$ZH \rightarrow IIb\bar{b}, WH \rightarrow I\nu b\bar{b}$

"Searches for a Standard Model Higgs boson decaying to a *b*-quark pair with the ATLAS detector at the LHC"

Paul Thompson (on behalf of the H o b ar b group)

University of Birmingham

Introduction

- Analysis of low mass Higgs channels ZH and WH
- ZH uses $IIb\bar{b}$ final state. This is same as high mass $H\to ZZ\to IIb\bar{b}$ analysed in HSG2 (see previous talk from Carl).
 - Use exactly the same selection, corrections etc. but look for signal above background in $m_{b\bar{b}}$ spectrum. Many control regions similar.
- ullet WH ightarrow $I
 u bar{b}$. Benefits from higher production cross section, although larger top background

m_H	$\sigma(WH)$	$\sigma(ZH)$	Branching Ratios
(GeV)	(pb)	(pb)	H o bb
115	0.7546	0.3598	0.705
120	0.6561	0.3158	0.649
125	0.5729	0.2778	0.578
130	0.5008	0.2453	0.494

Lepton Selection

Electrons

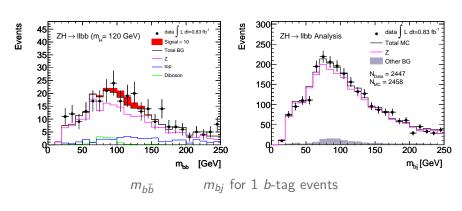
- ullet Medium(tight) with $p_T > 20(25)$ GeV and $|\eta| < 2.5(2.47)$ for Z(W)
- Include crack region
- Object Quality cuts (including removal of bad FEBs in MC)
- Track isolation: $\sum_{tracks}/p_T < 0.1$ within $\Delta R = 0.2$
- For WH: Impact parameter cut $d_0 < 0.1 \text{ mm}$
- Smearing and efficiency corrections from Egamma EPS recommendations

Muons

- STACO(Muid) combined/tagged with $p_T > 20(25)$ GeV and $|\eta| < 2.5(2.4)$ for Z(W)
- Recommended MCP cuts
- Track isolation: $\sum_{tracks}/p_T < 0.1$ within $\Delta R = 0.2$
- Impact paramter cuts $d_0 < 1(0.1) \text{ mm}$ for Z(W)
- Impact parameter cut against cosmics $z_0 < 10 \text{ mm}$
- Scaling/smearing and efficiency correction from MCP EPS recommendations

Event Selection

- Common selection
 - Jets and MET object reconstruction as in $H \rightarrow ZZ \rightarrow Ilbb$ analysis
 - \bullet Common GRL, single lepton triggers, vertex requirements, jet cleaning, \ldots
 - Difference in overlap removal for WH: μ -jet Muons with $\Delta R < 0.4$ to a selected jet are removed
- \circ ZH \rightarrow IIbb
 - Exactly 2 leptons with $76 < m_{II} < 106 \text{ GeV}$
 - Opposite charge required for muons
 - $E_T^{miss} < 50 \text{ GeV}$
 - b tagger IP3D+SV1, cut > 1.55 (B-Tagging scale factors/errors for advanced taggers available for first time)
 - At least 2 jets, exactly 2 b tagged
- $WH \rightarrow l\nu bb$ selection
 - Exactly 1 lepton and $M_T > 40$ GeV
 - $E_T^{miss} > 25 \text{ GeV}$
 - b tagger IP3D+SV1, cut > 1.55
 - Exactly 2 jets and both b tagged (reduce top)


