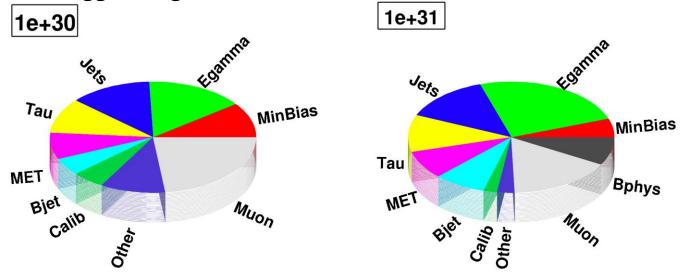


HIGGS TRIGGER Menu


Higgs Working Group Meeting 27 May 2010

Ricardo Gonçalo Royal Holoway University of London

Physics Menu

- Menu on the drawing board in particular prescales not yet known!
 - Status (automatically generated from nightly, search a different rel_X if invalid):
 - <u>http://atlas-</u> trigconf.cern.ch/nightlies/display/release/15.6.X.Y.Z/project/CAFHLT/nightly/rel_1/name/Test_pp_v1_ 15.6.9.4.1/
 - To be used between 10^{30} cm⁻²s⁻¹ and 10^{32} cm⁻²s⁻¹ (until end of this year)
 - There will be other opportunities to update the menu during the year, but not many
 - Final approval next week for deployment sometime in June
- Purpose of this talk is to **discuss** needs & constraints of each analysis before request from the Higgs WG goes to menu coordination

Higgs Requests

Higgs Trigger Gang

Higgs Group	Channel	Contact Person
HSG1	Η->γγ	Li Yuan
HSG2	H->4	Diego Rodriguez
	H->2l2tau, H->2l2nu and H->2l2b	Paul Thompson
	HZ (H->invisible)	Sylvie Brunet
HSG3	H->WW (gg, VBF, WH, ttH, inv.)	Gemma Wooden
HSG4	H->ττ leptonic and lep-had final states	Matthew Beckingham and Henrik Nilssen
	H->ττ hadronic final states	Stefania Xella
HSG5	ttH (H->bb) semileptonic	Catrin Bernius
	ttH (H->bb) hadronic	Michael Nash
	H+ (light, hadronic tau)	Martin Flechl
	H+ (light, leptonic tau)	Arnaud Ferrari
	H+ (heavy)	Martin zur Nedden

HSG1: H -> **下下**

Li Yuan

- $\mathcal{L} = 10^{30}$ to 10^{31} cm⁻²s⁻¹:
 - g20_loose primary trigger (7 Hz⁽¹⁾ 15 Hz⁽²⁾ at 10³¹ cm⁻²s⁻¹)
 - 2g20_loose backup trigger: will become primary trigger when needed (>10³² cm⁻²s⁻¹ ?)
 - g20i_loose supporting trigger: study isolation at Level 1
 - g10_loose (11 Hz⁽¹⁾ 35 Hz⁽²⁾ at 10³⁰ cm⁻²s⁻¹) or g5_loose support triggers for efficiency determination (bootstrap); can be prescaled to a low rate
- $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$:
 - Primary trigger: g20_loose (70 Hz⁽¹⁾ prescaled) or g20_medium (no prescale expected?)
 - 2g20_medium or g20_g30_loose primary trigger for event collection
 - g20i_loose supporting trigger: study isolation at Level 1
 - g10_loose or g5_loose backup triggers for bootstrap methods; heavily prescaled
- Questions:
 - Any reason to not go to g20_medium or g20_tight at 10³² if g20_loose prescaled?
 - Why use both g20_loose and 2g20_loose as primary triggers?
 - Rates I saw are stilluncertain (Li's rates larger then egamma trigger) how are they calculated?
 - If we need to use new trigger (g30_g20) should justify what's increase in efficiency?
- (1) Extrapolated see Rainer Stamen in <u>http://indico.cern.ch/conferenceDisplay.py?confld=94961</u>
- (2) Estimated in MC <u>https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasTriggerRates</u>

- $\mathcal{L} = 10^{30}$ to 10^{31} cm⁻²s⁻¹:
 - e10_medium primary trigger (34 Hz⁽¹⁾ or 48 Hz⁽²⁾ at 10³¹ cm⁻²s⁻¹)
 - e12_medium backup for e10_medium if rate too high
 - e10_medium_SiTrk supporting (alternative L2 tracking)
 - mu10 primary trigger (15 Hz⁽²⁾ at 10³¹ cm⁻²s⁻¹)
 - mu6 supporting (4.4 $Hz^{(2)}$ prescale 200 at 10³¹ cm⁻²s⁻¹)
 - mu15 backup for mu10 (3 $Hz^{(2)}$ at 10³¹ cm⁻²s⁻¹)
- $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$:
 - e15_medium primary trigger (10 $Hz^{(2)}$ at 10^{31} cm⁻²s⁻¹)
 - e15_medium_SiTrk suporting (still needed?)
 - e20_medium (2 Hz⁽²⁾ at 10³¹ cm⁻²s⁻¹) backup for e15_medium if the rate too high
 - mu13 primary trigger (no rates found)
 - mu15 (3 Hz⁽²⁾ at 10³¹ cm⁻²s⁻¹) backup for mu13
 - mu10 supporting
- Questions:
 - Could we have e10_tight (or e15_medium) as backup for e10_medium instead at 1e31?
 - Supporting trigger e15_medium_SiTrk still needed at 1e32?
 - For 1e32 would mu15 be ok if mu13 not in menu? (How much would we loose?)
 - Any reason to go to di-lepton triggers? (I.e. is there need to lower p_T thresholds? Or is there some margin?)
- ⁽¹⁾ Extrapolated see Rainer Stamen in <u>http://indico.cern.ch/conferenceDisplay.py?confld=94961</u>
- ⁽²⁾ Estimated in MC <u>https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasTriggerRates</u>

HSG2: H->ZZ*->IIII

Diego Rodriguez

ZH->inv, H->2l2τ, H->2l2v and H->2l2b

Paul Thompson Sylvie Brunet

- All four analyses rely on leptons for trigger
- In signal these come from Z decay
- Can use same triggers as H->4l channel in previous page

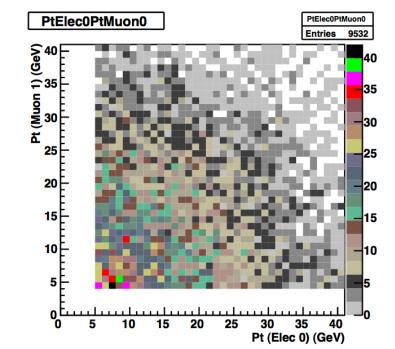
HSG3: H->WW (gg, VBF, WH, ttH, inv.)

