000.0,90000.0,90000.0,90000.0,90000.0,90000.0,90000.0] HADET2thr=[999000.0,999000.0,999000.0,999000.0,999000.0,999000.0] dETACLUSTERthr=0.1 dPHICLUSTERthr=0.1 CAERATIOthr=[0.6,0.6,0.6,0.6,0.6,0.6,0.6] EtaBins=[0,0.75,1.37,1.52,1.8,2.0,2.35,2.5] ETthr=[9000.0,9000.0,9000.0,9000.0,9000.0,9000.0,9000.0] HADETthr=[2000.0,2000.0,2000.0,2000.0,2000.0,2000.0,2000.0] CARCOREthr=[0.85,0.85,0.85,0.85,0.85,0.85,0.85] TrigTimeHistTool/L2CaloHypo_e10_loose.Time AuditTools=False ProcessNEvents=0(0x0) histoPathBase= PreScale=0(0x0) TriggerChain= TriggerGroup= ManagerName=AthenaMonManager TrigDecisionTool= FileKev= DataType=userDefined Environment=noOutput MinutesPerLB=1(0x1) Scaler=1(0x1) Key=[] BookingDir=TIMERS DoPerObiHist=False TimerPerObjHistLimits=[0,200] NumberOfHistBins=50(0x32) TimerHistLimits=[0,200] • Can now go down to the level of

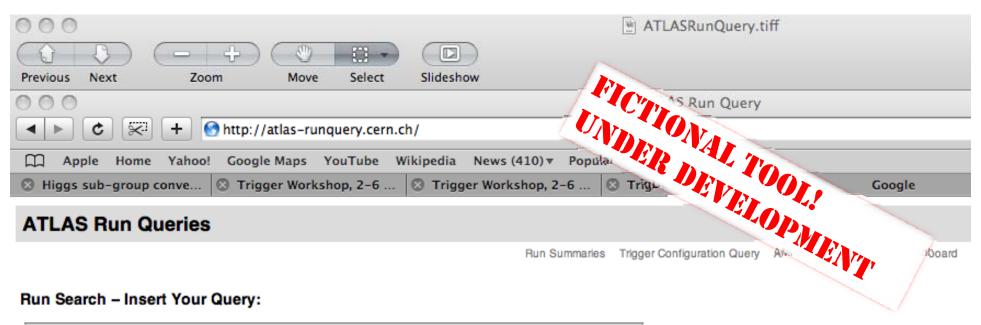

 Can now go down to the level of individual properties of e.g. Hypo algorithms


Browse trigger configuration database: http://trigconf.cern.ch/

Infrastructure for efficiency distribution

- See talks by Corrine Mills and Matthias Schott
- Can provide a common way to apply trigger efficiencies to user analyses

