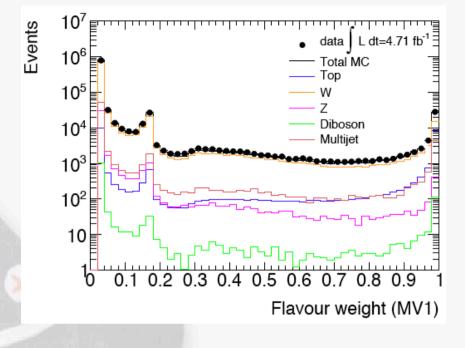

H→bb search and b-tagging

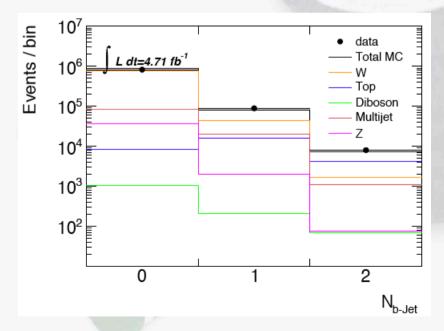
Ricardo Gonçalo on behalf of the Higgs subgroup 5

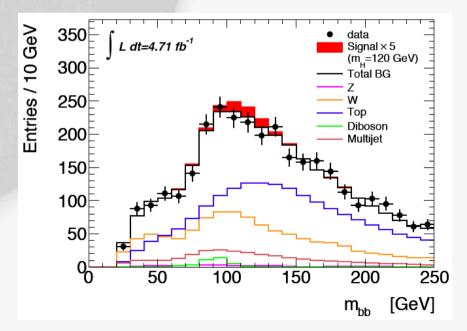
- So far:
- H->bb dominant at low mass
- WH→lvbb, ZH→llbb
 - 1 fb⁻¹ results shown in EPS2011
 - 4.7 fb⁻¹ analyzed (preliminary)
 - WH σ≈2x higher than ZH
- ZH→vvbb and boosted VH
 - Coming soon good things expected!
- ttH first data results since
 Christmas
- Also: VBF, bbH developing
- Simple & robust analyses so far
 - Get background normalization from data as much as possible
 - Search Higgs in m_{bb} spectrum
 - Critically depend on b-tagging!

m_H	$\sigma(WH)$	$\sigma(ZH)$	Branching Ratios
(GeV)	(pb)	(pb)	$H \to b\bar{b}$
110	0.8754	0.4721	0.745
115	0.7546	0.3598	0.705
120	0.6561	0.3158	0.649
125	0.5729	0.2778	0.578
130	0.5008	0.2453	0.494

Systematic Uncertainties

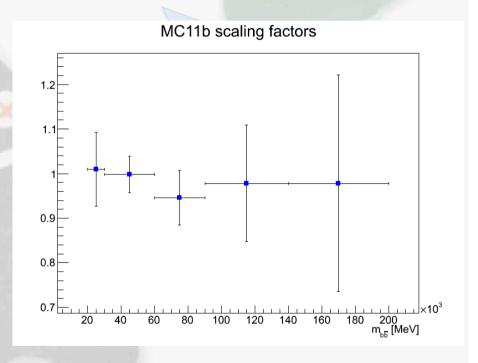

- Dominant systematic errors from b-tagging efficiency in both analyses
- Followed by jet energy scale
- Points at the next things things to improve!
- (*) shown numbers for 1fb⁻¹


Source of Uncertainty	Effect on the signal		
Source of Cheertainty		$m_H = 130 \text{ GeV}$	
Electron Energy Scale	< 1%	< 1%	_
Electron Energy Resolution	< 1%	< 1%	
Muon Momentum Resolution	1%	3%	
Jet Energy	9%	7%	
Jet Energy Resolution	< 1%	< 1%	<u></u>
Missing Transverse Energy	2%	2%	
b-tagging Efficiency	16%	17%	=
b-tagging Mis-tag Rate	< 1%	< 1%	
Electron Efficiency	1%	1%	
Muon Efficiency	1%	1%	
Luminosity	4%	4%	-
Higgs Cross-section	5%	5%	_