• $\mathcal{L} = 10^{30}$ to 10^{32} cm⁻²s⁻¹:

Gemma Wooden

- e10_medium and mu10 primary single lepton triggers for H->WW->ll (l = e,mu)
- 2e5_medium(2 Hz(2) at 10³¹ cm⁻²s⁻¹) and 2mu6 backup: di-lepton trigger in case offline lepton p_T may be lowered
- e10_loose support trigger to study fake rate
- VBF trigger: seems useful at $\approx 10^{32}$ cm⁻²s⁻¹, when single-lepton triggers need to get tight
 - Di-jet trigger + rapidity gap + lepton
 - Lepton p_T threshold low (perhaps ~8 GeV)
 - Would give gain in phase space for VBF H->WW at the cost of little extra rate
 - In the tau channel, this trigger increases the number of events by 20-25%, but lower gain expected for WW channel
- Questions:
 - Rates too high for above single-lepton triggers at 10³² cm⁻²s⁻¹. Would the ones below be ok? (I.e. how much do we loose?)
 - e15_medium primary trigger (10 $Hz^{(2)}$ at $10^{31} cm^{-2}s^{-1}$)
 - $e20_{medium} (2 Hz^{(2)} at 10^{31} cm^{-2}s^{-1})$ backup for $e15_{medium}$ if the rate too high
 - mu13 primary trigger (no rates found)
 - $mu15 (3 Hz^{(2)} at 10^{31} cm^{-2}s^{-1}) backup for mu13$
 - Would e10_loose_mu6 be useful? (with e10_medium_mu10 for higher lumi) requested for H->ττ
 - Would be great to have lepton trigger efficiencies and p_T spectrum
 - VBF trigger:
 - Which di-jet+gap trigger? (EF_2j40_deta3_5, EF_2j20_deta3_5, EF_2j10_deta3_5, EF_2j10_deta5? Prescales not yet known)
 - Can we live with existing lepton pT cut ? E.g. electron 10GeV, muon 6GeV. What would we gain with pT >5GeV for electrons?
 - What is the efficiency for signal with each possibility?

HSG4: H->ττ leptonic and lep-had


- From: <u>https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsTauTau#Trigger</u> and input from Matthew
- $\mathcal{L} = 10^{30}$ to 10^{31} cm⁻²s⁻¹:
 - e10_medium primary trigger (34 Hz⁽¹⁾ or 48 Hz⁽²⁾ at 10³¹ cm⁻²s⁻¹)
 - e12_medium backup for e10_medium if rate too high
 - e10_medium_SiTrk supporting (alternative L2 tracking)
 - mu10 primary trigger (15 Hz⁽²⁾ at 10³¹ cm⁻²s⁻¹)
 - mu6 supporting $(4.4 \text{ Hz}^{(2)} \text{prescale } 200 \text{ at } 10^{31} \text{ cm}^{-2}\text{s}^{-1})$
 - mu15 backup for mu10 (3 $Hz^{(2)}$ at 10^{31} cm⁻²s⁻¹)
 - e10_loose_mu6 (1Hz ⁽²⁾ at 10³¹ cm⁻²s⁻¹): 50% increase in signal efficiency wrt e10_medium || mu10 requested into Physics menu)
 - e5_medium_mu4 support trigger for e10_loose_mu6 (fake rate & bias studies)
 - $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$:
 - $e20i_loose primary trigger (10 Hz⁽²⁾ at <math>10^{31}$ cm⁻²s⁻¹) $e20i_medium$ not in the menu (shall we request it?)
 - e15_medium, e20_medium supporting
 - e25_medium ($\approx 0 \text{ Hz}^{(2)}$ at $10^{31} \text{ cm}^{-2}\text{s}^{-1}$) backup for e15_medium if the rate too high e25i_medium not in phys menu
 - mu20 primary trigger (2 $Hz^{(2)}$ at 10^{31} cm⁻²s⁻¹)
 - mu10 or mu15 supporting trigger: mu15 (3 $Hz^{(2)}$ at 10^{31} cm⁻²s⁻¹) backup for mu13
 - e10_loose_mu6 or e10_loose_mu10 It may be necessary to go to higher muon p_T cut, depending on luminosity
- Questions:
 - Is list of single-lepton triggers up to date?
 - How do we gain so much (50%) by going from e10_medium || mu10 to e10_loose_mu6? (decrease in offline p_{τ} cut?)
 - Obs.: 2e5_medium has 2 Hz at EF (1E31) but 2mu6 has 10Hz can't assume they will be un-prescaled
 - Some healthy resistance in menu group to adding triggers in particular not clear about e5_medium_mu4

⁽¹⁾ Extrapolated – see Rainer Stamen in <u>http://indico.cern.ch/conferenceDisplay.py?confId=94961</u>
 ⁽²⁾ Estimated in MC <u>https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasTriggerRates</u>

Matthew Beckingham Henrik Nilssen

Η -> τ τ -> ev μv

- Could live with p_T thresholds for single-lepton triggers if the other remains low, but moving both to 20 costs ~35% of signal:
 - − e10_medium || mu10 \rightarrow e10_medium mu20: keep ~99% of events
 - − e10_medium || mu10 \rightarrow e20_medium mu10: keep ~95% of events
 - e10_medium || mu10 → e15_medium mu15: keep ~88% of events
 - e10_medium || mu10 → e20_medium mu20: keep ~65-70% of events
- Solution: use di-electron, di-muon and e+mu trigger
 - Including e10_loose_mu6 we gain 50% more events wrt to e10_medium || mu10
 - Including e5_medium_mu4 we gain 56% more events wrt to e10_medium || mu10
 - ...and lowering electron and muon preselection cuts to p_T >5 GeV