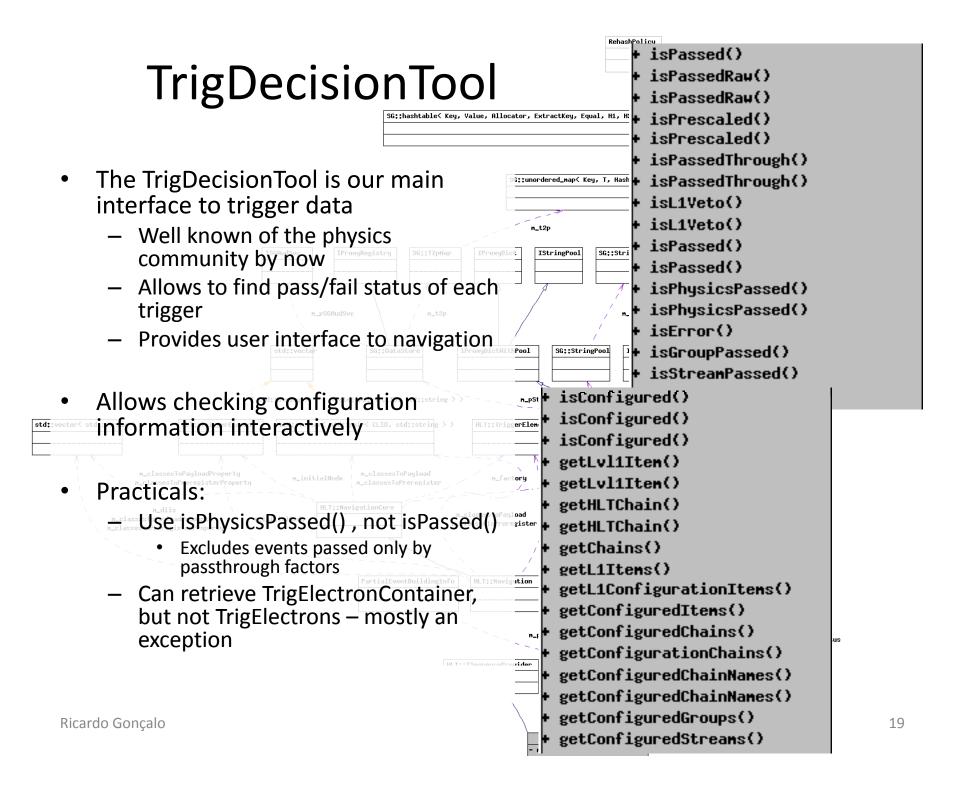



Run Search – Insert Your Query:

f r 90270-90350 and dq em y+ and dq ard tr e20i) sh dq pix,sct,em,til, lumi

Examples (query format inspired by SPIRES):

(More formatting help)


fr 90270-90350 and dq em y+ and dq and tr e10i / sh dq pix,sct,em,til, lumi

Run	Links	#LB	#Events	PIXB	PIX0	PIXEA	PIXEC	SCTB	SCTEA	SCTEC	EMBA	EMBC	EMECA	EMECC	TILBA	Lumi (pb ⁻¹)
90270	RS, AMI, Trigger, ELOG	10	n.a.	G	G	G	G	G	G	G	G	Υ	G	G	G	429
90272	RS, AMI, Trigger, ELOG	58	5,065,168	G	G	G	G	G	G	G	G	G	G	G	G	2051
90275	RS, AMI, Trigger, ELOG	47	n.a.	G	G	G	G	G	G	G	G	Υ	G	G	G	1892
Summary:																
3 runs			5,065,168													4372 pb ⁻¹

- Should be able to accept groups of triggers to be OR'ed (but need to be careful with this feature)
- Should give the run's integrated luminosity corrected by the prescale factor
- Perhaps it could also return the prescale factor weighted by luminosity

TrigDecisionTool
TriggerARA
New TrigDecisionTool interface

EVENT-BY-EVENT ANALYSIS


```
getBGCode()
getChainSignature()
                                       TrigDecisionTool has a few problems: complexity, robustness, etc; not
getChainSignature()
                                       really a user-friendly tool – being re-written
getChainTEs()
                                       See:https://twiki.cern.ch/twiki/bin/view/Atlas/TrigDecisionTool14
getChainTEs()
getTELabel()
getNavigation()
                                       Separate tool to work in ARA – only Python, no c++ version (under
                                       development)
removeNavigation()
getFeature()
                                       See: https://twiki.cern.ch/twiki/bin/view/Atlas/TriggerARA14
getFeatures()
                                       and an example: http://atlas-sw.cern.ch/cgi-bin/viewcvs-
masterKey()
                                       atlas.cgi/groups/Arizona/ARATopAnalysis/src/TrigStudy.cxx?revision=1.1
                                       &view=markup
getL1Result()
getL2Result()
getEFResult()
                                       New interface: TrigDecisionTool is being re-written as a dual-use tool –
decision()
                                       same usage in Athena and in ARA (M.Begel, C.Hensel)
findSeqForOutputTeType()
                                       See:
getPassFeatures()
                                       https://twiki.cern.ch/twiki/bin/view/Atlas/NewTrigDecisionToolInterfac
getAllFeatures()
getPassRoIs()
                                 initialNode
getAllRoIs()
getPassL1RoIs()
                    std::vector<const TrigTauCluster* > vec tauClust;
getAllL1RoIs()
                    errCode = m trigDec->getPassFeatures("L2 tau16i", vec tauClust);
getPassL1RoIs()
                    if (errCode == HLT::OK) {
getAllL1RoIs()
                         std::vector<const TrigTauCluster* >::const iterator CI = vec tauClust.begin();
                        for(;CI != vec tauClust.end(); ++CI) {
                          (*m log) << MSG::INFO << "REGTEST" << " Energy in EB sampling 1: "
                                      << (*CI)->energy(CaloSampling::EMB1)
                                    <<" Energy in EB sampling 2: "<<(*CI)->energy(CaloSampling::EMB2)
                                    <<" Energy in EB sampling 3: "<<(*CI)->energy(CaloSampling::EMB3)
                                      <<endreq;
    Ricardo Gonçalo
                                                                                                       20
```

