H->bb: plans and EPS post-mortem

Ricardo Gonçalo (RHUL)
HSG5 H->bb weekly meeting, 26 July 2011

Low mass channels

General Impressions

- Very good that we presented these results for several reasons:
 - We showed it can be done!... (first time for the LHC) And now we have baseline to build on
 - It was nicely done in several ways data-driven estimates of worst backgrounds etc
 - We showed that boosted VH is within reach boosted VH plot got lots of attention! Now we need to deliver on the promise
 - Important to have a cross check for H->γγ
 - Results included in ATLAS SM Higgs combination
- What is missing:
 - Real sensitivity we're only at 10-15 times the SM
- The way forward:
 - Space for improvement in WH/ZH
 - Include other channels
 - Try to move higher in mass reach (but cannot do much)
 - See next slides...
- Concerns
 - Current results: small screw-up in limits (obs vs exp) needs to be understood
 - Near future: not much time! Waiting to see how much low mass excluded by Tevatron
 - Sociological: need to keep focused on this need to get activity going again after EPS madness

Post-mortem of WH/ZH results

- M_{bb} resolution is extremely poor
 - Should try to get a peak, but this needs work on jet (and b-jet) energy scale
 - Try to think about this together with jet/ E_T^{miss} people
 - Could we improve other things in jet reco to improve m_{bb} ?
 - In ZH->IIbb could try to use II vs bb p_T balance to do in-situ calibration?
- B-tagging systematic uncertainty dominates by far
 - 16% vs 7-9% for JES and ≈1-2% others
 - Should be possible to improve this, since the error is dominated by the statistics used in b-tagging studies
 - Would improve limits by up to 25-30%
 - Think about this with b-tagging people
- Limits: must get help from roostats experts to understand the difference between expected and observed

- WH cuts on exactly 2 jets
 - A lot of signal is lost there can it be improved?
- WH backgrounds:
 - Top and W+jets background estimate using simultaneous template fit to m_{bb} sidebands (<80GeV and 140-250GeV)
 - Probably should try to also constrain jet energy scale from this fit
 - JES changes m_{bb} distribution and could affect normalization of backgrounds
 - In light of H->WW results, should move upper sideband to e.g. 160-250GeV at m_H=150GeV, σ*BR already 1/10 of value at 115GeV, but H->WW and H->bb resolution is very broad
 - Can top background be reduced further?
- ZH background from Z+bb seems irreducible – can it be improved?

WH/ZH analysis plans

- We can still try to improve cut based analysis:
 - Get a m_{bb} peak, improve b-tagging systematics, constrain JES in WH, etc...
 - Reduce top background in WH:
 - Try using looser leptons or extending lepton id to forward region to veto tt->lvlvbb
 - Loosen jet η cut (at $|\eta| < 2.5$ now) and maybe p_{τ} cut to veto tt->lvjjbb/jjjjjbb
 - But... must keep pileup and JVF in mind
- Reduce Z+bb background in ZH? Would probably need a clever new variable like cos*θ
- Then clearly we should include multivariate methods
 - Used intensively by Tevatron
 - e.g. use NN to target top background may allow to relax 2-jet cut in WH
 - NN may also help in rejecting Z+bb background in ZH?
 - See if MV method can improve existing b-tagging
- Add more channels!
 - Can something be done with ZH->vvbb? Very good channel in Tevatron, but complex and mature analysis
 - Academia Sinica group plans to work on this But trigger is the crucial part
 - Boosted VH is clearly the next thing to push! WH->lvbb and ZH->llbb, but also ZH->vvbb
 - UCL and Edinburgh working on this should be enough manpower now, but need to get results soon
 - ttH has been slowly building up in Glasgow will push for this to happen together with Chris

Technical issues

- ZH benefitted from HSG2 DAOD skims, but WH suffered from painful running on data
- Need to push for WH skims will follow up with Kostas & Co.
- In contrast to other groups we don't have an error due to LO/NLO on the signal. Need to get NLO signal MC
- Also need to re-do WH samples at 110 and 140 since the current ones were done with a lepton filter by mistake
- Should also other mass points:
- Get 135 for WH and ZH since we have 130 and 140
- Should we try to extend to 150 GeV in light of H->WW results? Almost no sensitivity, but could prove useful later

Limits in the low mass range

Impressive sensitivity to a Higgs boson in the mass range 135-200 GeV

Excess in H→ WW → IvIv leads to weaker-thanexpected limits near M_H = 130-160 GeV