Matthew Beckingham

HSG4: Η->ττ Hadronic

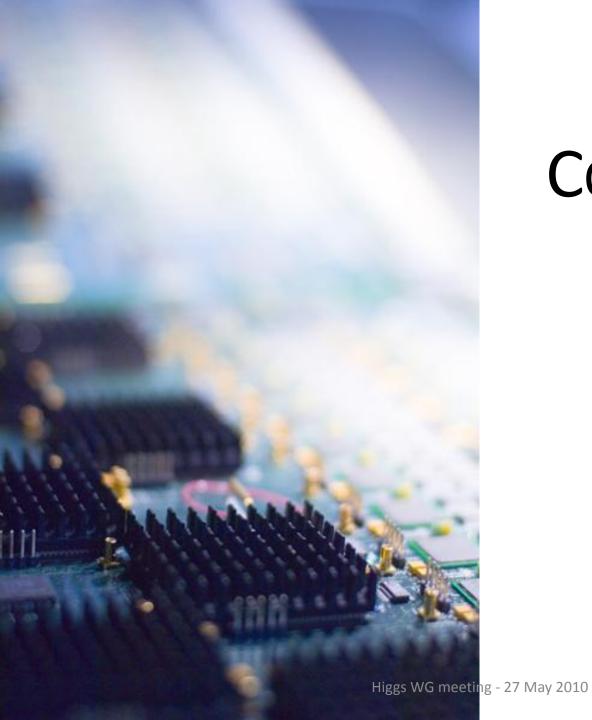
Stefania Xella

- From: <u>https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsTauTau#Trigger</u>
- $\mathcal{L} = 10^{30}$ to 10^{31} cm⁻²s⁻¹:
 - double tau:
 - primary trigger = 2tau20_loose version with isolation (2tau20i_loose) not available in menu
 - support trigger = e10_medium || mu10 || xe30 not clear which xeYY will be unprescaled for 1e31
 - backup trigger = 2tau29_loose version with isolation (2tau29i_loose) not available in menu
 - tau+MET:
 - primary trigger = tau16_loose_xe25 ok
 - support trigger = tau16i_loose_4j23 not available in menu
 - backup trigger = tau16_loose_xe20 and tau16i_loose_xe25 ok
- $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$:
 - double tau:
 - primary trigger = 2tau29i_loose version with isolation (2tau29i_loose) not available in menu
 - support trigger = e20_medium || mu20 || xe40 not clear which xeYY will be unprescaled for 1e32
 - backup trigger = 2tau38_loose ok
 - tau+MET:
 - primary trigger = tau29i_loose_xe30 not in physics menu
 - support trigger = ?
 - backup trigger = tau38_loose_xe40 not in menu
- Questions:
 - List needs to be updated some of the triggers not in Physics menu, but similar chains could be used (or request new if really needed)

HSG5: ttH (H->bb) semileptonic

- Also including Fat-Jet analysis
- Basically need lowest un-prescaled single-lepton trigger; my proposal:
- $\mathcal{L} = 10^{30}$ to 10^{31} cm⁻²s⁻¹:
 - $e10_{medium}$ primary trigger (34 Hz⁽¹⁾ or 48 Hz⁽²⁾ at 10^{31} cm⁻²s⁻¹)
 - e12_medium backup for e10_medium if rate too high
 - mu10 primary trigger (15 Hz⁽²⁾ at 10³¹ cm⁻²s⁻¹)
 - mu15 backup for mu10 (3 $Hz^{(2)}$ at 10^{31} cm⁻²s⁻¹)
- $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$:
 - e15_medium primary trigger (10 $Hz^{(2)}$ at 10³¹ cm⁻²s⁻¹)
 - $e20_medium (2 Hz^{(2)} at 10^{31} cm^{-2}s^{-1})$ backup for $e15_medium$ if the rate too high
 - mu13 primary trigger (no rates found)
 - mu15 (3 $Hz^{(2)}$ at 10³¹ cm⁻²s⁻¹) backup for mu13
- Absolute efficiencies from CSC studies were 82% mu20 || e22i || e55, so we should be in safe ground for this year
- Obs.:
 - Jet triggers will be studied, but numbers are not available for now, so better hold off on requests

Catrin Bernius


HSG5: ttH (H->bb) hadronic

- Not clear what triggers are needed and possible at present
- Only jet triggers and E^{sum} could be useful
- Menu currently has some multi-jet triggers: EF_3j80, EF_4j40, EF_5j20
 - But not clear which will be prescaled and when
- Available numbers:
- For the MC@NLO fully hadronic ttbar dataset, the 'useful' chains I can see are:
 - EF_2j10 (100%) not in new menu
 - EF_2j20 (99%) not in new menu
 - EF_2j40 (96%) looks very useful!
 - EF_3j20 (93%) percale 10 000 000!

HSG5: Heavy charged Higgs

Martin zur Nedden

- Looking at new menu:
 - The combinations of "e + MET" and "tau + MET" currently in the menu are ok
 - A new combination "e + MET + jet" exists but still to be ckecked
 - Missing combined triggers:
 - combination "mu + MET" is MISSING
 - combination "tau + MET + jet" is MISSING
 - combination "mu + MET + jet" is MISSING
 - And more details that I won't mention

CONCLUSIONS

- Requested e10_loose_mu6 and e5_medium_mu4 already
- Will look into VBF trigger (dijet+gap+lepton)
- Anyone missing? Please let me know ASAP
- First physics menu will be approved next week
- Many thanks to Higgs trigger gang for input!

BACKUP SLIDES

Dear all,

As announced last week we have first draft of the trigger menu for physics run covering 1e+30 - 1e+32 luminosity. Below you find links to the first draft of the "Test_pp_v1" menu, justification page and rate estimates for 1e+31 lumi. The prescales sets for various lumi points are not yet available, so you would need to use your judgement on what items *could* run unprescaled at various luminosities for now.

We ask every *physics*, *detector* and *CP* group representatives to look very carefully through tables, make a list of important items for each group, discuss them this and next week during your group meetings, and come back to us with 3 tables for 3 lumi points (1e30, 1e31, 1e32, more if possible) with 3 columns :

a. each needed trigger item is listed together withb. which type should it be for you at this lumi (primary,

supporting, backup) - few simultaneous options are possible

c. reason/justification (very short sentence, preferably <10 words)

- be prepared to give longer justification if asked, so just tag "Exotics" will not be sufficient, but "main 1e32 electron trigger for high pt Exotics" or "soft pt trigger for efficiency measurement" is good.

We ask you to send us feedback asap, best before May 31st, but earlier will be much appreciated. The triggers which will lack justification will *not* be propogated to Physics_pp_v1 menu. Please let us know if something is already missing in Test_pp_v1.

Iterations on the lists will certainly be possible.

Thank you in advance, Olya and Srini

P.S. We remind trigger signature group representatives that they are also representatives of corresponding CP group, and while following up here should also consider other types of triggers, e.g. for studies of fakes and such.

Request from Menu Coordination for next week

----- Details : -----

The *first draft* of menu is available at http://atlas-

trigconf.cern.ch/nightlies/display/release/15.6.X.Y.Z/project/CAFHLT/nightly /rel_3/name/Test_pp_v1_15.6.9.3.1/

This is what we call "Test_pp_v1" menu which contains primaries, supporting, some commissioning, backup, and *test* items - you can see what is latest tag if you press "load" button on top of the page.

Once you provide us with the list of "favorites" we will upload it as predefined view, and you will be able to see only your triggers using "predefined view" link.

You can see current justification for each trigger , if you press "+" after "load". The link http://atlas-trigconf.cern.ch/just/list/ shows all current available motivations - obviously we (with your help) have to improve it.

The plans prepared by trigger groups are available at http://indico.cern.ch/conferenceDisplay.py?confld=74183

The rates for 1e31 given at

http://atlas-trig-cost.cern.ch/offline/html_user10.EdwardSarkisyan-Grinbaum.EnhBias7TeV1555Offls31m.digit.RD
O.d238_18-05-2010_AtlasCAFHLT-rel_2-15.6.X.Y.Z.04/
No prescales are taken into account, so use your judgement and plans of trigger groups of what is possible at each lumi.