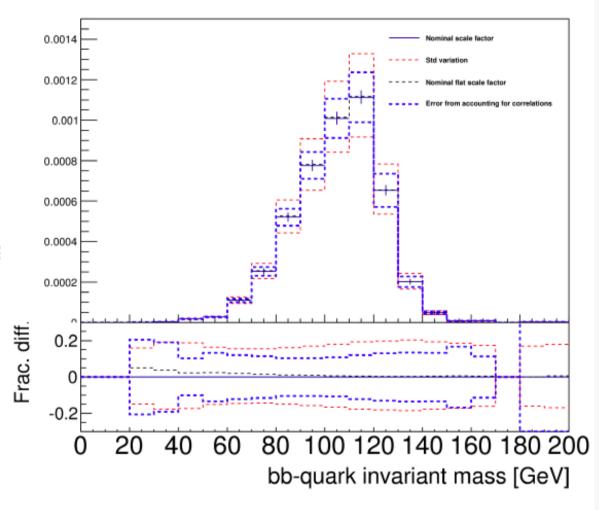

Source of Uncertainty	Effect on the signal	
	$m_H = 115 \text{ GeV}$	$m_H = 130 \text{ GeV}$
Electron Energy Scale	1%	1%
Electron Energy Resolution	1%	1%
Muon Momentum Resolution	4%	1%
Jet Energy	1%	1% 3%
Jet Energy Resolution	1%	
Missing Transverse Energy	2%	3%
b-tagging Efficiency	16%	1% 3% 17%
b-tagging Mis-tag Fraction	3%	3%
Electron Efficiency	1%	1%
Muon Efficiency	1%	1%
Luminosity	4%	4%
Higgs Cross-section	5%	5%

Current status

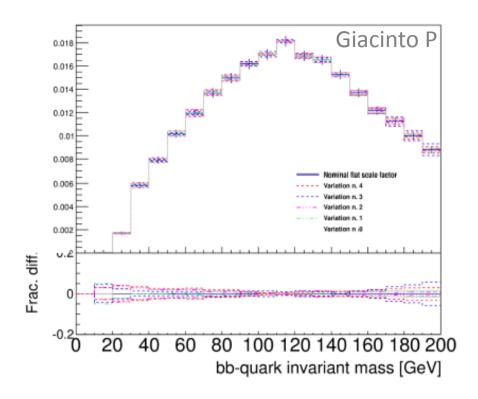
- Expect exclusion of around 3.5-4 x SM for m(H)=120GeV
- ZH/WH analyses just moved to MV1 and all looks ok so far
- But lots still to do before Moriond...

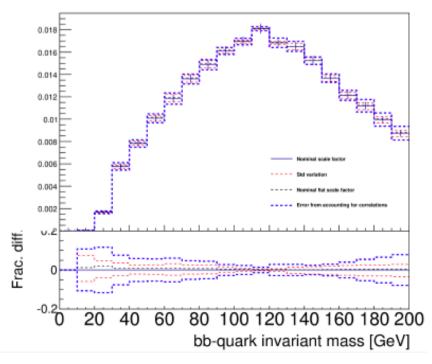


Effect of b-tagging Scale Factors on M_{bb} distribution

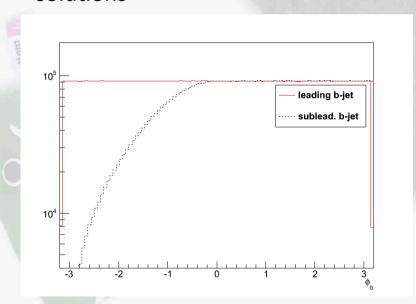

- B-tagging scale factors enter the analysis as a weight for each b-jet, and depends on jet p_T
- This introduces a distortion in the jet p_T distribution
- ...which potentially introduces a distortion on the shape of the invariant mass
- May be important since we are looking for a small excess in the form of a wide peak in m(bb)
- We propose to average scaling factors propagate SF uncertainties into systematic uncertainties
- The MC11b scaling factors at present show little evidence of a p_T dependence
- But such a dependence would clearly be possible

