H->bb Weekly Meeting

Ricardo Gonçalo (RHUL)

HSG5 H->bb Weekly Meeting, 9 March 2011

News! News! News!

- Bad samples:
 - MC10 Pythia-CTEQ66 QCD samples (IDs: 115216-115221) have been mistakenly run with the MC09c tune (i.e. LO* PDF) due to a bug – will be rerun
- Mainly for Eric...
 - New VBFNLO version will be out in next 2 months: http://www-itp.particle.uni-karlsruhe.de/~vbfnloweb/
- KinFitter those considering a kinematic fit may be interested in this package:
 - Wiki: https://twiki.cern.ch/twiki/bin/viewauth/Atlas/KinFitter
 - ATLAS Note in CDS (ATL-COM-SOFT-2009-014):
 http://cdsweb.cern.ch/record/1206849?ln=en
- Next meeting of the LHC Higgs Cross Section H->bb subgroup booked for 17 March, 15:00 CET – see email from Chris Potter
 - More participants welcome, especially experimentalists

News! News! News!

- **Muon** CP group recommendations for release 16:
 - Reconstruction efficiency and isolation efficiency scale factors, momentum smearing functions
 - https://twiki.cern.ch/twiki/bin/view/AtlasProtected/MCPAnalysisGuidelinesRel16
- Jet/Etmiss recommendations for **jet cleaning** in release 16:
 - Medium jet cleaning should give similar rejection to rel 15 cleaning but with better efficiency
 - Tight jet cleaning should not be used still under discussion
 - https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HowToCleanJets#Bad jets rel16 data
- New!: Final b-tagging calibrations for release 16 based on full 2010 data:
 - https://twiki.cern.ch/twiki/bin/view/AtlasProtected/Analysis16
- e/gamma recommendations for **energy scale and resolution** in release 16:
 - https://twiki.cern.ch/twiki/bin/view/AtlasProtected/EnergyScaleResolutionRecommendations
 - And rescaler tool: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/EnergyRescaler
- Standard Model **W/Z** group baseline selection for release 16:
 - See <u>discussion</u> in W/Z group <u>Sharepoint</u>
 - Also, finer points (and perhaps the not so fine) still being discussed

Future changes in W/Z baseline selection

To be studied and discussed

To be studied

Electron Selection

- · Study various electron isolation criteria
- Study possibility to replace tight with medium +isolation for inclusive measurements

Muon Selection

- Effect of z0 and d0 cuts on the track selection
- Effect of new isolation cut on the inclusive measurements
- · Staco / Muid?

MET Definition

 Performance of MET_RefFinal_em and MET calculation of M.Boonekamp et.al. in VB+jets

Jet/Lepton Overlap removal

- Possibility to resolve jet reconstruction with nearby leptons
- Effect of lepton/jet overlap removal for large jet multiplicities
- Jet Unfolding: Compare unfolding w.r.t. pure truth container or to truth container when applying same lepton/jet/jet removal cuts

Jets:

- Calibration for jets in W/Z+jets events (flavor effects, this is multiplicity dependent)
- Close-by jets in W/Z+jets topology with more than 1 jet.
- Similar effects in B-jets

JVF Cut

- · Study impact of new JVF Cut in rel.16
- Study Impact of Mc and data discrepancies
- Is it possible to correct for pile-up during unfolding?

B-Jet Definition

- · Study sensible definition of truth b-jet
- Study Calibration constants for b-tagging between 2.1 and 2.5 (get in contact with C. Weiser)

Study S/B ratio of Di-Boson analyses

- Loosen p_T cut on second lepton
- · Use medium electron with/without isolation

- We expect a sizeable luminosity this year:
 - 0.6 fb⁻¹ for PLHC in June; 1 fb⁻¹ for EPS in July; 2 fb⁻¹ for Lepton-Photon in August
- Need to get boosted VH analyses going again!
- Work is currently ongoing within the SM group – mainly on commissioning the jet substructure reconstruction
- Looking at a H spectrum in WH (by eye!):
 - ≈0.5 of the cross section above $p_T^H = 100 \text{ GeV}$
 - ≈7.5% above $p_T^H = 200 \text{ GeV}$

