

LIP – Joining Proposal

Portuguese ATLAS Team

National group: LIP (Lisbon, Coimbra, Minho), IST, FCUL, FCTUC, U. Minho, CFNUL CEFITEC/UNL, INESC, CFMC, Adl engineer training program

Current Portuguese Contributions to **ATLAS** Jets HLT

ATLAS Roman Pot DCS and HLT

P-M 0.00

L-M -0.02

L-M-0.03

Resolver 6.529

0.000

8.000

LVDT -6.535

Motor 6 529

LVDT 6 473

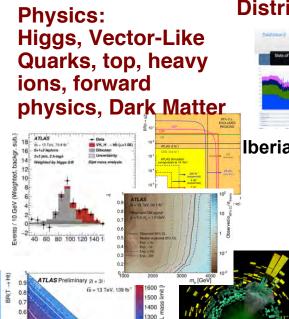
R-M 0.00

L-M10.05

L-M-0.06

P-M 0.00

3


Resolver 5720

Motor 5720

LVDT 5 703

LVDT -6 024

Motor

1200

1100 8

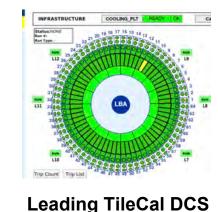
1000

900

 $BR(T \rightarrow Wb)$

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9


Distributed computing

Calorimete

Towers

Iberian Cloud Coordination

L1 J75 & AFP L1xxx

TrigJetRec

HLTJETHVDO

Trig AFPSiTrkReco

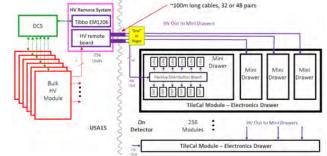
TrigAFPJetAIITE

EFBtagFexSplit EFID

HLT::FexAlgo

HLT:: Hypo

HLT: FexAlgo


TileCal Upgrade HV distribution system

Tools FP RawDataProviderTool

AFP Raw2DigTool

AFP Sidl ocRecoTool

AFP ProtonTransportTool

Co-leading ARP DCS

HGTD Involvement: HV Patch Panels

Producing HV patch panels CERN group:

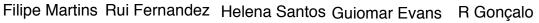
- 16 patch panel boxes located around the calorimeter perimeter
- Routing of High Voltage to HGTD detector
- Filtering out AC noise
- Preliminary layout done and prototype tested
- Contributing to Specifications Review (SPR) document
- Ricardo coordinating Patch Panels (L3)
- Team: 2 engineers, 1 academic

Luís Lopes Orlando Cunha Ricardo Gonçalo

ATLAS	Technical Specificat	ion of the High Vo	ltage System
LAS Project Document	Institute Document No. CERN	Created:	Page: 1 of 31
2.2		Modified:	Rev. No. 1.0
This document d	Abstract lescribes the specifications for the l	IGTD HV voltage	supply system.

DCS and Interlocks

- HGTD DCS ongoing work: Filipe:
 - Contributed to DCS Specifications Review document
 - Working on DCS temp. sensor setup and HV DCS Collaborating with student from Morocco (Yassine)
 - Rui:
 - Adapting ITk solution to read DCS data through FELIX
- Interlocks (Helena, Guiomar):


 - Planning HGTD interlock from ITk solution Guiomar will contribute to electronics (HV protection signal for HGTD and Pixels)
- Team: 2 engineers, 1 researcher, 2 academics

	HGTD DCS Requirements Docume	ent	ATLAS Doc.: AT2-G-ES-00 EDMS ld: 2648
2	ATLAS		CERN
3		ATLAS Phase-II Upgrade Project	
*		D DCS and Intents Document	
		Abstract	
		the High Granularity Timing Detector	oring, the Detector Control System or (HGTD) to be installed in ATLAS (A
		the High Granularity Timing Detector	
	(DCS), and the Interlock system for Toroidal LHC ApparatuS) for Run 4	the High Granularity Timing Detecto	
	(DCS), and the Interlock system for Toroidal LHC ApparatuS) for Run 4	ment AT2-G-ES-0013 2648566 https://edms.cern.ch/do 1.0 June 2, 2021	r (HGTD) to be installed in ATLAS (A
	HGTD DCS Requirements Docu ATLAS Doc: EDMS Id: EDMS Id: EDMS Un: Version: Created:	ment AT2-G-ES-0013 2648566 https://edms.cern.ch/do 1.0	r (HGTD) to be installed in ATLAS (A

© 2022 CERN for the benefit of the ATLAS Collaboration

this article or parts of it is allowed as specified in the CC. BY.4 0 licens

Electronics: Altiroc

- Characterization of Altiroc
 - Installing a test setup at LIP following very useful visit to Omega laboratory (thanks!)
 - Previous experience with Omega ASICs and frontend electronic design & production
- Team: 1 engineer (Rui)

(with support from senior engineer Miguel and 2 academics)

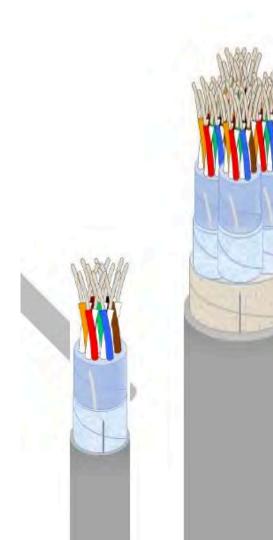
Rui Fernandez

Miguel Ferreira Pedro Assis Ricardo Gonçalo

Other local capabilities: Mechanics

Mechanical workshop at LIP-Coimbra has a long experience in producing instruments and structures for various experiments, e.g.:

- Proto-Dune laser calibration periscope
- SND (SHIP) support structures
- HADES TOF detector & support
- TileCal optical fibre assembly
- Brain TOF-PET tomograph


Can provide help in construction or design if required

Other possible contribution: HV Cables

- We are currently responsible for the production of the upgraded TileCal HV distribution system, to supply HV to 10k PMTs
- Similar requirements as for HGTD HV
- 100 m long cables from USA15 to detector: 32 or 48 pairs
- Voltage: average 750 V ± 0.5 V (up to 900 V)
- Current: 400 µA
- Cable prototype (48 pairs) exists:
- Ø 0.4 mm wires; Ø 16.5 mm cable

Team involved in HGTD

- 9 people at various levels of commitment
- About 3 FTE in total
- Expect future engagement from students
 (Qualification Tasks, etc)

R. Gonçalo, academic, coordinating effort

Luís Lopes, engineer: mechanics

Orlando Cunha, engineer, Patch Panel electronics

Filipe Martins, engineer, DCS

Helena Santos, researcher, Interlock

Guiomar Evans, academic, Interlock board design

Rui Fernandez, engineer, DCS firmware and ALTIROC tests

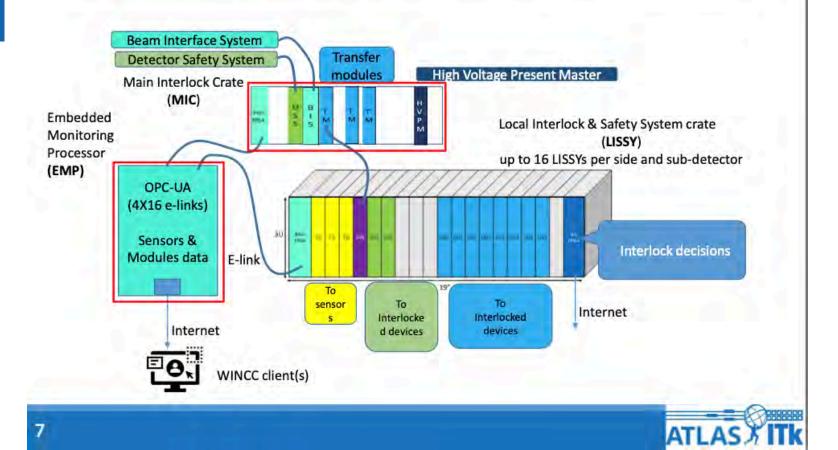
Miguel Ferreira, engineer, electronics board design

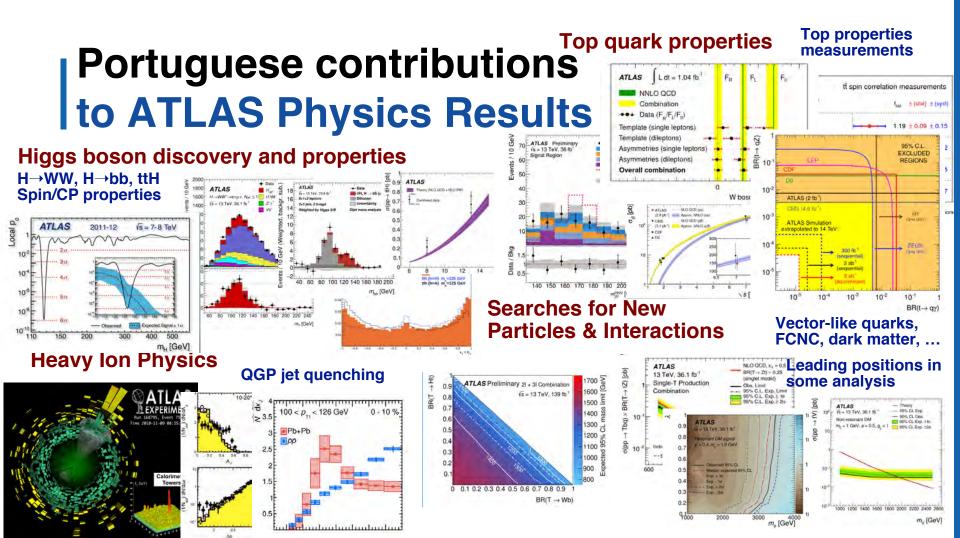
Pedro Assis, academic, electronics

HGTD Joining Proposal – Summary

- LIP team contributing or starting to contribute in Electronics and DCS tasks
 - Electronics: HV (patch panels), ASIC (tests)
 - Lumi/DAQ/DCS: DCS and Interlocks
- Expected contribution to CORE costs: between 150 and 300 kCHF
 - Details being discussed need to change MoUs (to be negotiated with funding agency) to move funds allocated to HTT
- Several other possible contributions using LIP facilities in cable production and mechanics design or part production

I nanks


Acknowledgments



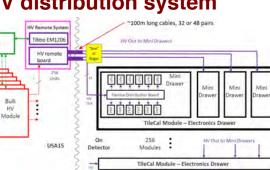
Backup

The ITk Interlock elements in the production system

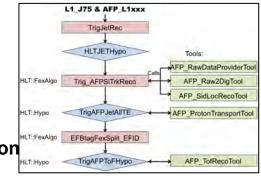
Current Portuguese Contributions to **ATLAS**

ATLAS Roman Pot DCS and HLT

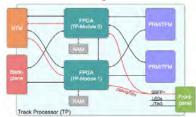
Distributed computing


Iberian Cloud Coordination

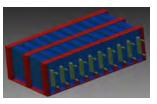
TileCal Upgrade **HV** distribution system


DCS

.....


Leading TileCal DCS

Jets HLT



Trigger Upgrade: HTT DCS, simulation, mezzanine production

Co-leading ARP DCS HGTD HV patch panels

