Reconstruction of t→blv

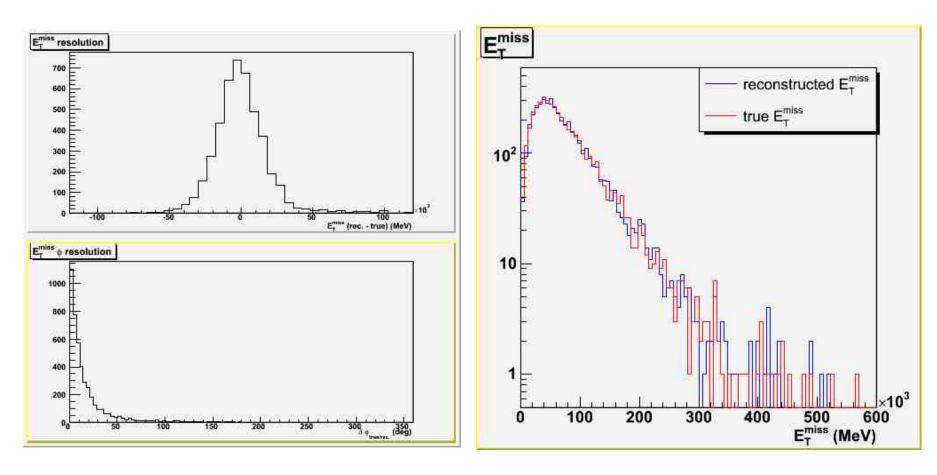
- The idea is (try to) to improve the reconstruction of the top decaying as t → blv
 - To increase the efficiency for signal
 - Can something be done about the neutrino longitudinal momentum?
 - An improvement would benefit several analysis: ttH, single top,
- First of all: why is there no neutrino solution for many events?
 - Try to classify failed events according to why they failed
 - This is only just starting: don't expect much

Monte Carlo sample

- Samples 5340 and 5341 from Lorenzo (thanks!) and the the ttH(→bb) wiki
 - $ttH \rightarrow (bjj) (blv) bb; m_H = 120 GeV$
- Some questions:
 - What filter was used
 - Should I be able to see W→τν?
 - What are the lepton and jet collections?
 - Some guesswork was required
 - TJet? AFEI/AFMu? Something else?
 - Got some answers, in the meantime. For reference: AF means AtlFast, TJets are tagged cone jets with R_{cone}=0.4
- Still, this allowed a quick start!...

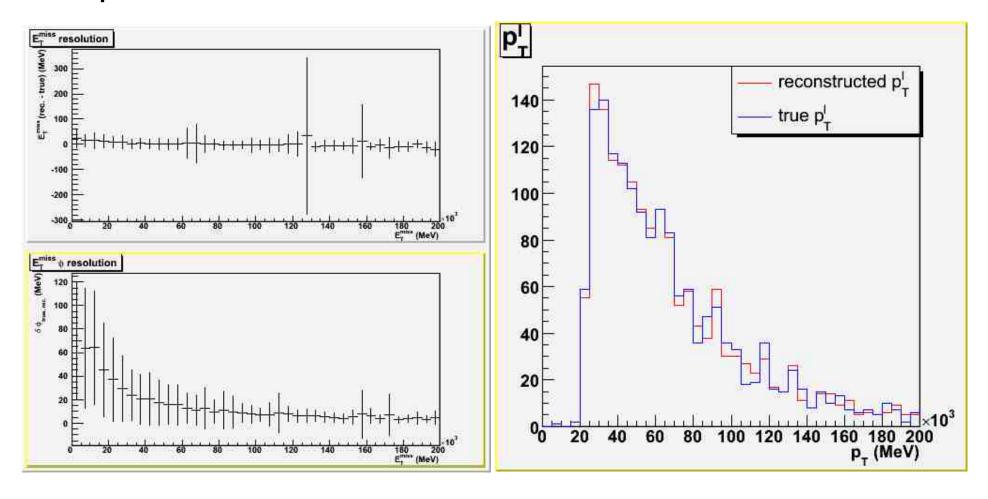
- No solution if ξ <0
- After a lepton is found, typically 60-70% of events have p₇^v solutions
- Most likely, most errors due to mismeasured E_T^{miss} and φ (azimuthal angle between lepton and neutrino)
 - This can be seen by expanding errors contributing to Δ
- But other things can be responsible:
 - off-shell W
 - Mis-identified lepton
 - Other sources of missing ET
- 10% of events gave no solution if using true ETmiss with expressions for p_Z^v
- 4.7% of events give no solution if using true neutrino p_T!!!