Unfiltered rates with much smaller statistics is available here : http://atlas-trig-

cost.cern.ch/offline/html_mc09_7TeV.105001.pythia_minbias.digit.RDO.e46 8_s624_s633_d238_18 -05-2010 AtlasCAFHLT-rel 2-15.6.X.Y.Z/

The rates are calculated on *MC* using enhancedBias sample filtered on EM3, J15, MU0, XE25, TE250, FJ18, TAU5. L1 EM calibration was used. This particular MC tune is known to give rates factor of ~2 higher than seen on data.

Many thanks to menu and rate experts on preparing menu and rates!

Higgs WG meeting - 27 May 2010

VBF trigger for HSG3

- As for the VBF trigger, the pT threshold of the lepton would be low (perhaps ~8 GeV) since this would give us a gain in phase space.
- It would also provide an alternative trigger in the case that lepton rates may increase more than expected, leading to prescaled single lepton triggers, which would be undesirable for us.
- Mario believes this trigger would be most useful at the point where the single lepton trigger would need to be prescaled (which he says would be ~1e33 for 15 GeV leptons).
- So, it seems that perhaps this trigger would only really be useful for us possibly at 1e32 or more.
- In the tau channel, this trigger increases the number of events by 20-25%, but for the tau analysis, a higher single lepton trigger threshold is used so I think the gain in the WW channel would be less than this.
- In any case, Mario says that the trigger logic will be implemented soon so if the H->WW group wants to add a lower threshold than the H->tau tau group according to him it shouldn't be a problem.

Rate estimates from Li Yuan

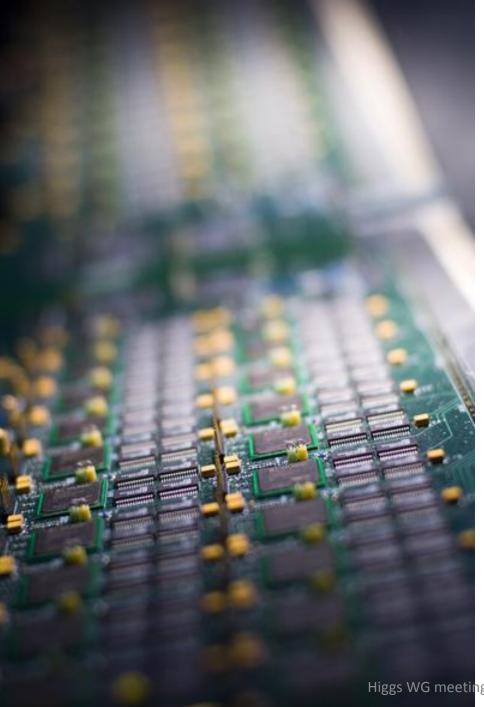
Hz (10 ³¹ cm ⁻² s ⁻¹)	Monte Carlo		Data (scaled from 155160)		
Matching:	Match offl. γ	Match offl. γ/e	Match offl. γ	Match offl. γ/e	
g20_loose	18.1	26.2	9.2	12.4	
2g20_loose	0.97	2.1	0.26	0.47	
g20i_loose	16.7	23.3	8.2	10.8	

- Extrapolated from run 155160 (peak lumi 1e28) very preliminary numbers
- Estimated based on trigger object matching with offline photon or offline photon or electron.
- These results are consistent with the MC/data ratio of 2.0 as you can see at page 3 of the talk:
 - <u>http://indico.cern.ch/getFile.py/access?contribId=32&sessionId=5&resId=0&materia</u> <u>IId=slides&confId=92039</u>
- So for luminosity at 1e32, g20_loose may reach to 90Hz, while 2g20_loose will be over 2.6 Hz.

HSG5: ttH hadronic

Michael Nash

Efficiencies for from 10To// Eully badronis ttH (NP 10To// !)			Fully hadronic tt with MC@NLO (7 TeV) 10^31				
Efficiencies for from 10TeV - Fully hadronic ttH (NB 10TeV !) 10^31		uly hadronic tth (NB 1016V !)	Trigger item	%	Presca	ile in new menu	
Trigger item ====================================	% =======	Prescale in new menu	======================================	 100	====== N/A!		
EF_1b40_2b20_3L1J10	46	unprescaled	EF_2j20	99	N/A!		
EF_1b40_2b20_3L1J20		unprescaled	EF_2j40	96	N/A!		
EF_1b40_2b20_4L1J20		unprescaled	EF_3j20	93	10000	000	
EF 2b20 3L1J20		17 unprescaled	EF_j20	100	100		
EF_2b40_3L1J20		30 unprescaled	EF_j200	11	10		
EF_3b20_4L1J10		30 unprescaled	EF_j40	100	500		
EF 3b20 4L1J20		17 unprescaled	EF_j80	85	N/A!		
 EF_3j80	70	unprescaled - back-up trigger?	EF_j80_larcalib	28	10000	000	
EF_4j40 EF_b100	93	unprescaled - best trigger by far N/A! unprescaled	EF_mu4 understood)		21	1500 (300@EF, 5@L2; not sure I've	
EF_j260	19	unprescaled	EF_mu6		16	30	
	19	ulprescaled	EF_tau12_loose	58	1000		
EF_2b10_3L1J10		N/A!	EF_tau16_loose	55	300		
EF_2b10_4L1J5	N/A!	N/A:	EF_te100	93	N/A!		
EF_3b10_4L1J10	N/A:	N/A!	EF_xe20		40	1 - best trigger (to my surprise)	
EF_3b10_4L1J5 N			The following potentially useful triggers from the new menu are not found in the above AODs:				


10^32, 10^33: since the prescales are, even for 10^31, not fixed, I can't really give much input here.

found in the above AODs:

- EF_5j20
- EF_4j40

EF_3j80

EF_j260

PHYSICS MENU PROPOSALS FROM SIGNATURE GROUPS

e/γ Proposal for 10³⁰

Trigger item	type	justification	Additional Information
2e3_loose	primary	J/psi	0.3 Hz
2g5_loose	Primary	Di-γ, Gravitons	3 Hz
e5_medium	Primary	Incl. Electrons	14 Hz
g10_loose	Primary	Incl. Photons	11Hz
e10_loose	Primary	Incl. Electrons	2 Hz
e3_medium	Support	t&p for 2e3_loose	4 Hz after prescale
g5_loose	support	2&p for 2g5_loose	2 Hz after prescale

+ support triggers with different tracking

e3_medium and g5_loose can be used to fill up the bandwith during a fill when inst. lumi. decreases