Datasets

- (ZH) Runs from period B2-H1 using HSG2 Dilepton DAODs
 - \bullet Corresponds to 0.83 fb⁻¹
- (WH) Runs from period D1-G5
 - Corresponds to 0.675 fb⁻¹ both will include data up to TS for EPS
- Comparing with mc10b Monte Carlo (50 ns)
- $ZH \rightarrow llbb$, $WH \rightarrow l\nu bb(m_H = 115, 120, 125, 130 \text{ GeV})$ using Pythia $(m_H = 110, 140 \text{ GeV} \text{ now available})$
- Z (Alpgen+HFOR)
- W (Alpgen+HFOR)
- $t\bar{t}$, single top (MC@NLO)
- $ZZ \rightarrow IIqq$, $WZ \rightarrow qqII \ I\nu qq \ (MC@NLO)$, $WW \rightarrow I\nu qq \ (HERWIG)$
- QCD background
 - ZH multi-jet electron from loose-loose no medium data scaled, multi-jet muon negelected
 - WH electron and muon from anti-isolation data scaled

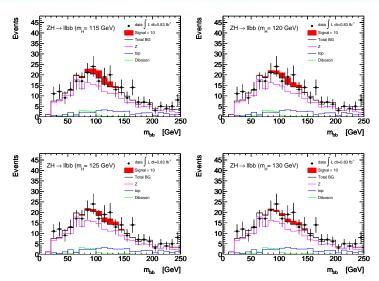
ZH Backgrounds

- Z+jets. $Z+b(b\bar{b})$ dominates. Use MC to describe shape. Set normalisation using control region $m_{bb}<80$ GeV. Cross check using Z+ 1-b tag sample.
- Top
 Use MC. Control region from m_{II} sidebands, b tagged jets, high/low
 MET (same as $H \rightarrow ZZ$ analysis)
- Multijet As per $H \rightarrow ZZ$ analysis. Fit m_{ee} templates obtained using loose-no medium electrons; negligible in muon channel
- Diboson
 ZZ, WZ from theory

ZH: Z+jets Control

Z background template normalised to region $m_{b\bar{b}} < 80$ GeV m_{bb} : Z MC scaled by 0.84 \pm 0.11 m_{bj} : MC consistent with data

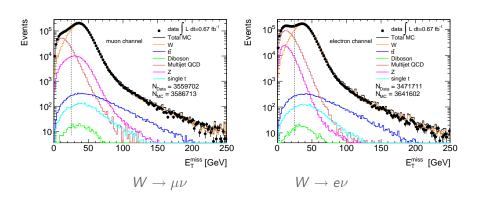
Preliminary Systematics


Same as $H \rightarrow ZZ$ except signal and Z+jets

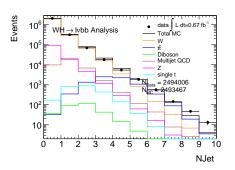
- Luminostiy uncertainty of 4.5% (value/syst will change before EPS)
 - \bullet Applied (correlated) to all samples except Z where constrained from data
- Signal Cross Sections uncertainty of 5% (PDF, α_s , μ_f , μ_r)
- \circ Z+jets
 - From statistical error from low m_{bb} control region 14%
 - Apply reco/ID systematics as shape variations only
 - Alpgen/Pythia as shape uncertainty
- Top: 9% theoretical uncertainty
- ZZ: 11% uncertainty + MC@NLO/Pythia as shape uncertainty
 - 5% combined scale/PDF uncertainty \oplus 10% ucertainty from comparing MC@NLO and k-factor-scaled Pythia results
- 11% for WZ, and 100% for QCD

ZH: Effect of Systs. on Signal

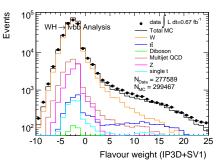
Source of Uncertainty	Effect		
	$m_H=115 \; { m GeV}$	$m_H=130 \; { m GeV}$	
Electron Energy Scale	< 1%	< 1%	
Electron Energy Resolution	<1%	< 1%	
Muon Momentum Resolution	<1%	<1%	
Jet Energy Scale (JES)	7%	5%	
Jet Energy Resolution	1%	1%	
Missing Transverse Energy	1%	<1%	
b-tagging Efficiency	16%	17%	
b-tagging Mis-tag Rate	<1%	<1%	
Electron Reconstruction Efficiency	1%	1%	
Muon Selection Efficiency	1%	1%	
Lumi	4.5%	4.5%	
Cross section	5%	5%	