$$p_{Z}^{\nu} = \frac{p_{Z,l}\Delta \pm E_{l}\sqrt{\Delta^{2} - 4p_{Z,\nu}^{2} p_{Z,l}^{2}}}{2p_{T,l}^{2}}$$


$$= \frac{p_{Z,l}\Delta \pm E_{l}\xi}{2p_{T,l}^{2}}$$

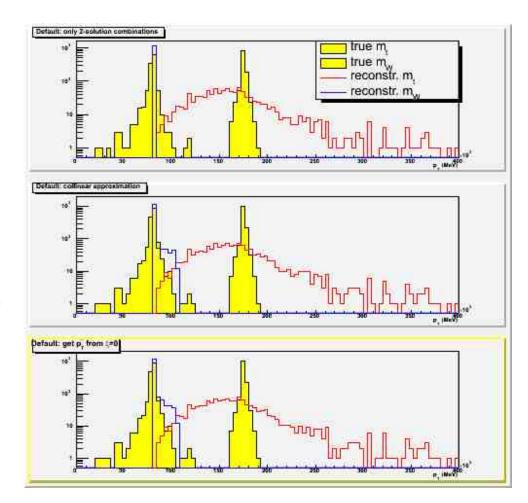
$$\xi = \Delta^{2} - 4p_{Z,\nu}^{2} p_{Z,l}^{2}$$

$$\Delta = m_{W}^{2} + 2p_{T,l} p_{T,\nu} \cos \phi$$


events with W→ντ	0
e/ μ outside η of 2.5	85
p _T <20(e)/15(μ) GeV	222
p _T ^v <0.5 ETmiss	86
φ(v/ETmiss)>90°	328
m _W -80.4 >6.3GeV	155
No b-jet match	3

Missing E_T

 Should look at new ntuples from Lorenzo for more detailed E_T^{miss} info


 E_T^{miss} : quite large error in angle for low E_T^{miss} Lepton: require 1 e/ μ over 25/20 GeV; no other leptons above 10GeV

- Other methods can be used to recover some of the lost p₇^v
- "Collinear approximation":

$$p_Z^{\nu} = p_Z^{-1}$$

- Assume the ξ becomes negative due to uncertainty in measured quantities because it's small
 - 1. Since it is small anyway, set $\xi=0$ and get p_7^{ν}
 - 2. Use this p_Z^{ν} in the rest of the expression
- This doesn't seem silly, since E_T^{miss} could come from other sources...
 - Not much improvement, but (very) slightly better than collinear approx

$$p_Z^{\nu} \ = \ \frac{p_{Z,l} \Delta \pm E_l \sqrt{\Delta^2 - 4 p_{Z,\nu}^2 \, p_{Z,l}^2}}{2 p_{T,l}^2}$$

4500 events (mH=120GeV)	Default (2 pz ^v solutions)	Collinear approximation	ξ=0 method
Events with 1 t→blv chain in truth	2496	2496	2496
Events with identified electron or muon & no background	1617	1617	1617
Events with p_Z^{ν} solutions	1149	1617	1617
mW-80.4 <25GeV	1149	1418	1449
True b jet matches one reconstructed jet	1113	1378	1408
mt-175 <30GeV	581	748	767