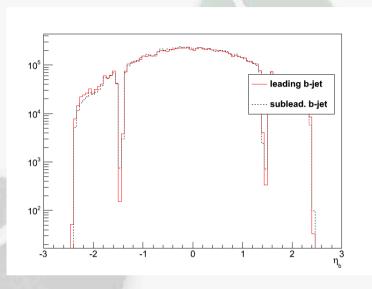
Effect on WH signal

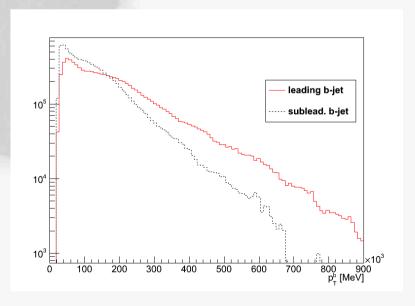

- Estimate b-tagging uncertainty on true b- and c-jets:
 - vary scale factors 5 times up and down according to eigenvectors of measured covariance matrix from pTrel
- Compare:
 - Red: "std" method
 - Blue: new method
- The overall signal uncertainty changes from ~18% to ~11%.
- B-tagging scale factor uncertainty among bins is largely uncorrelated (e.g. due to MC statistics)


Giacinto P

Effect on ttbar background

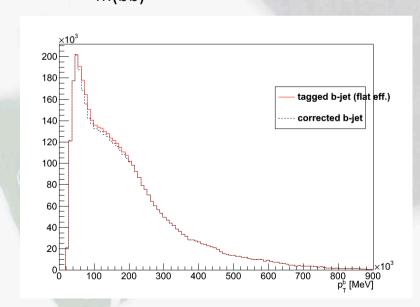

- Here what matters for us is the effect induced on the shape, not the normalization
- To estimate the effect, normalize again after each variation.
- Combine by summing up in quadrature and compare new with old method
- Systematic uncertainty on shape increased by factor ~2
- Similar behaviour expected for the Wbb background

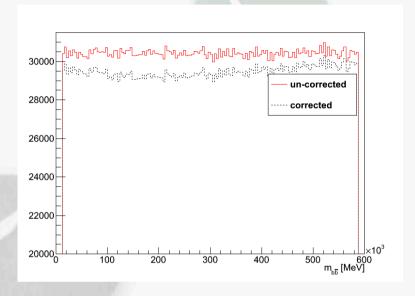


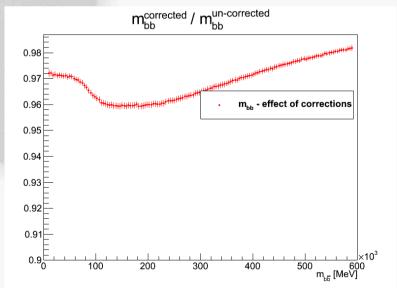


Toy Monte Carlo study of mass distortion

- Toy MC to study the effect of b-tag scale factors
- Caveat: first study done with di-photon MC kinematics – a look at bb background later
- 1. Sample p_T and η of leading and subleading b-jets
- Generate flat φ_{lead b-jet} and flat mass distribution
- 3. Calculate $\phi_{\text{sublead b-jet}}$ to be consistent with generated mass (and reject unphysical solutions