Information pages from D0

IDEAS FROM ACROSS THE SEA

D0 Online Web Query Interface

Per Run Trigger Details

for Run_Number: 208605

Run_Number	Trg_Type	Bit_Num	Depend_Bit	Bit_Name	Eg_Num	Prescale
208605 208605	L1bit	0		Afastz_ncu	0	1800000
	L1bit	1		ALiveBX_ncu	0	3400001
	L1bit	2		L1Mu_download	0	0
	L1bit	3		L1CTT_download	0	0
	L1bit	4		CEM(1,6)_ncu	0	0
	L1bit	5		CJT(1,5)_ncu	0	0
	L1bit	6		mu1pt3wtlx_TTK(1,5.)_ncu	0	1
	L1bit	7		mu1pt2wtlx_TTK(1,3.)_ncu	0	3
	L1bit	8		mu1ptxbttx_TTK(2,1.5)_ncu	0	3
	L1bit	9		mu1ptxbttx_TTK(2,1.5)_ncu^2	0	1
	L1bit	10		CEM(1,12)_ncu	0	1
	L1bit	11		CEM(1,12)_ncu^2	0	1
	L1bit	12		CEM(1,12)_ncu^3	0	1
	L1bit	13		CEM(2,6)_ncu	0	1
	L1bit	14		CEM(2,6)_ncu^2	0	1
	L1bit	15		CEM(2,6)_ncu^3	0	1
	L1bit	16		TTK(1,10.)_CEM(2,3)CEM(1,9)_ncu	0	1
	L1bit	17		TTK(1,10.)_CEM(2,3)CEM(1,9)_ncu^2	0	1
	L1bit	18		TTK(1,10.)_CEM(2,3)CEM(1,9)_ncu^3	0	1

21(10)		1: Requires one muon in the forward region meeting tight pixel and tight wire requirements and NOT Calorimeter unsurgequirements with tight scint timing but no pT or region requirement. Also requires two STT track, pt>=1.2 and chi2 < 11 east one single muon (M) with no Pt threshold.						
		L2CALTRK(2,1.5,1.5,TTK) MUON(1,0.,MEDIUM,tg) L2T /3						
22(11)	E1 ISHT22 / 2	L1: Calorimeter EM objects with E_T>12 GeV. Veto on cal_unsuppressed condition. L2: requires the sum of the two high						
22(11)		CEM(1,12) ncu / 1 L2CALEM(15,x) / 2						
23	E1 SHT25 / 2	L1: Calorimeter EM objects with E_T>12 GeV. Veto on cal_unsuppressed condition. L2: requires the sum of the two high						
45								

2TRK(2,STTPT,1.2,11)

mp20k CFTVtx(prvtx1 phys,-35.,35.) IP(IPTrk,2,3.,1.5) InvM(PhTrk05.,98,1.08.,494) Muon(Muon,1,0.,M) / 2

ghest EM towers to be >= 15 GeV. L3: The trigger bit set to true if an isolated electron is found satisfying tight shower shape requirements with Et>22. GeV