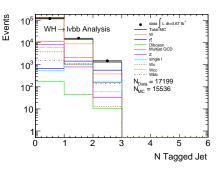

ZH: Preliminary Results mbb

ZH Results Table


Source	expected number				
Z+jets	181.98	\pm	5.53 (stat.)	土	24.10 (sys.)
$W+{\sf jets}$	0.00	\pm	0.00 (stat.)	\pm	0.00 (sys.)
Тор	39.70	\pm	3.17 (stat.)	\pm	8.35 (sys.)
Multijet	0.99	\pm	0.33 (stat.)	\pm	0.99 (sys.)
ZZ	11.23	\pm	1.34 (stat.)	\pm	2.87 (sys.)
WZ	0.89	\pm	0.23 (stat.)	\pm	0.28 (sys.)
Total background	234.79	土	6.53 (stat.)	土	26.43 (sys.)
Data	252				
Signal $m_H = 115 \text{ GeV}$	1.53	土	0.06(stat.)	土	0.29 (sys.)
Signal $m_H=120~{ m GeV}$	1.26	\pm	0.05(stat.)	\pm	0.24 (sys.)
Signal $m_H=125~{\rm GeV}$	1.15	\pm	0.04(stat.)	\pm	0.22 (sys.)
Signal $m_H = 130 \text{ GeV}$	0.81	\pm	0.03(stat.)	\pm	0.15 (sys.)

$WH: E_T^{miss}$ in W Events


'Multijet QCD' background determined from data gives a good description of selected data at low values of $E_{T}^{
m miss}$

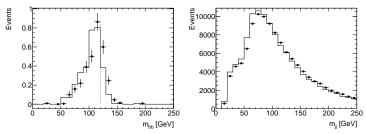

WH: W+jets

Description of $W+{\rm jet}$ multiplicity reasonable. Analysis looks at events with $N_{\rm jet}=2$

WH: b tagging

IP3D+SV1 weight for $N_{\text{iet}} = 2$ events

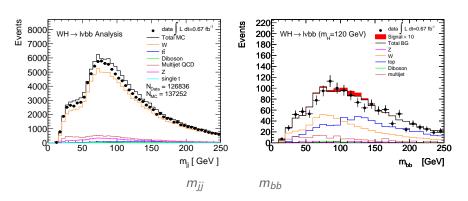
Number of b-tags (> 1.55)


Flavour weight similarly described for W sample as was for Zb-jet multiplicity also reasonably well described Note that for W channel the 1 b-tag sample is mainly Wcj and Wll and cannot be used as control on Wb

WH Backgrounds

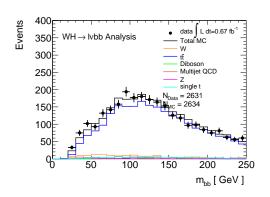
- $W+{
 m jets}$. Low $W+b\bar{b}$ MC stats. Use data driven method - m_{jj} from data as template. Set normalisation using control region $m_{bb} < 80$ GeV (where Wbb contributes).
- Z+jets.
 Use same normalisation of MC as measured in Z+jets control region (see ZH analysis)
- Top
 Use MC. Control region from m_{bb} for 3 jet events
- Multijet
 Data templates from QCD enhanced samples (anti-isolation)
- Diboson WW, WZ from theory

m_{bb} Reconstruction


- The m_{bb} distribution in $H \to ZZ$ is scaled by 1.05 to improve m_Z reconstruction. Therefore, also for ZH (to improve m_H).
- For WH the m_{ii} distribution is used to model W+jets background.
 - Scale $1.05 \times m_{bb}$ and use $1.05 \times m_{ij}$ histo for modelling background
 - Last week ran all scaling off for W_H
- Scaling improves m_H reconstruction. W+jets template scaled

