
AOD/ESD plans

Status and plans focusing on LVL2 e/γ and
some items for discussion
On behalf of: J.Baines, P.Casado, G.Comune, A.DiMattia, S.George, R.Goncalo,
N.Konstantinidis, C.Santamarina, M.Sutton, M.Wielers, E.Wöhrling

PESA Algorithms - CERN 14 July 2005 2Ricardo Goncalo

The problem : trigger use cases
We will need some (redundant) trigger information available offline for
debugging if (when) things go wrong

This includes navigation information (re-design ongoing)
One possibility is to re-run the trigger on Raw Data: need to store enough
information to compare online and “re-run” result

Need ways of communicating between LVL2 and EF (through
serialization into bytestream)
Need to make it easier to develop tracking/calo/etc algorithms inside
Athena: persistify spacepoints/calo cells in ESD
This means storing information in Pool (ESD/AOD) and serializing
information (LVL2->EF)
It is important to maintain enough flexibility:

Not much information would need to be passed between LVL2 and EF in
normal running, but potentially every LVL2 data object should be kept for
a subsample of events
MC poses different constraints than online running: more information to
persistify

PESA Algorithms - CERN 14 July 2005 3Ricardo Goncalo

The problem : physics groups use cases
More and more interest from physics groups on trigger issues (if you
don’t trigger on it, you can’t analyse it!)
Need to provide ways for trigger information to be available for
physics analyses (i.e. in the AODs)
This may mean several different things:
1) “Yes/No” result of hypothesis algorithms only: limited use; probably

good enough for a normal physics analysis; would generate valuable
feedback from physics groups

2) Enough information to allow some tuning of cuts in hypothesis
algorithms: more info than previous case; must include some
navigation information; even more valuable feedback from physics
groups; allow development of new trigger menus

3) Everything (…this means running trigger from RDOs; not feasible for
physics analysis)

Not much time left:
We should be thinking in terms of what will exist in data taking
After a first iteration we should have a close to final product
Should have first prototype in rel.11 to have time to iterate

PESA Algorithms - CERN 14 July 2005 4Ricardo Goncalo

Status of ESD/AOD trigger info

Various LVL1/LVL2 classes persistified (mainly ESD) for Rome
production:

LVL1 : EMTauRoI, JetRoI, EtMiss
LVL2 : EMShowerMinimal, TrackParticles (converted from
TrigInDetTracks)

http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/PESA/egamma/rome/ESDco
ntents.html

This was a valid first attempt but should be revisited to find objects that
are better suited to online environment: most notably with tracks
This also spawned more realistic signatures (in custom AOD creation
for now)
Current LVL2 objects are data objects only, no navigation or
hypotheses are stored in standard production
Navigation being redesigned at the moment: some navigation
information should be stored offline to allow debugging, monitoring and
algorithm tuning

PESA Algorithms - CERN 14 July 2005 5Ricardo Goncalo

Proposal
Provide trigger result summaries in AOD (“Yes/No” result? More?)

These could be the menu table stored in the run store plus trigger
masks stored for each event
Methods would be provided such as:

bool IsDefined(“e25i”)
bool IsPassed(“e25i”)
bool TriggerPassed(“L1/L2/EF”)

Provide “slimmmed-down” data classes produced by
tracking/calorimetry/… algorithms

LVL1 RoI types
LVL2 tracks/clusters (redesign/slim down current ESD objects)
EF offline data classes already persistent; any new ones needed?
These would allow the possibility of re-running hypothesis algorithms

Provide new objects as the result of hypothesis algorithms
TrigElectron, TrigTau, TrigMu…
These would group together tracks/clusters/RoIdescriptors etc
Would be a way of storing online information

All/some of these should be designed with data taking in mind: size,
complexity, dependencies, robustness

PESA Algorithms - CERN 14 July 2005 6Ricardo Goncalo

Design : data objects and hypothesis results
To make persistency/serialization easier avoid:

ElementLinks
Inheritance

Classes should be small and simple:
Maintainable and robust (minimise dependencies)
Size must be minimal to avoid problems for online running