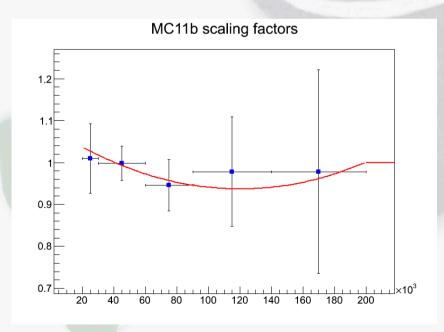


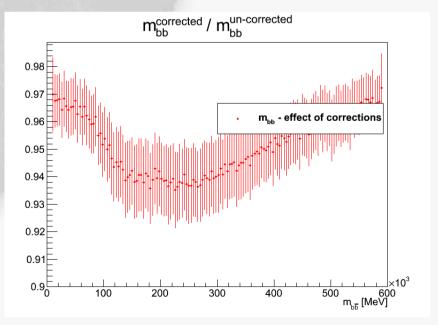




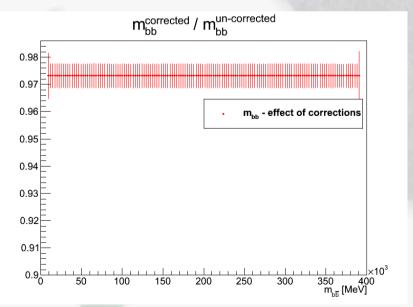
Effect of MC11b scaling factors

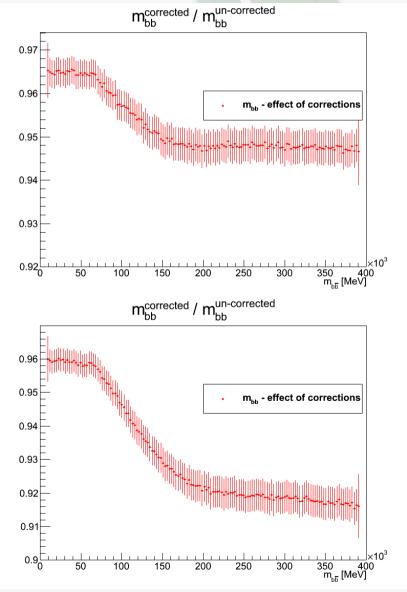
- The reweighting causes a distortion in the flat invariant mass distribution (plus constant term)
- The distortion is small, but then so is our signal compared to the background
- May be more serious if width comparable to m_{bb} resolution, as in our case $(\sigma_{m(bb)} \approx 20 \text{GeV})$



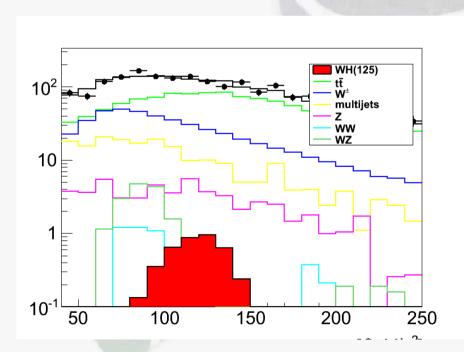


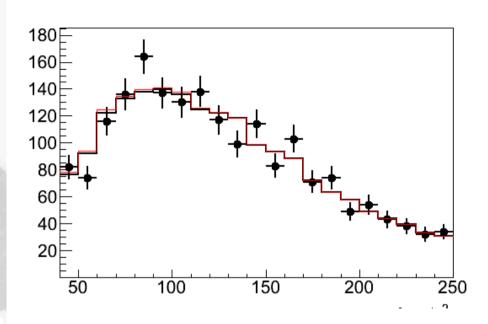
Binning effect?

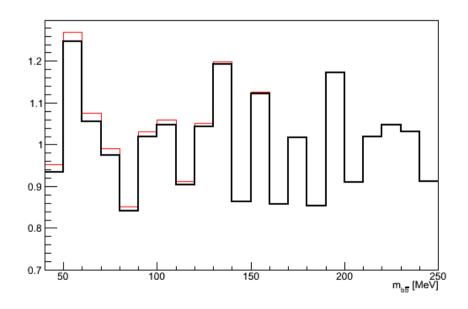

- To see whether this is an effect of the binning, fitted scaling factors (SF) with a parabola (and $\mathbf{W_b} = 1$ for $p_T^b > 200 \text{GeV}$)
- Still get similar distortion => not (only) binning effect