 $m_{bb}(m_H=120 \text{ GeV})$ unscaled and scaled

 m_{jj} from W MC

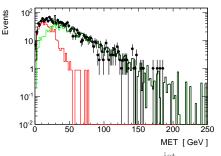

WH: W+jets Control

Data driven W background templates from untagged m_{jj} normalised to region $m_{b\bar{b}} < 80~{\rm GeV}$

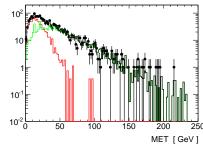
Light data template scaled by 0.00546 \pm 0.00052

WH: Top Control

Control region for top m_{bb} for 3 jet events Normalisation and shape OK

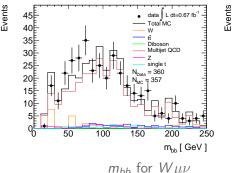

QCD Background Estimation

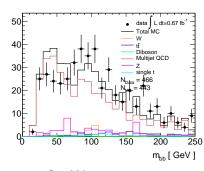
For both electrons and muons try two QCD enhanced data selections


- Anti-isolation selection $0.1 < p_T^{\text{cone}}/p_T < 0.5$ (default).
- Anti- d_0 selection. $0.1 < d_0 < 1 \text{ mm (check)}$.
- Determine QCD Background normalisation for different jet multiplicites etc. by fitting MET distribution (before MET cut) with 2 contributions: MC and data anti-isolation. These describe high and low MET regions respectively.
- QCD control region:
 - MET < 25 GeV and $M_T < 40$ GeV
 - Look at invariant mass m_{bb} in this range

QCD Background for $N_b^{ m jet}=2$

- For events with $N^{\text{jet}} = N_b^{\text{jet}} = 2$ fit MET distribution (before MET cut) with two components: QCD dominated template(red), electroweak Monte Carlo(green)
- Reasonable description of MET.
 - Scale factors $\rho_{\mu} = 0.87 \pm 0.06$, $\rho_{e} = 0.37 \pm 0.02$


MET for $W\mu\nu$ and $N_b^{\rm jet}=2$



MET for $We\nu$ and $N_h^{\rm jet}=2$

Multijet Control Region

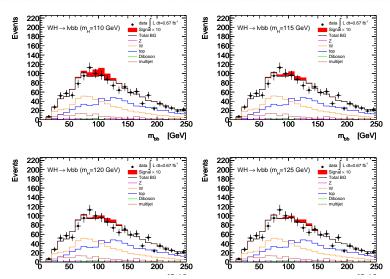
- Look at invariant mass m_{bb} in QCD dominated control region: MET< 25 GeV and M_T < 40 GeV
 - Model QCD using anti-isolation sample (check using anti- d_0)
 - Use scale factor as determined by fit to MET
- Reasonable description. Uncertainty of 50% applied

 m_{bb} for $We\nu$

 $a\nu$ m_{bb} for view

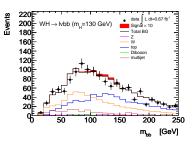
Higgs Approval Meeting, 4th July 2011

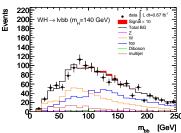
WH Preliminary Systematics


Same as ZH plus additional W+jets

- Luminostiy uncertainty of 4.5% (value/syst will change before EPS)
 - \bullet Applied (correlated) to all samples except Z where constrained from data
- Signal Cross Sections uncertainty of 5%
- W+jets
 - From statistical error from low m_{bb} control region 21%
 - Use MC m_{ii} template instead of data as shape uncertainty
- Z+jets
 - See ZH
- Top: 9% theoretical uncertainty
- ZZ: 11% uncertainty + MC@NLO/Pythia as shape uncertainty
 - 5% combined scale/PDF uncertainty \oplus 10% ucertainty from comparing MC@NLO and k-factor-scaled Pythia results
- 11% for WZ, and 50% for QCD