√s = 7 TeV	p _T H > 0 GeV	p _T ^H > 100 GeV	p _T ^H > 200 GeV
Channels	σ x BR(e/ μ) (fb) OR # events per fb ⁻¹	σ x BR(e/ μ) (fb) OR # events per fb ⁻¹	σ x BR(e/ μ) OR # events per fb ⁻¹
WH->lvbb	150	75	11
ZH->llbb	29	14	2.2

Un-boosted channel sensitivity:

- All we currently have at Vs = 7 TeV are Lianliang's numbers from the 15/12/2010 H->bb meeting:
 http://indico.cern.ch/conferenceDisplay.py?
 confld=115169
- WH (e and μ channels) gives 56 x SM exclusion with 35 pb⁻¹ at m_H = 120 GeV
- Includes 10% systematic uncertainty on signal and background and 11% on luminosity
- Assumes IP3D+SV1 will be usable for this analysis
- For 1 fb⁻¹ this translates roughly as a factor 5 improvement, i.e. exclude ≈ 10 x SM

Boosted channel sensitivity:

- Exclude 6.7 x SM at $m_H = 120 \text{ GeV}$ with 1 fb⁻¹ - see ATL_PHYS_PUB-2010-015
- Obtained by scaling 14 TeV numbers –
 room for optimization at Vs = 7 TeV
- Analysis selects p_T^H > 200 GeV
- WH(W->lv) most promising, followed by ZH(Z->vv)

- Boosted VH Status and Plans:
 - Work ongoing in SM group on commissioning jet substructure technique
 - See Adam's presentation in last week's SM plenary: http://indico.cern.ch/getFile.py/access?
 http://indico.cern.ch/getFile.py/access?
 <a href="contribld=0&resId=0&
 - Jet substructure note should be ready in 1-2 months
 - Work ongoing in parallel to provide b-tagging algorithm tuned for fat jet environment
 - Given infinite time, the plan would be to follow with measurements of g->bb and W/Z+bb with the substructure technique, and then VH(H->bb)
 - But we don't have infinite time! need to put effort into optimizing the boosted VH analysis for 7 TeV
 - Edinburgh group has started on this presentation next week but more effort will be needed

My view:

- We need to have results for Summer conferences:
 - To improve the ATLAS sensitivity at low mass follow the Tevatron mantra which says that "every channel counts"
 - Develop experience in the group on b tagging, WH reconstruction, setting limits and combining results – pave the way for later
 - Put H->bb on the map of useful channels
- The un-boosted channels seem to be in a better position for this –
 remember only 2-3 months left, analysis should be ≈ frozen end of May
- At the same time boosted VH has better sensitivity and must be our real goal for physics results in associated VH production this year
 - What could be shown from this channel in Summer?
- How do we organize ourselves to achieve both goals?

My proposal:

 Split the work so that some people concentrate on un-boosted analysis and some on optimizing boosted analysis and on helping to commission jet substructure method

8

Get results out for Summer and move on fully to boosted analysis

Un-boosted WH Analysis – Next Steps

- After the effort with comparing cut flows, we're ready to start producing results!
- The roadmap is clear:
 - 1. Study optimal event selection
 - Proposal: start from W/Z group's baseline selection
 - Mostly the same as used in cut flow comparison with some differences:
 - STACO instead of Muid muons and some differences in jet cleaning
 - 2. Evaluate sources of systematic uncertainty
 - 3. Improve analyses
 - Find ways to reduce most important systematics
 - Multivariate methods?
 - 4. Accumulate statistics, write note, get results approved
- After this: merge efforts into boosted analysis for another set of public results before the end of the year

Other ongoing issues

- Fast monitoring
 - We are not a priority channel for this...
 - But should be ready to produce code for running in TierO once the analysis cuts are well defined and stable
 - The monitoring analysis cuts will be set in stone
- ttH:
 - Ongoing see talk by Alistair today
 - Barcelona group ramping up on this channel
- VBF H->bb:
 - Ongoing see talk by Eric today
 - Eric reassessing channel potential and working together with jet trigger to find good strategy
- Anything else?