Results using background kinematics

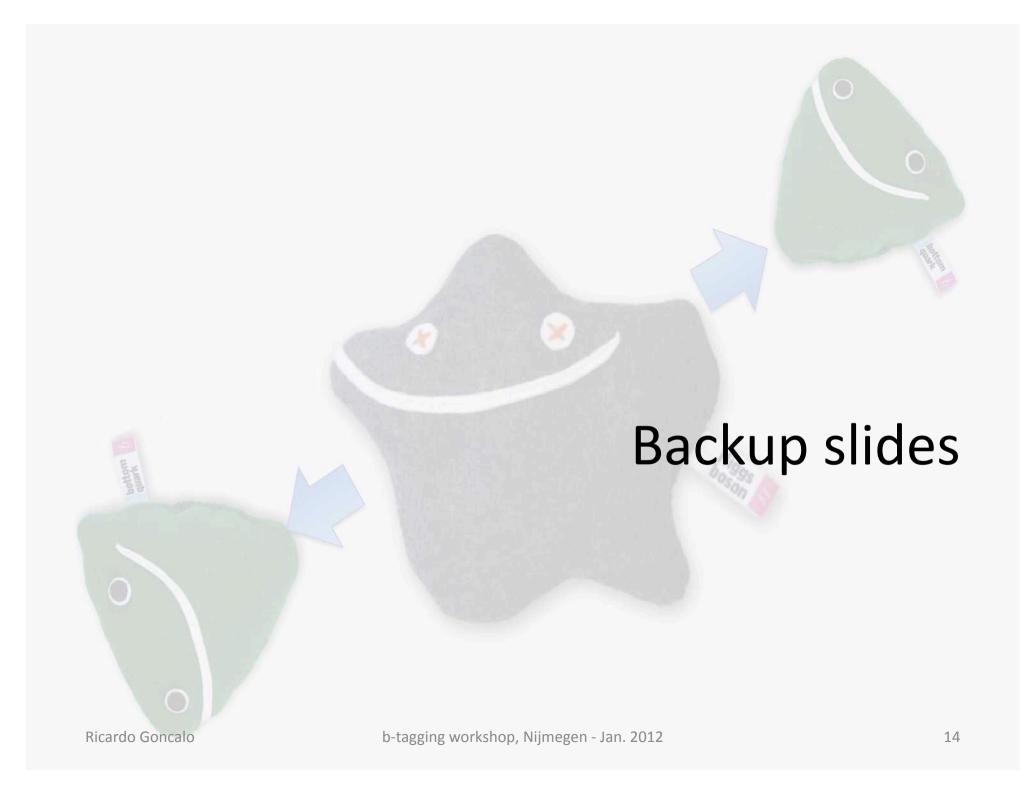

- Basically same conclusion:
- MC11b scaling factors distort mass distribution (top right)
- Even if a parametrization is used (bottom right)
- Our averaging procedure removes shape distortion (bottom left) – note zero distortion in this case only due to jet pT cutoff at 200 GeV!





Effect on final distribution

- Well... the effect is small, but is there
- Tried applying distortion on 1fb⁻¹ mass distribution



Conclusions

- These are interesting times for Higgs and H->bb!
- We depend critically on the b-tagging performance (BIG THANKS everyone!!!)
- Looked at distorting effects from p_T dependence of the b-tagging scale factors
- A method for removing the mass distortion in JFC scale factors exists and works
- May need to think again depending on what you find for MV1

Lepton Selection

Electrons

- ullet medium++ (tight++) with $p_T > 20(25)$ GeV and $|\eta| < 2.47$ for Z(W)
- Include crack region
- Track isolation: $\sum_{tracks}/p_T < 0.1$ within $\Delta R = 0.2$
- \bullet For WH: Impact parameter cut $d_0 < 0.1 \mathrm{\ mm}$
- Latest recommended smearing and efficiency corrections
- ullet For veto in WH use loose++ and Forward with $p_T>10$ GeV and $|\eta|<4.5$. Require track isolation (except Forward)

Muons

- STACO(Muid) comb./tagged with $p_T > 20(25)$ GeV and $|\eta| < 2.5$ for Z(W)
- Track isolation: $\sum_{tracks}/p_T < 0.1$ within $\Delta R = 0.2$
- Impact paramter cuts $d_0 < 1(0.1) \text{ mm}$ for Z(W)
- ullet Impact parameter cut against cosmics $z_0 < 10 \ \mathrm{mm}$
- Latest recommended smearing and efficiency corrections
- For veto in WH extend to standalone, $p_T > 10$ GeV and $|\eta| < 2.7$. Require track isolation (except standalone)

$Jet + E_T^{miss}$ Selection

- Anti- k_T 4 with $p_T > 25$ GeV and $|\eta| < 2.5$ "AntiKt4TopoEMJets"
- ullet For jet veto in WH $p_T > 20$ GeV and $|\eta| < 4.5$
- Remove events with jets pointing to the bad FEB region
- ullet Pile-up: reject jets with |JVF| < 0.75 for jets with $|\eta| < 2.5$
- Current JES/JER uncertainty includinh pile-up, close by and b JES

b-tagging

- MV1 with w > 0.614 ($\approx 70\%$ efficiency)
 - Corrections and errors not yet available

MET

- MET_RefFinal out-of-the-box
- Apply pile-up reweighting for each MC run period
- ullet At the moment no additional μ scaling to deal with issues due to pile-up model (pythia 8) for MC11b

Event Selection

- Using WZ+jets GRL (includes b-tagging)
- Triggers: Standard single and dilepton triggers
- Primary vertex containing at least 3 tracks

\circ ZH \rightarrow IIbb

- Exactly 2 leptons with $76 < m_{II} < 106 \text{ GeV}$
- Opposite charge required for muons
- $E_T^{miss} < 50 \text{ GeV}$
- At least 2 jets(1 jet with $p_T >$ 45 GeV), exactly 2 b tagged

• WH $\rightarrow l\nu bb$ selection

- 1 lepton and $M_T > 40$ GeV
- $E_T^{miss} > 25 \text{ GeV}$
- Exactly 2 jets(1 jet with $p_T > 45$ GeV) and both b tagged