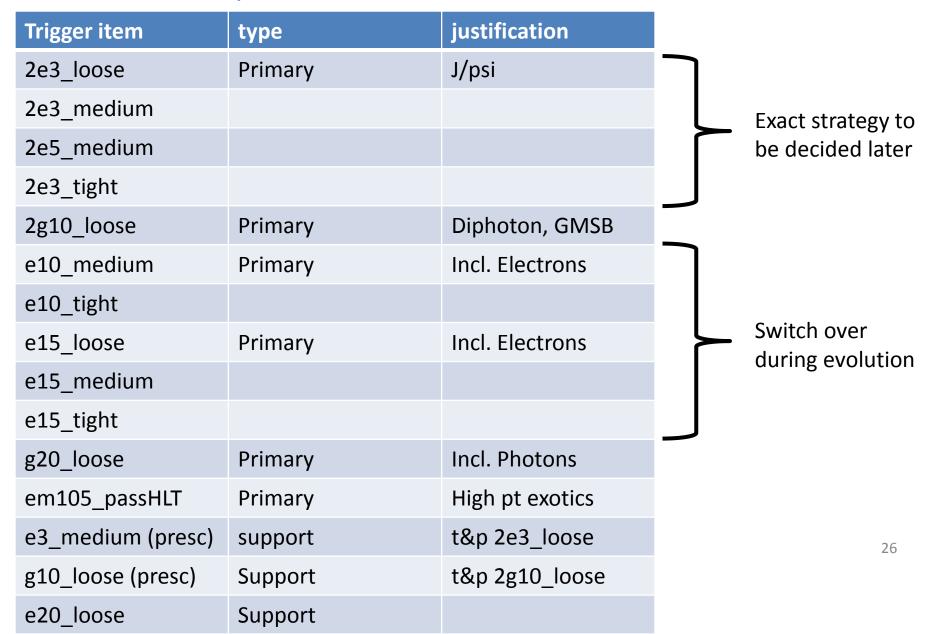
Rainer Stamen: <u>http://indico.cern.ch/conferenceDisplay.py?confld=94961</u>

e/γ Proposal for 10^{31}

Trigger item	type	justification	Additional Information
2e3_loose	Primary	J/psi	5 Hz
2g10_loose	Primary	Di-γ, Gravitons	few Hz
e10_medium	Primary	Incl. Electrons	14 Hz
e15_loose	Primary	Incl. Electrons	12Hz
g20_loose	Primary	Incl. Photons	7 Hz
em105_passHLT	Primary	High pt exotics	< 1Hz
e3_medium (presc)	support	t&p 2e3_loose	3 Hz with prescale=?
g10_loose (presc)	Support	t&p 2g10_loose	3 Hz with prescale=?
e20_loose	Support		2 Hz with prescale=?

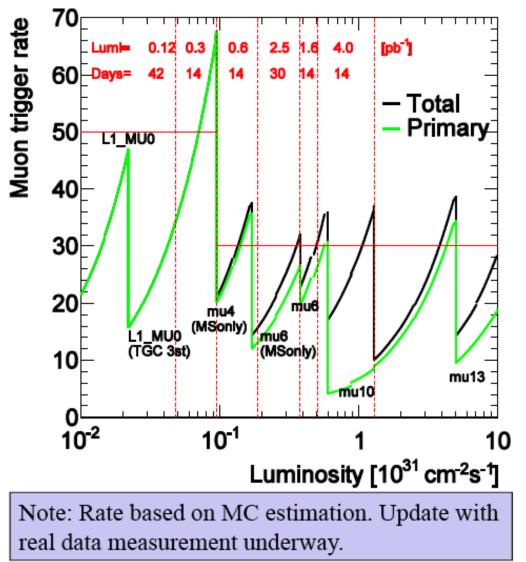
At some point here we might have enough data to fully validate the tracking. After that drop the support chains with different tracking options

e/ γ Proposal for 10³² (i.e. few 10³¹)


Here it gets difficult to predict (high threshold rates not known yet, pile-up effect not known yet, physics needs probably not well defined yet)

Evolution:

- 2e3_loose (10³¹)-> 2e3_medium (3*10³¹)-> 2e3_tight, 2e5_medium or 2e3_medium(prescaled)
- e10_medium, e15_loose (2*10³¹)-> e10_tight, e15_medium (410³¹)-> e15_tight
- g20_loose (2*10³¹)-> g20_tight


Proposal: Put all these triggers into the menu and decide later on the exact evolution strategy (once we know details to take a reasonable decision)

 e/γ Proposal for 10³² (i.e. few 10³¹)

Kunihiro Nagano: <u>http://indico.cern.ch/conferenceDisplay.py?confId=95409</u>

Menu evolution

 On Monday run at 10²⁹, L1_MU0 rate was ~ 25 Hz

• Active HLT selection from lower p_T and MSonly chain

 →L1_MU0 needs prescale at 0.1-0.4 pb⁻¹, reach both RPC timing and HLT MSonly milestones by then
 → mu6_MSonly un-prescaled until HLT MS+ID milestone is reached.

→ Primary mu10 un-prescaled until 5*10³¹

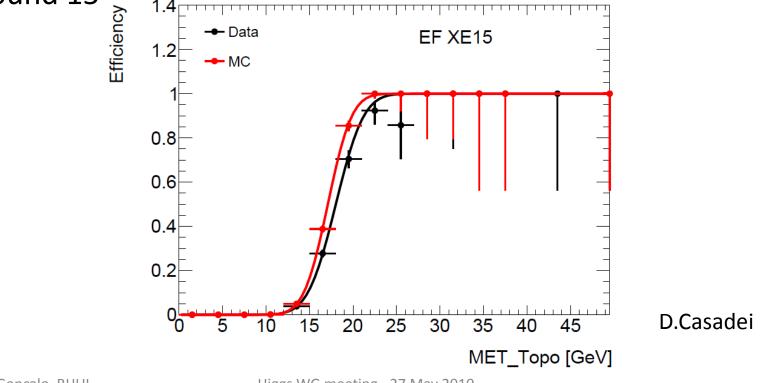
→ Beyond it, mu13 and mu15 will be lowest un-prescaled

Kunihiro Nagano: http://indico.cern.ch/conferenceDisplay.py?confld=95409

Higgs WG

Menu evolution

- InitialBeam_v3
 -- Currently deployed at P1
- Physics_pp : 10³⁰ 10³²
 -- Currently being defined


→ Proposed design by muon trigger signature group is to make it be essential subset of InitialBeam_v3

→ Please check carefully whether necessary triggers for your analysis are included in the Physics_pp and send us your feed-back

