
LVL2 ID ESD/AOD
classes

Status and plans

PESA L2 ID Algorithms Review - RAL
25 July 2005 2Ricardo Goncalo

ESD/AOD
More and more interest from physics groups on trigger issues (if you
don’t trigger on it, you can’t analyse it!)
Need to provide ways for trigger information to be available for
physics analyses (i.e. in the AODs)
This may mean several different things:
1) “Yes/No” result of hypothesis algorithms only: limited use; probably

good enough for a normal physics analysis; would generate valuable
feedback from physics groups

2) Enough information to allow some tuning of cuts in hypothesis
algorithms: more info than previous case; must include some
navigation information; even more valuable feedback from physics
groups; allow development of new trigger menus

3) Everything (…this means running trigger from RDOs; not feasible for
physics analysis)

Not much time left:
We should be thinking in terms of what will exist in data taking
After a first iteration we should have a close to final product
Should have first prototype in rel.11 to have time to iterate

PESA L2 ID Algorithms Review - RAL
25 July 2005 3Ricardo Goncalo

Trigger requirements
Typical requirements on trigger data objects must include:

Speed
Size
Robustness
Maintainability

Different uses of level 2 data classes:
Online: trigger processing; signatures…
Online: communication between LVL2 and EF
Offline: debugging and tuning of hypotheses
Offline: efficiency/rate studies
Offline: trigger algorithm development

Offline uses mean storing information in Pool (ESD/AOD) and serializing
information (LVL2->EF)
It is important to maintain enough flexibility:

Not much information needs to be passed between LVL2 and EF in normal running,
but potentially every LVL2 data object should be kept for a subsample of events
MC poses different constraints than online running: more information to persistify

PESA L2 ID Algorithms Review - RAL
25 July 2005 4Ricardo Goncalo

Plans for level 2 ESD/AOD
See: http://agenda.cern.ch/fullAgenda.php?ida=a053774#2005-07-14
Provide trigger result summaries in AOD (“Yes/No” result. More?)

These could be the menu table stored in the run store/conditions DB plus
trigger masks stored for each event
Methods would be provided such as:

bool IsDefined(“e25i”)
bool IsPassed(“e25i”)
bool TriggerPassed(“L1/L2/EF”)

Provide “slimmmed-down” data classes produced by
tracking/calorimetry/… algorithms

LVL1 RoI types
LVL2 tracks/clusters (redesign/slim down current ESD objects)
These would allow the possibility of re-running hypothesis algorithms

Provide new objects as the result of hypothesis algorithms
TrigElectron, TrigTau, TrigMu…
These would group together tracks/clusters/RoIdescriptors etc
Would be a way of storing online information

All/some of these should be designed with data taking in mind: size,
complexity, dependencies, robustness

PESA L2 ID Algorithms Review - RAL
25 July 2005 5Ricardo Goncalo

Trigger decision

This applies equally well to
LVL1, LVL2 and EF
Trigger decision:

Menu table to be stored in
RunStore (may not be feasible
yet)
Trigger masks to be stored for
each event (interpreted through
menu table)
Methods should be provided to
interpret masks for each event
Short-term solution (for Rome
data) would be to write methods
that mimic this for the few
signatures which were
implemented
Long-term solution: menu table
will be in conditions DB as it is
part of the trigger configuration

MenuTable
maskEvent

AOD

bool IsDefined(“e25i”)
bool IsPassed(“e25i”)
bool TriggerPassed(“EF”)

maskEvent

maskEvent

PESA L2 ID Algorithms Review - RAL
25 July 2005 6Ricardo Goncalo

Hypothesis result

T2Calo

Tracking

e25i

[from LVL1]
class TrigElectron {

public:

TrigElectron();

...

int nrTracks();

TrigTrack* GetTrack(int i);

TrigCluster* GetCluster();

RoIdescriptor* GetRoI();

private:

RoIdescriptor* m_roi;

TrigCluster* m_cluster;

std::vector<TrigTrack*>
m_trk;

};

TE

TrigCluster

TrigTrack

RoIdescriptor

TrigElectron

TE

TE

RoIdescriptor

RoIdescriptor

EMTauRoI

[pointer]

[to Ev.Filter]

“uses” “seeded by” pointer

PESA L2 ID Algorithms Review - RAL
25 July 2005 7Ricardo Goncalo

Status of ESD/AOD trigger info
Various LVL1/LVL2 classes persistified for Rome production:

see : http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/PESA/egamma/
rome/ESDcontents.html