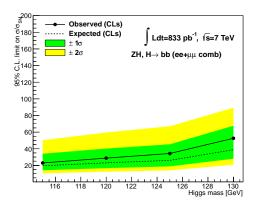
WH: Effect of Systs. on Signal


Source of Uncertainty	Effect		
	$m_H=115~{ m GeV}$	$m_H=130 \; { m GeV}$	
Electron Energy Scale	< 1%	< 1%	
Electron Energy Resolution	< 1%	< 1%	
Muon Momentum Resolution	< 1%	< 1%	
Jet Energy Scale (JES)	< 1%	3%	
Jet Energy Resolution	1%	1%	
Missing Transverse Energy	1%	2%	
b-tagging Efficiency	16%	17%	
b-tagging Mis-tag Rate	< 1%	<1%	
Electron Reconstruction Efficiency	1%	1%	
Muon Selection Efficiency	< 1%	1%	
Lumi	4.5%	4.5%	
Cross section	5%	5%	


WH: Preliminary Results mbb

Higgs Approval Meeting, 4th July 2011 Paul Thompson

WH: Preliminary Results mbb



WH Results Table

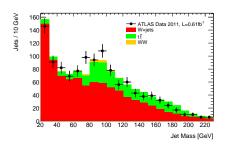
Source	expected number				
Z+jets	23.46	\pm	2.18 (stat.)	\pm	7.54 (sys.)
$W+{\sf jets}$	516.70	\pm	1.95 (stat.)	\pm	110.66 (sys.)
Тор	615.47	\pm	11.32 (stat.)	\pm	136.73 (sys.)
Multijet	113.08	\pm	7.70 (stat.)	\pm	56.54 (sys.)
WZ	10.36	\pm	1.44 (stat.)	\pm	2.49 (sys.)
WW	3.09	\pm	0.74 (stat.)	\pm	0.83 (sys.)
Total background	1282.16	\pm	14.09 (stat.)	土	191.03 (sys.)
Data	1245				
Signal $m_H = 115 \text{ GeV}$	3.58	土	0.21(stat.)	土	0.62 (sys.)
Signal $m_H=120~{ m GeV}$	3.16	\pm	0.17(stat.)	\pm	0.56 (sys.)
Signal $m_H=125~{ m GeV}$	2.76	\pm	0.14(stat.)	\pm	0.52 (sys.)
Signal $m_H = 130 \text{ GeV}$	2.18	\pm	0.11(stat.)	\pm	0.41 (sys.)

ZH Preliminary Limits

• Limits obtained using CL_s and the asymptotic formula

WH Preliminary Limits

- Issues with statistical fluctuations in backgrounds (MC stats) causing problems with stability of limits.
 - ullet JES systematic inserted by hand as $\pm 30\%$


Boosted Higgs Studies

- Approach: take advantage that at high $p_T^H > 200$ GeV, although only 5% of signal the b quarks from $H \to b\bar{b}$ are highly boosted and different to backgrounds.
- Jet substructure technique used in Higgs senstivity predictions at low mass in ATLAS publication ATL-PHYS-PUB-2010-015
- At high p_T possible to resolve "sub-jets" from within a (wider) jet.
 - Cambridge-Aachen algorithm with R = 1.2
 - ullet Undo jet algorithm steps until large drop in mass $(\sim 1/3)$
 - Remaining components reclustered with smaller R value
 - 3 highest p_T sub-jets form heavy particle candidate (discriminator is the jet mass). b-tagging applied to reject light backgrounds.
- Indications are jet substructure at ATLAS is understood ATLAS-CONF-2011-073

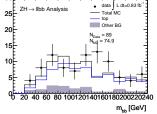
WH Boosted Higgs 2011 data

- ullet Data periods D and G, 0.61 fb $^{-1}$
- Select $We\nu$ and $W\mu\nu$ decays using cuts similar to WH analysis and W/Z selection
- ullet Look at $p_T^W >$ 200 GeV and $p_T^{
 m jet} >$ 180 GeV
- Calibration from Monte Carlo applied
- Look at jet mass
- No b-tagging applied