Data objects would be persistified (cluster / RoIdescriptor /
Spacepoints?) – again, this assumes small number of objects stored
for normal running but potential to store more information for
debugging and efficiency studies
“Hypothesis” classes (e.g. “TrigElectron”) should have pointers to
tracks, cluster, RoIdescriptor

This avoids duplication of data objects and problems from ElementLinks
This could be redesigned when navigation information is available and
persistent/serializeable

Mainly e/gamma and tau objects currently being defined: probably
equal needs for other triggers

PESA Algorithms - CERN 14 July 2005 7Ricardo Goncalo

Design : example

T2Calo

TrigIDScan

e25i

[from LVL1]

class TrigElectron {

public:

TrigElectron();

...

int nrTracks();

TrigTrack* GetTrack(int i);

TrigCluster* GetCluster();

RoIdescriptor* GetRoI();

private:

RoIdescriptor* m_roi;

TrigCluster* m_cluster;

std::vector<TrigTrack*>
m_trk;

};

TE

TrigCluster

TrigTrack

RoIdescriptor

TrigElectron

TE

TE

RoIdescriptor

RoIdescriptor

EMTauRoI

[pointer]

[to Ev.Filter]

“uses” “seeded by” pointer

PESA Algorithms - CERN 14 July 2005 8Ricardo Goncalo

Design : constraints
Persistency - usual recipes from:

https://uimon.cern.ch/twiki/bin/view/Atlas/WriteReadDataViaPool

To persistify pointers:
Classes should have virtual destructor (guarantee
polymorphism)
Default constructor should initialize all data members especially
pointers
No pointers to STL collections (not polymorphic; must be
contained by value)

To persistify classes (the usual thing):
Classes must have dictionary fillers: lcgdict pattern
Automatic converters must be generated: poolcnv pattern

To serialize classes (Jiri Masik, LVL2):
Classes must have dictionary fillers as for persistency
Classes should contain only data members of type int, float
and pointers to other classes
Has been demonstrated; may have to investigate serialisation of
STL collections

PESA Algorithms - CERN 14 July 2005 9Ricardo Goncalo

Event Filter
Different constraints apply for EF, as it does not seed
offline reconstruction
Only data to store is EF result
More data could be stored for debugging and trigger
studies
EF uses offline data model: POOL converters available
for data objects
Dedicated machine or subfarm could write events to
POOL files at a small rate
This would be done for certain trigger types or at a
random sampling frequency
These events would then be transferred periodically to
offline data store and used by trigger experts

PESA Algorithms - CERN 14 July 2005 10Ricardo Goncalo

Design : trigger decision
This applies equally well to
LVL1, LVL2 and EF
Trigger decision:

Menu table to be stored in
RunStore (may not be feasible
yet)
Trigger masks to be stored for
each event (interpreted through
menu table)
Methods should be provided to
interpret masks for each event
Short-term solution for Rome
data would be to write methods
that mimic this for the two
signatures which were
implemented
Long-term solution: menu table
will be in conditions DB as it is
part of the trigger configuration

MenuTable
maskEvent

AOD

bool IsDefined(“e25i”)
bool IsPassed(“e25i”)
bool TriggerPassed(“EF”)

maskEvent

maskEvent

PESA Algorithms - CERN 14 July 2005 11Ricardo Goncalo

Conclusions and outlook
There’s a clear need for producing a trigger AOD for both trigger and
physics communities

Discussions started and first proposal presented here
Design should proceed with online running in mind as well as trigger
signature development, debugging, etc
Prototype classes for TrigCluster, TrigIDTrack and TrigElectron
could be done very fast
More discussion clearly needed on storing enough information for
algorithm development in POOL:

This is very important and would mean faster development and
improved algorithms
But it must be balance against how much we can store
ESD? New, lighter data structure just for this?

Same subjects also under discussion in muon community : common
solutions should be explored when possible
New ESD/AOD classes should be available and validated in release
11 to allow time for redesign