Fast Monitoring

- Idea is to receive early warning when there is something interesting in the data
 - − ...better than getting a late warning from the other side of the ring ☺
 - Not to make plots of control regions we have the regular monitoring for that
 - Not to do the analysis in real time no final corrections, systematic uncertainties etc
 - Note that not seeing a signal does not mean it is not there, and vice versa!...
- Implications are that it should be stable and robust selection focusing on signal region
- Several open technical/organizational questions at the moment:
 - Where to run: Tier0, CAF or CERN Tier1
 - Other Tier1/2/3 would require too much bandwidth for AOD/D3PD/DAOD transfer
 - What data format:
 - D3PD:
 - Serious complications from D3PD versioning and stability D3PDs not stable until long after data collection
 - D3PD size also a problem would need to be produced from recent AODs as they are produced
 - Which D3PD many different varieties and would require different analysis applications starting from different inputs
 - AOD:
 - Would need to implement analysis selection in Athena! (IWithin monitoring framework?)
 - Less versioning complications could use stable TierO cache used for production
 - Could produce DAOD for selected events would allow easy subsequent analysis, producing event displays etc
- When plans are more clear will need someone to implement/coordinate this for our group

Muon Object and MET Definition

- STACO Combined Muon
- Author=1 or 6
- MCP Quality Cuts for rel16
- MET Definition: MET LocHadTopo
 - ex = MET_LocHadTopo_etx + MET_MuonBoy_etx MET_RefMuonTrack_etx;
 - ey = MET LocHadTopo ety + MET MuonBoy ety MET RefMuonTrack ety;
 - MET = sqrt(ex2+ey2);

Preselection

- 1. Vertex Cuts
- N_{vtx} ≥ 1 with N_{tracks} ≥ 3
- 2. Jet Cleaning Cuts
- Reject Events with ≥ 1 loose bad jet
- Reject Events with ≥ 1 ugly jet
- 3. Muon PreSelection
- ≥ 1 offline Muon with p_T>15 GeV
- |z₀^{wrtpv}| < 10 mm for the 0th vertex
- 4. Trigger
- E4-G1: EF mu10 MG (seeded by L1 MU0)
- G2-I1 (up to run 167576): EF_mu13_MG (seeded by L1_MU0)
- I1 (from run 167607) I2 : EF_mu13_MG_tight (seeded by L1_MU10)

W → μν Selection

- 1. Preselection
- 2. One muon with
- p_T >20GeV
- |η|<2.4
- Isolation Σp_{ID}^{Cone0.2}/p_T < 0.1 (Tracks must come from selected vertex)
- Veto Events with 2nd cb muon with p_T>20GeV
- 3. Missing Energy based on MET_LocHadTopo
- E_TMiss >25GeV
- 4. Transverse Mass
- M₊ >40GeV

$Z \rightarrow \mu\mu$ Selection

- 1. Preselection
- 2. Two muons with the largest p_T which fulfill
- p_T >20GeV
- |η|<2.4
- Isolation Σp_{ID}^{Cone0.2}/p_T < 0.1 (Tracks must come from selected vertex)
- 3. Opposite Charge
- 4. Invariant Mass Cut
- 66<m_{μμ}<116GeV

Electron Channel Selection

Electron Object and MET Definition

- use v16 OTX check and only using final map for run 167521
- use simple combination of E of the cluster and η and φ from the track (unless the track has <4 SCT +Pixel hits)
- η-cuts should be performed with cluster coordinates for OTX, |η|<2.47, crack removal
 - More Details under: https://twiki.cern.ch/twiki/bin/view/
 AtlasProtected/ElectronsEnergyDirection
- MET Definition: MET_LocHadTopo
 - To be corrected for energy scaling/smearing