mp17000 Ele(ELE NLV SHT,1,22.,0.,3.6) Ele(IsoEle SHT,1,22.,0.,3.6) / 2

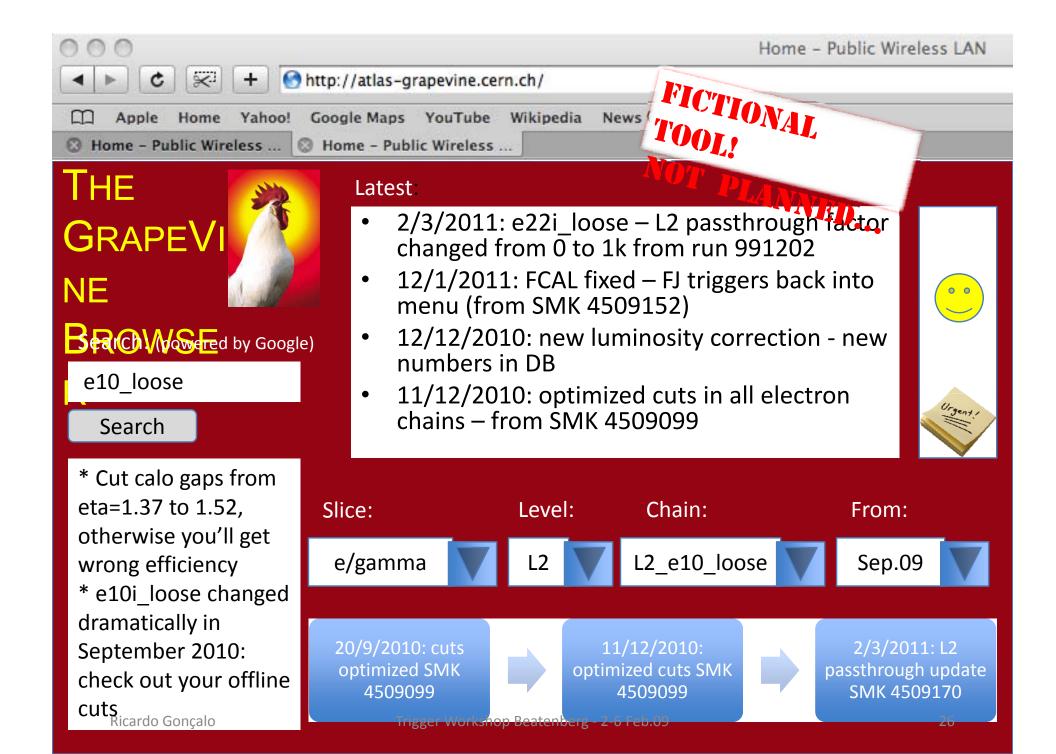
ghest EM towers to be >= 15 GeV. L3: The trigger bit set to true if an electron is found satisfying tight shower shape requirements with Et>25. GeV

Ele(ELE NLV SHT,1,25.,0.,3.6,-99.,99.) / 2

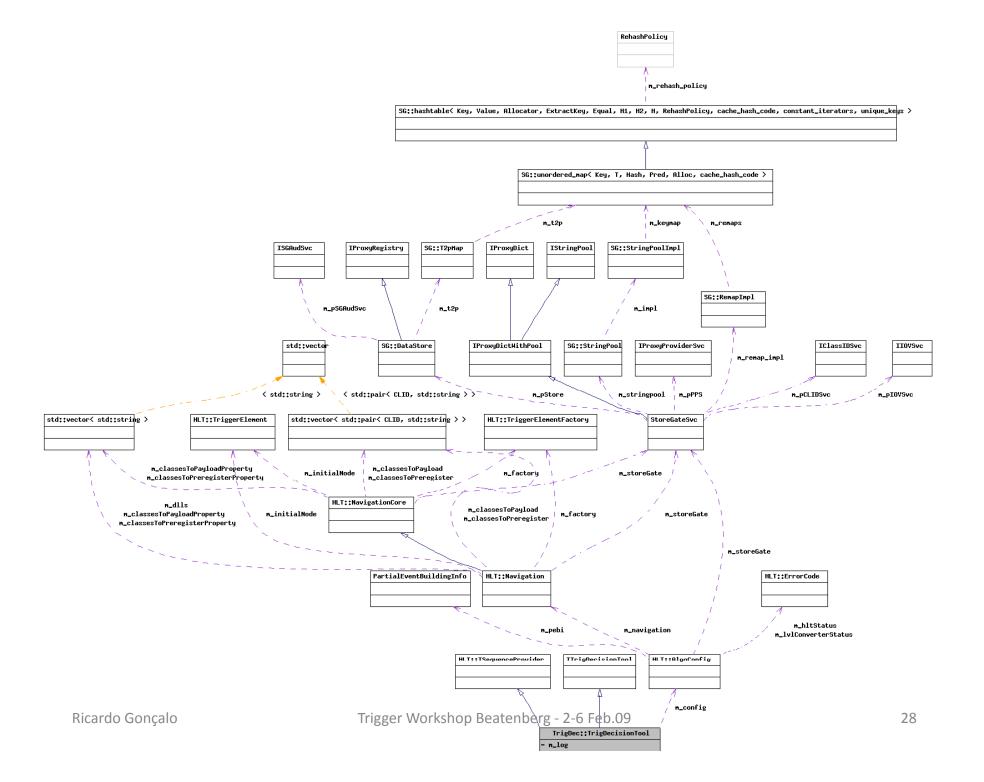
ghest EM towers to be >= 15 GeV. L3: Requires one isolated letal<3.6 electron with E_T>30 GeV with loose shower shape requirements.