	InitialBeam v3	Physics pp	
PT1	inu4	mu4	
	mu4 passHLT		
	mu4 MSonly	nu4 MSonly	
	mu4 SiTrk	mu4 SiTrk	Primary
	mu4 muCombTas	mu4 muCombTag	
	mu4 muCombTag SiTrk	mu4 muCombTag SiTrk	
	mu4 tile	mu4 tile	Supporting
	mu4 tile SiTrk	mu4 tile SiTrk	
	mu4 trod	mu4 trod	
	mut and SfTrh	mu4 trod StTrh	Backup
	mu4 MG	mu4 MG	
	mu4 NoIDTrkCut	mu4 NoIDTrkCut	
	mu4 L2MSonly EFFS passL2	Inder House The ar	Commissioning
	mu4 MSonly EFFS passL2		C OTTAIN STOLEN
	mu4 MV	mu4 MV	
PT2	mud	mutary	
112	muo passeiL'i	mus	
	mu6 MSonly	mu5 MSonly	
	mu6 SiTrk	muő SiTrk	
	mu6 muCombTag	mu6 muCombTag	
	mu6 muCombTag SiTrl	mu6 muCombTag	
	mu6 MC	mu6 MG	
PT3	mul MG	mub MG	
P15	mul0 passHLT	mult	
	mul0 MSonly	mul0 MSonly	
	mul0 SiTrk	mul0 SiTrk	
	mul0 silre mul0 muCombTag	mulo sifte	
	mul0 muCombTag SiTrk	mul0i loose	
	mul0i loose		
	mul0 MG mul0 NoIDTrkCut	mul0 MG mul0 NoIDTrkCut	
PT4	mu13	mul3	
P14	mu4 comm		
70775	mu4 MSonly comm		
PT5	mul5	mul5	
PT6	mu20	mu20	
	mu20 MSonly	mu20 MSonly	
	mu20 passHLT	mu20 passHLT	
1.0070	and Mercula 1004 EFFS	and Miles he Miles FITS	
MB1S	mu4 MSonly MB2 EFFS	mu4 MSonly MB2 EFFS	
2mu	2mu4	2mn4	
	2MUL1 140 HV	2MUL1 140 HV	
	2mm4 MSonly		
	2mu6	2mu6	
meeting	20010 May 2010	2mu10	28
neeting	mu4 mu6	mu4 mu6	=0
			0

Missing ET

- The hope is to have xe30 unprescaled up to a luminosity of 10³¹
- An inclusive bandwidth of 20Hz was requested so that xe30 can remain unprescaled up to 10³²
- Current bandwidth allows running XE15 unprescaled up to 10³⁰ (around 15^{1/2})

Stefania Xella:

Showing only primaries/support

10^31

tau38_loose **3 Hz** (starts from TAU11) tau50_loose (support to tau38, for high rates) (starts from TAU20) +tau38_medium, tau50_medium (pileup/support)

2tau16_loose (starts from 2TAU6) : **1.5 Hz** 2tau20_loose (support to 2tau16, for high rates. starts form 2TAU6) (*)

tau12_loose_xe15, with xe15 defined as (L1 XE10, L2 XE12,EF XE15) : **1-2Hz** (at L2 <100Hz) tau12_loose_xe20, tau16_loose_xe20, with xe20 defined as (L1 XE10, L2 XE12,EF XE20) (support to tau12_xe15)

tauNoCut_hasTrk6_xe20, with xe20 defined as (L1 XE10, L2 XE12,EF XE20) : **1-2Hz** (at L2 <100Hz) tauNoCut_hasTrk9_xe20, with xe20 defined as (L1 XE10, L2 XE12,EF XE20) (support to tauNoCut_hasTrk4_xe20)

for each of the tau+xe, we have also the tau+xe_noMu

tau12_loose_e10 (starts from 2TAU5_EM5) 1 Hz

tau12_loose_mu10 (starts from TAU5_MU10) < 1 Hz

tau12_loose_3j40 (starts from TAU5_4J5_3J15) tau12_loose_2b20 (starts from TAU5_3J5_2J15) <1 Hz tauNoCut_hasTrk_MV

all in physics menu

http://atlas-trigconf.cern.ch/nightlies/display/release/15.6.X.Y.Z/project/CAFHLT/ nightly/rel_2/name/Physics_pp_v1_15.6.9.4.1/

(*) 2tau20_loose has PT L2 1000 and PT 1 at EF ?

!! Missing TAU6I and TAU11I (tau16i_loose and tau29i_loose)

10^32

tau84_loose (starts from TAU20) **3-4 Hz** tau125_loose (support to tau84, for high rates. starts from TAU30)+ tau84_medium, tau125_medium (pileup/support)

2tau29_loose (starts from 2TAU11, but could also move to 2TAU6) : **1-2Hz** 2tau38_loose (support to 2tau29, starts from 2TAU11)

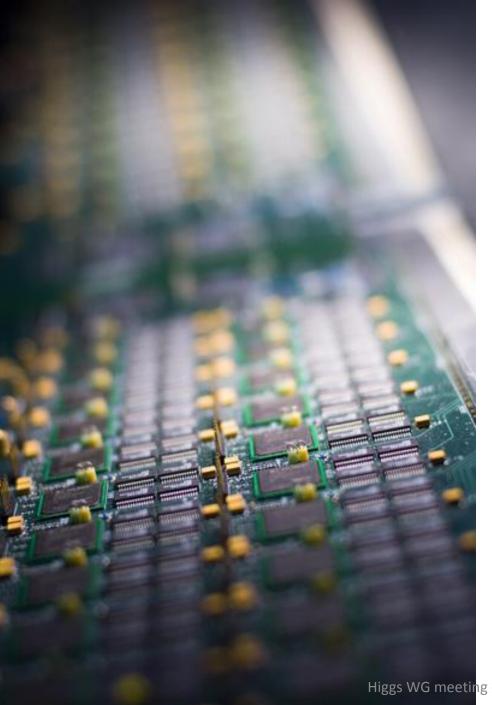
tau16_loose_e10 (starts from 2TAU6_EM5) **1 Hz** (*) tau16_loose_e15 (starts from 2TAU6_EM10) (support to tau16_loose_e10)

tau16_loose_mu10 (starts from TAU6_MU10) < 1 Hz
tau16_loose_mu15 (starts from TAU6_MU15) (support to tau16_loose_mu10)</pre>

tau16_loose_xe25, with xe25 defined as (L1 XE10, L2 XE15, EF XE25) : < 10 Hz tau20_loose_xe25, with xe25 defined as (L1 XE10, L2 XE15, EF XE25)(support to tau16_loose_xe25) (**)

for each of the tau+xe, we have also the tau+xe_noMu

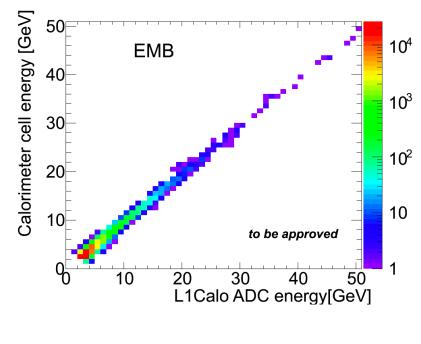
tau16_loose_3j40 (starts from TAU5_4J5_3J15) 1-2 Hz

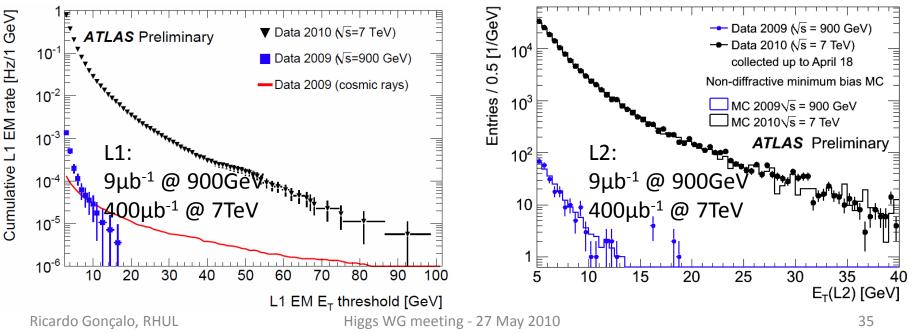

tau16_loose_2b20 (starts from TAU5_3J5_2J15) 1-2 Hz

Basically all in <u>http://atlas-trigconf.cern.ch/nightlies/display/release/15.6.X.Y.Z/project/CAFHLT/</u>nightly/rel_2/name/Physics_pp_v1_15.6.9.4.1/