Preselection

- 1. Vertex Cuts
- N_{vtx} ≥ 1 with N_{tracks} ≥ 3
- 2. Jet Cleaning Cuts
- Reject Events with ≥ 1 loose bad jet
- Reject Events with ≥ 1 ugly jet
- 3. Electron PreSelection
- ≥ 1 offline electron with p_T>15 GeV with egammaPID::Medium WithTrackMatch
- 4. Trigger
- Period ABCDE1-E3 (up to and including run 160879): L1_EM14
- · Period E4-I2: Trigger EF e15 medium

W → ev Selection

- 1. Preselection
- One electron with
- · egammaPID::Tight_WithTrackMatch
- Author 1 or 3
- p_T >20GeV
- |η|<2.47 excl. 1.37 < |η| < 1.52
- Veto Events with 2nd medium electron with p_T>20GeV and electron isolation: 4 GeV on corrected E_T^{cone20}
- 3. Missing Energy based on MET_LocHadTopo
- E_TMiss >25GeV
- 4. Transverse Mass
- M_T >40GeV

Z → ee Selection

- 1. Preselection
- 2. Two electrons with the largest p_T which fulfill
- Author 1 or 3
- egammaPID::Medium_WithTrackMatch
- p_T >20GeV
- |η|<2.47 excl. 1.37 < |η| < 1.52
- 3. Opposite Charge
- 4. Invariant Mass Cut
- 66<m_{ee}<116GeV

Tight Selection and Jet Definition

1. Additional Tight Selection for W/Z+jets

 Electrons: Require additional relative Isolation (on corrected isolation energy):

 $E_{T}^{cone20,Corrected}/P_{T}^{ele} < 0.2$

- · Note: cut value need to be adjusted
- this is not yet in the WZ-D3PDs but can be calculated via el Etcone20
- https://svnweb.cern.ch/trac/atlasusr/browser/mfiascar/WjetsD3PDskimming/ trunk/IsoCorrection.cox
- https://svnweb.cem.ch/trac/atlasusr/browser/mfiascar/WjetsD3PDskimming/ trunk/lsoCorrection.h
- float El_Etcone20_pt_corrected = isoTool.correctElectronIsolation (m_el_eta->at(i), m_el_pt->at(i), m_el_Etcone20->at(i));
- |d₀^{wrtPV}| < 0.1mm
- · W-Channel: Reject events with second lepton
 - Isolated, medium electron with p_r>20GeV
 - Combined muon with p_r>20GeV
- · Currently no JVF Cut

2. Overlap Removal

- · Lepton/Jet Overlap removal
 - Remove closest jet to a well reconstructed W/Z decay lepton if this jet is closer than ΔR<0.2
 - Remove event if jet with p_T ≥ 20 GeV is closer than 0.6 to signal lepton
- Jet-Isolation
 - Apply no Jet Isolation, but apply uncertainties from jet/etmiss group for close-by jets

4. Jet Selection

- Collection: AntiKt jets build from topoclusters
 - Size: results from various jet sizes: 0.4 and 0.6 (add more as calibration get available)
 - · Priority: 0.4 Cone Size
- Scale Definition: Use EM+JES jets with offset, and beam spot corrections until GCW and LCW get available
- Remove Jets (which are no signal leptons) with p_T ≥ 20 GeV and
 - Medium Bad Jets Definition (= tight+ in rel15)
 - Negative Energy
- Jet threshold: Jets are considered if p_T ≥ 30 (Baseline) and 20 GeV (Optional after careful studies)
 - both cuts should be applied through out the full analysis. Keep in mind that the 20GeV might only be doable for the 2010 data
- Rapidity Rage: |y| < 4.5

5. B-Jet Selection

- Collection: AntiKt jets build from topoclusters with cone-size 0.4
- Scale Definition: Use EM+JES jets with offset, and beam spot corrections
- P_T ≥ 30 GeV (Baseline) and P_T ≥ 20 GeV
- |η| < 2.1
- SVO tagger: Cut at 5.85 in r16
- use BTagging Calibration Tool to reweight MC using SF provided by b-tagging group