mp17000 Ele(ELE NLV SH,1,30.,0.,3.6) Ele(IsoEle SH,1,30.,0.,3.6) / 2

ghest EM towers to be >= 15 GeV. L3: The trigger bit set to true if an electron is found satisfying loose shower shape requirements with Et>35. GeV


ML3_2IPMM_IMP_V	14490	0.048	1.873	0.336	0.630	MEB1_2IPMM_IMP_V	0.364
E1_ISHT22	22981	0.077	2.971	0.000	0.00.0	2CEM12_E15_SHT22	1.000
E1_SHT25	21084	0.070	2.726	0.000	0.000	2CEM12_E15_SHT22	1.000
E1_ISH30	14157	0.047	1.830	0.000	0.000	2CEM12_E15_SH30	1.000
Trigger Name	# of events	bandwidth fraction	rate to tape (Hz)	unique fraction	unique rate to tape (Hz)	largest overlap with trigger	largest overlap
E1_SH35	12750	0.042	1.648	0.000	0.000	2CEM12_E15_SH30	1.000
E1_L70	865	0.003	0.112	0.146	0.016	E1_SH35	0.692
E1_ISHT15_M25	1210	0.004	0.156	0.001	0.000	E3_ISHT15_M25	0.930
E1_SH30_M15	7558	0.025	0.977	0.000	0.000	2CEM12_E15_SH30	1.000
E1_SHT20_M20	3123	0.010	0.404	0.007	0.003	E3_SHT20_M20	0.911

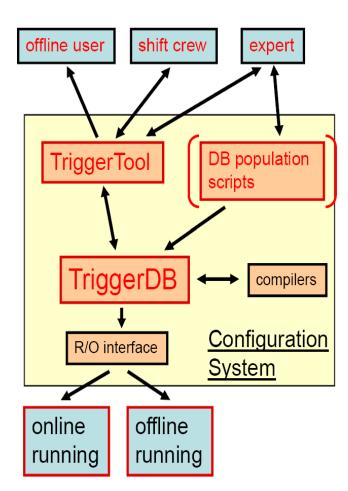
The word on the grapevine Conclusions


WHAT ELSE?