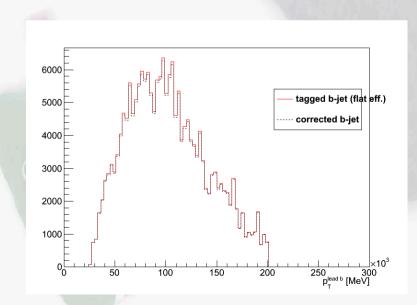
Lepton/Jet Veto Selection (WH)

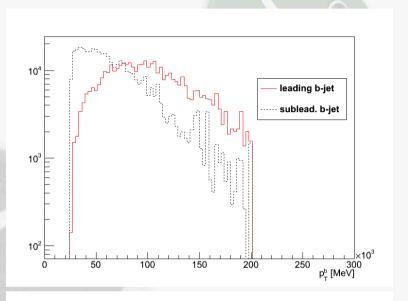
Further rejection of top. Veto jet has $p_T > 20$ GeV and $|\eta| < 4.5$. Veto lepton has wider η range than trigger electron (standalone muons, forward electrons).

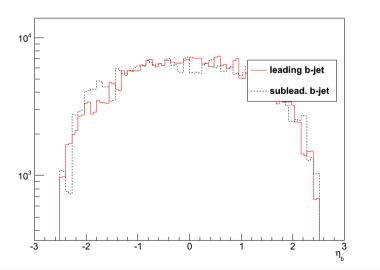
Object overlap removal

- if $p_T^e > 20$ GeV and $\Delta R(jet, e) < 0.4$, remove jet
- if $p_T^e < 20$ GeV and $\Delta R(jet, e) < 0.4$, remove e
- if $\Delta R(jet, \mu) < 0.4$, remove μ

Remove any event with trigger lepton and

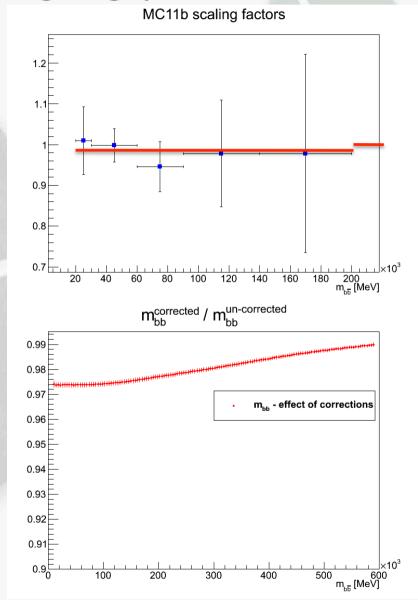

- 1 extra lepton with $p_T > 20 \text{ GeV}$
- 1 extra opposite sign lepton with $p_T < 20$ GeV
- \bullet > 1 extra leptons

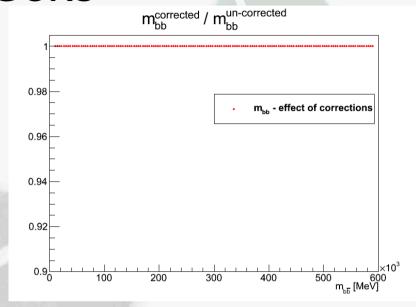

Remove any event with

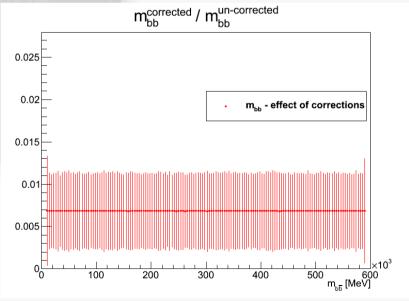

• with \geq 3 jets with $p_T > 20$ GeV

Using different input kinematics

- Re-did some plots with b-tagged jets from W+bb and top backgrounds
- Jet pT cutoff at 200GeV




Effect of our averaging procedure


- We use the average of the scale factors (0.9865) and propagate the errors taking into account bin-to-bin correlations
- Small effect still visible (bottom right) looking at wide mass range
- But very smooth compared to the horizontal with of our signal peak

Cross checks

- If all b-tagging scale factors are set to 1 there is no effect on the mass distribution, as expected (top right)
- If they are all set to the average (0.9865) including for jets with p_T^b>200GeV, effect on mass is flat, also as expected (bottom right)