(*) needs to start from 2TAU5_TAU6_EM5 (**) missing

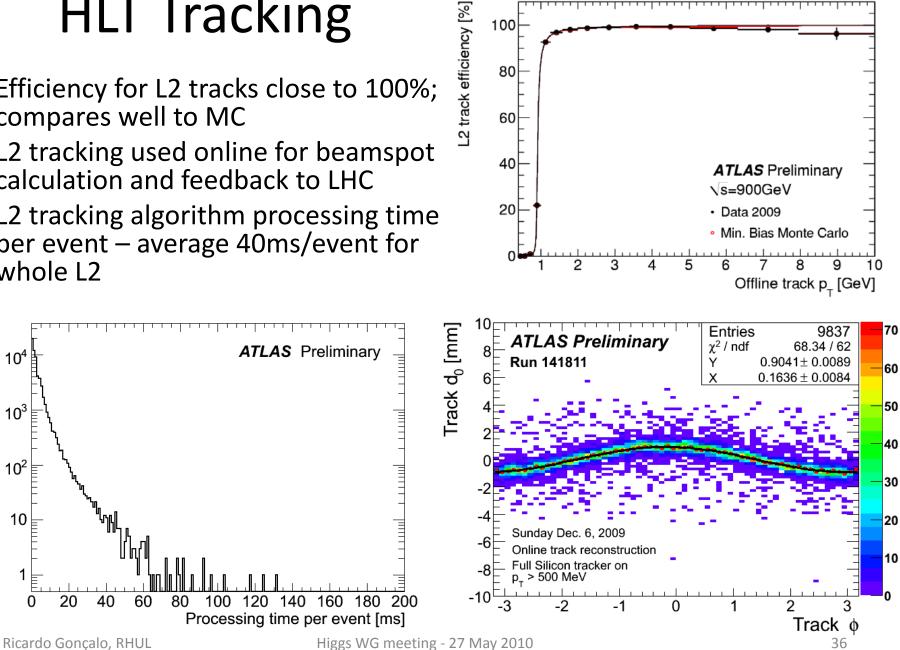
!! I still need to check exactly the PT and PS for some of the active single items , will fix if needed within this week. Need to keep into account DQ/Monitoring requests. Calo, tracking, calib etc....


Also cross - check if I have monitoring item needed.



TRIGGER PERFORMANCE

Calorimeter


- L1 Calo has different energy scale and readout than HLT – coarser granularity
 - Summing cells and comparing to trigger tower
- Recent improvement in timing of signals
- HLT relies on DSP-decoded quantities for each cell - cannot re-fit samplings as for offline reconstruction
- Developments in parallel with detector

HLT Tracking

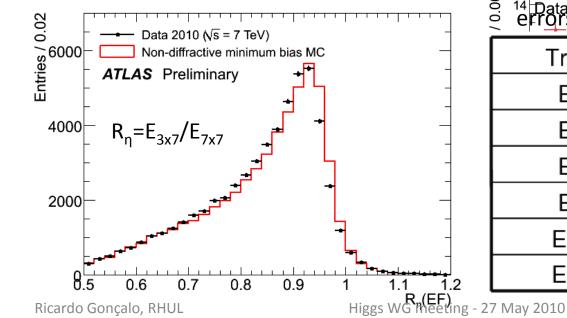
- Efficiency for L2 tracks close to 100%; compares well to MC
- L2 tracking used online for beamspot calculation and feedback to LHC
- L2 tracking algorithm processing time per event – average 40ms/event for whole L2

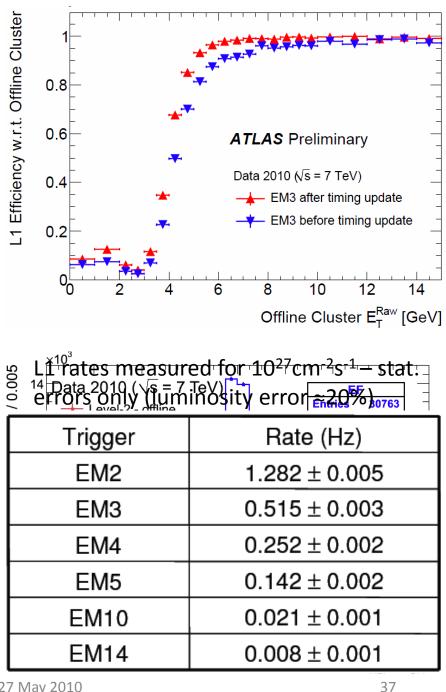
Number of events [1/ms]