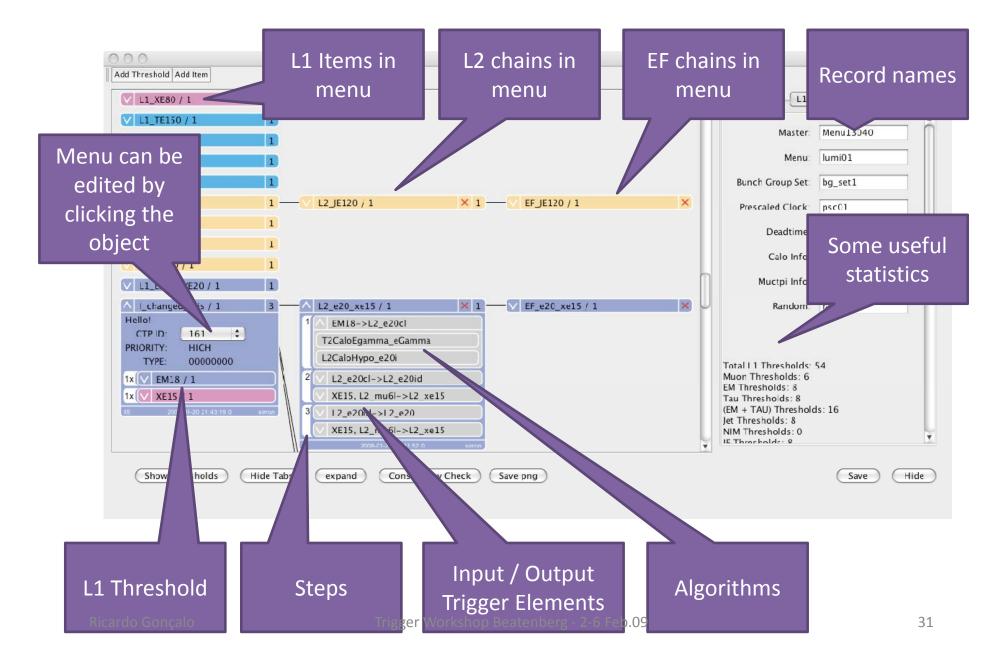
Last remarks

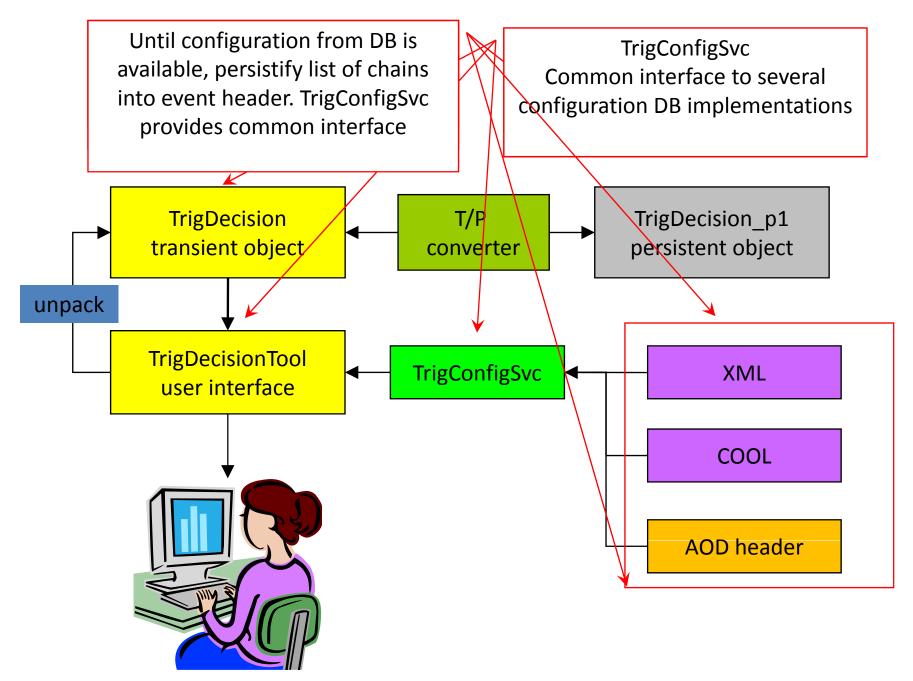
- With the 2009 run there will come the need to provide reliable and user-friendly tools to analyse trigger data
 - Part of this exists but hasn't been stressed, and part is under development
- This workshop provided the physics groups with a good reason to re-visit their trigger studies, after the CSC exercise was finished – this should continue!
- What else is missing? (Lots of things for sure! Would be good to find them early!)
 - E.g. easier comparison between online and reconstruction quantities
 - matching between online and offline objects?
 - What else?

BACKUP SLIDES


Notes...

.


- Conditions database (COOL) is primary repository of data quality information
 - Accessible online, offline, and distributed throughout collaboration
 - May mean copying some data in
 - Or copying some data out for efficient use in particular contexts
 - Putting some detector status in event files, or into TAG database
- Reproducibility from Tier-0 output onwards
 - Should be possible to recover status knowledge corresponding to a particular time (e.g. a reconstruction pass), even if 'we now know better'
 - Use of tags (=calibration versions) in COOL allows this
- Simplicity for the end user should I use this data?
 - End-user detector status is 'traffic light' (red/yellow/green = bad/dubious/good) for each subsystem part (TRT endcap C, MDT barrel A side, LVL1 calo trigger, ...)
 - Also have similar flags for combined performance groups 'barrel ID good for b-tag'


Configuration

- Trigger configuration:
 - Active triggers
 - Their parameters
 - Prescale factors
 - Passthrough fractions
 - Consistent over three trigger levels
- Needed for:
 - Online running
 - Event simulation
 - Offline analysis
- Relational Database (TriggerDB) for online running
 - User interface (TriggerTool)
 - Browse trigger list (menu) through key
 - Read and write menu into XML format
 - Menu consistency checks
- After run, configuration becomes conditions data (Conditions Database)
 - For use in simulation & analysis

Viewing and Modifying a Menu