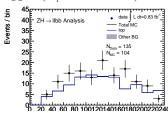
WH Boosted Higgs Jet Mass

- Monte Carlo(and data) show peak from t\(\overline{t}\) events where other W
 decays hadronically.
 - W+jets has no such peak
 - Difference in data/MC around peak. Useful sample to understand calibration.
- Plot and text added to INT note

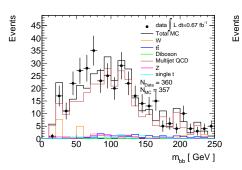

Summary

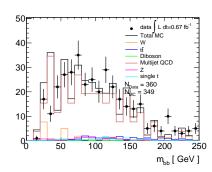

- Advanced b-tagging calibrations available in ATLAS for first time this week:)
- Implemented b-tagging SFs results very similar to previous
- Resolving final issues with statistical errors of MC in preliminary WH limits
- First studies of boosted analysis and jet substructure presented. Observed *W* peak in data consistent with top MC.
- Jet Mass plot added to CONF note as indication of progress towards optimised, more competitive limits from the VH channels.
- Implemented comments from Ed Board to first draft of INT note.
 Second(Third) draft circulated last Friday(Saturday) with results shown today.

Back Up


Top Control Region

- $Z \rightarrow II$ side bands:
 - $60 < m_{II} < 76 \text{ GeV}$ and $106 < m_{qq} < 150 \text{ GeV}$
- MC above data but agree within errors
 - Syst error on tagged data: 28%
- Hence MC not scaled at present

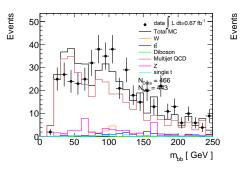

tagged ($E_T^{miss} > 50 \text{ GeV}$)

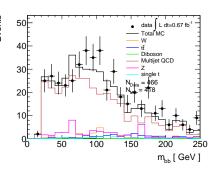


Higgs Approval Meeting, 4th July 2011

Multijet Control Region - Muons

- Look at invariant mass m_{bb} in QCD dominated control region: MET< 25 GeV and M_T < 40 GeV
 - Model QCD using anti-isolation sample, check using anti- d_0
- Dependence on QCD sample. Both reasonable description. Use anti-isolation with 50% uncertainty

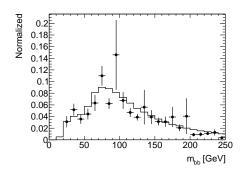



 m_{bb} , Multijet from anti-isolation

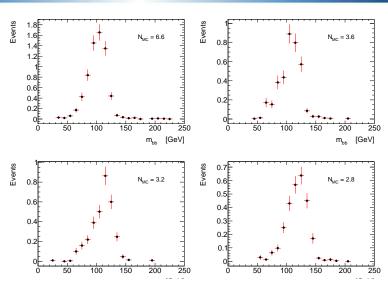
 m_{bb} , Multijet from anti- d_0

QCD Control Region - Electrons

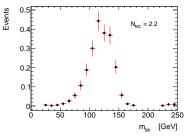
- Look at invariant mass m_{bb} in QCD dominated control region: MET< 25 GeV and M_T < 40 GeV
 - Model QCD using anti-isolation sample, check using anti- d_0
- Dependence on QCD sample. Both reasonable description. Use anti-isolation with 50% uncertainty

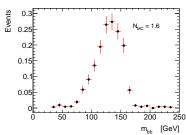


 m_{bb} , Multijet from anti-isolation


 m_{bb} , Multijet from anti- d_0

WH: Backgrounds


- ullet For WH, $Wbar{b}$ smaller background than top and MC statistics low
 - Default take shape from untagged m_{jj} data, and normalise this to number of data events $m_{bb} < 80 \text{ GeV}$
 - \bullet Shapes of untagged and tagged m_{ii} distributions consistent within errors



WH: mbb

WH: m_{bb}