 10^{4}

 10^{3}

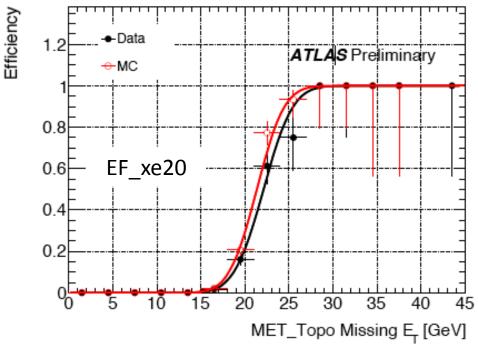
 10^{2}

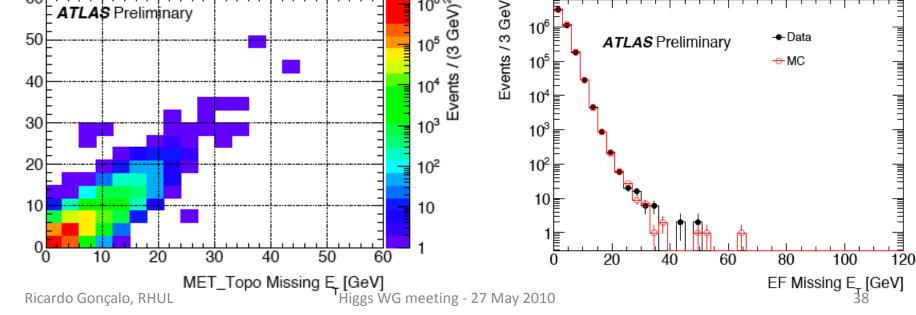

10


0

20

e/gamma Trigger

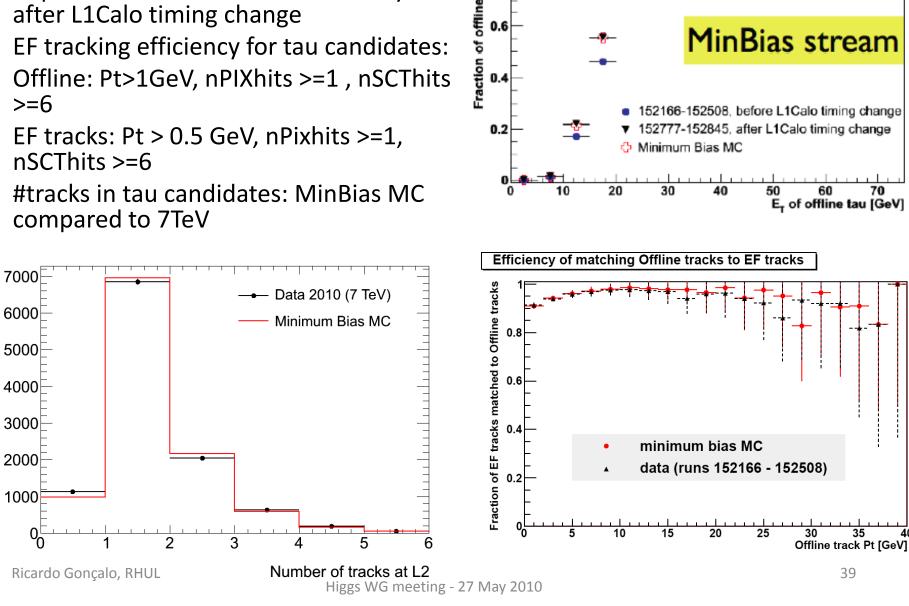

- Improvements from L1Calo timing
- HLT some disagreement in shower shapes between data and MC – likely cross talk, or dead material map in MC not correct
- Rates show EM2 will need to be prescaled or HLT rejection @ 10²⁹
- L2 track cluster matching well described by MC



Missing E_{T}

- Turn-on curve for EF_xe20 with 7TeV data compared to MC
- Data-MC comparison of E_T^{miss} at the Event Filter after jetcleaning cuts (stat. errors only)
- Correlation between online and offline at E_t^{miss} 7 TeV

EF Missing E_{T} [GeV]

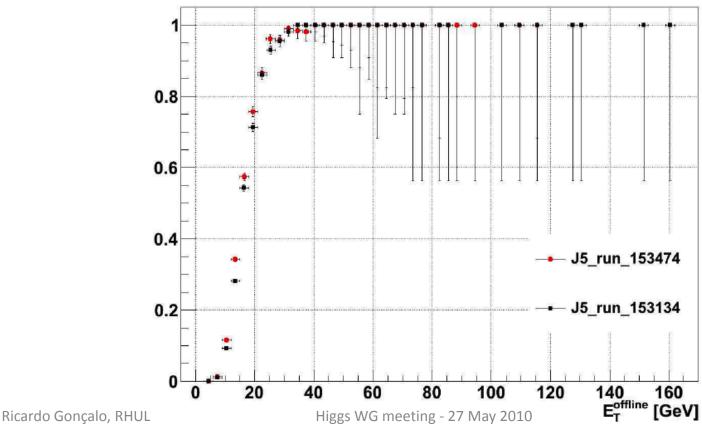

60

Tau

- Improvement of the L1 tau efficency after L1Calo timing change
- EF tracking efficiency for tau candidates:
- Offline: Pt>1GeV, nPIXhits >=1, nSCThits >=6
- EF tracks: Pt > 0.5 GeV, nPixhits >=1, nSCThits >= 6

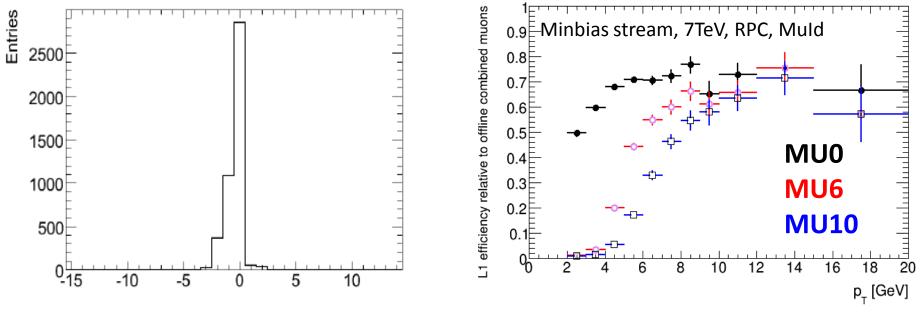
Vo of Tau Rols

#tracks in tau candidates: MinBias MC compared to 7TeV



passing

taus 0.8


Jets

- Improvements from L1Calo timing in better agreement with MC
- Investigated changing L1Calo noise threshold from 4 to 3 ADC counts no significant change
- Moving trigger jet energy scale to EM scale
- Planning to introduce jet-cleaning cuts online

L1 Muon – RPC

- Currently fighting problems with timing-in RPC
 - Need more non-cosmic muons
- Problem : MU6 is expected to be as efficient as MU0 for $p_T > 6$ GeV under investigation
 - Problem possibly from non-prompt muons plus chamber inefficiency

Ricardo Gonçalo, RHUL

Rate predictions

7 TeV data rates

All rates in mHz MC uses InitialBeam_v1, data uses InitialBeam_v2

Trigger	No cuts	DQ cut	MBTS_1_1	Timing	mc09	mc09/data	error
MBTS_1_1	32918	56763	56763	54310	—	-	—
TE10	946.1	1628.6	1628.3	1627.5	_	-	_
EM2	686.2	1184.2	1182.2	1178.2	_	-	-
EМЗ	276.80	478.20	477.60	476.20	971.00	2.039	0.016
EM5	74.53	128.00	127.90	127.50	295.10	2.315	0.035
EM10	10.83	18.82	18.82	18.75	44.73	2.386	0.092
J5	159.10	273.60	273.20	272.70	646.10	2.369	0.024
J10	33.70	58.20	58.10	58.00	140.40	2.421	0.054
J15	12.530	21.890	21.840	21.750	48.36	2.223	0.080
FJ18	0.489	0.820	0.820	0.820	10.80	13.171	2.284
TAU5	100.90	173.30	173.00	172.70	372.40	2.156	0.027
TAU6	63.35	108.90	108.80	108.50	238.80	2.201	0.035
TAU8	29.57	51.00	50.90	50.80	114.10	2.246	0.053
MUO	35.14	61.40	58.10	57.50	122.50	2.130	0.048
MU6	5.69	9.91	9.25	9.09	47.15	5.187	0.278
MU20	0.193	0.362	0.362	0.338	0.497	1.470	0.442
XE10	20.160	34.840	34.820	34.700	196.800	5.671	0.156
XE15	5.600	9.810	9.790	9.710	36.690	3.779	0.197
XE20	2.230	3.770	3.750	3.700	9.770	2.641	0.230