LVL1 : EMTauRoI, JetRoI, EtMiss
LVL2 : EMShowerMinimal, TrackParticles

TrackParticles are stored in ESD and AOD
Persistency mechanisms already in place
Converted from TrigInDetTrack

Using TrigT.ParticleCreator TrigToTrkTrackTool and ParticleCreatorTool
This means creating several objects:

Trk::Track, Trk::TrackSummary
Trk::MeasuredPerigee, Trk::TrackStateOnSurface
Trk::TrackParameters, Trk::RIO_OnTrack, HepLorentzVector, etc

This was a valid first attempt but should be revisited to find objects
that are better suited to online environment
Ideally aim to store same objects as are used in trigger

This would allow re-running of hypotheses algorithms offline

PESA L2 ID Algorithms Review - RAL
25 July 2005 8Ricardo Goncalo

Offline
See talk by Markus Elsing
Offline tracking classes are flexible and
can accomodate enormous complexity
May contain only a small subset of
constituent objects
But at the cost of code complexity, large
dependencies and some overheads
E.g. a few objects pointed to by
TrackParticles must be copied from
constituent Trk::Tracks to maintain object
ownership and avoid dangling pointers

PESA L2 ID Algorithms Review - RAL
25 July 2005 9Ricardo Goncalo

TrigInDetTrack
Currently produced by LVL2 tracking algorithms
and used in trigger code and hypotheses
algorithms
Not great flexibility (parameters at 2 surfaces only)
But: Simple
No inheritance
Few (direct) dependencies:

std::vector<>
TrigSiSpacePoint
TRT_DriftCircle

Extrapolation to 2nd surface should be done by
tracking algorithms
Size: ~21 double + 5 int + 6 pointers + 30
double (cov. matrix) - could be even smaller if no
2nd surface
May increase to:

+ N*sizeof(TRT_DriftCircle) ->(more complicated)
+ M*sizeof(SiSpacePoint) ->(~10 double +1 int)

Should be “easy” to persistify and serialize: this
would be more appropriate for LVL2 ESD/AOD

PESA L2 ID Algorithms Review - RAL
25 July 2005 10Ricardo Goncalo

Design : constraints
To make persistency/serialization easier avoid:

ElementLinks
Inheritance

Classes should be small and simple:
Maintainable and robust (minimise dependencies)
Size must be minimal to avoid problems for online running

Data objects would be persistified (cluster / RoIdescriptor /
Spacepoints?)

This assumes small numbers of objects stored for normal running but
potential to store more information for debugging and efficiency studies

“Hypothesis” classes (e.g. “TrigElectron”) should have pointers to
tracks, LAr cluster, RoIdescriptor

This avoids duplication of data objects and problems from ElementLinks
This could be redesigned when navigation information is available and
persistent/serializeable (being re-designed)

Mainly e/gamma and tau objects currently being defined: probably
equal needs for other triggers

PESA L2 ID Algorithms Review - RAL
25 July 2005 11Ricardo Goncalo

Design : constraints
Persistency - usual recipes from:

https://uimon.cern.ch/twiki/bin/view/Atlas/WriteReadDataViaPool

To persistify pointers:
Classes should have virtual destructor (guarantee polymorphism)
Default constructor should initialize all data members especially pointers
No pointers to STL collections (not polymorphic; must be contained by
value)
Tested in simple case and works “out of the box”

To persistify classes (the usual thing):
Classes must have dictionary fillers: lcgdict pattern
Automatic converters must be generated: poolcnv pattern

To serialize classes (Jiri Masik, LVL2):
Classes must have dictionary fillers as for persistency
Classes should contain only data members of type int, float and
pointers to other classes
Has been demonstrated; should investigate serialisation of STL
containers

PESA L2 ID Algorithms Review - RAL
25 July 2005 12Ricardo Goncalo

Conclusions and outlook
Design should proceed with online running in mind as well as trigger
signature development, debugging, etc
It seems a good idea to minimise complexity and dependencies to
improve maintainability and ease persistency/serialisation
Classes to be serialised need to be simple
Ideally store same classes that are used in trigger hypotheses
What could be stored in POOL for algorithm development ?

This is very important and would mean faster development and
improved algorithms
But it must be balanced against how much we can store
ESD? New, lighter data structure just for this?

Prototype “hypothesis” classes could be done soon
Same subjects also under discussion in muon community : common
solutions should be explored whenever possible
New ESD/AOD classes should be available and validated in release
11 to allow time for redesign

