
Trigger ESD/AOD

Simon George (RHUL)
Ricardo Goncalo (RHUL)

Monika Wielers (RAL)

Contributions from many people.

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 2

Contents
General interest:

Event data from the trigger
TDAQ data flow
Online constraints
Use cases

Inventory of ESD & AOD classes
LVL1, LVL2 & EF
Current and planned

How to access trigger information in Rome data

For PAT:
Size estimates
Persistency technologies

Generic serializer
Trigger menu configuration as conditions data

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 3

Sources of event data from the trigger

<2.5 ms

~10 ms

~1 s

~2 kHz out

~200 Hz out

Event passed to
EF, uses LVL2
data to seed

Detector data -
raw event
fragments

Level 2 data
appended to
raw event

EF data
appended to
raw event

TDAQ data flow

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 4

Data
HLT chain: data sources in detail – e/γ example

L2 e25i hypothesis

T2Calo

L2Tracking

Algorithm
sequence

L2Result

EF e25i hypothesis

TrigCaloRec

EFTracking

EMTauRoI

TrigCluster

CaloCluster

TrigElectron

TrackParticle

Electron

EFResult

TrigIndetTrack

L2 Decision

EF Decision

Steering

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 5

HLT persistency: use cases
Online

L2 Result appended to raw event for purpose of seeding EF
Extended L2 Result appended to raw event for monitoring or
debugging
Extended EF Result with output for calibration appended to raw event
L2 & EF Results appended to raw event for use offline

Offline:
Store L2 & EF Results produced by HLT simulation in ESD/AOD
Physics analysis: get trigger decision for an event from AOD
Trigger performance tuning or more detailed physics analysis:
re-run HLT hypotheses & decision on AOD.
Detailed trigger performance studies: re-run algorithms on AOD.

The same code is run online & offline, so would like to write the same
objects in both cases, but with different “persistency technology”, byte
stream and POOL respectively.

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 6

Online constraints
Size

Average L2Result size within 2kB/event
Max L2Result 64kB/event
Classes must be designed to convey minimum necessary data for use
case.

E.g. use float rather than double if sufficient, bit-pack bools.
Format

Objects are written out in raw event format (byte stream), not ROOT
LVL2 and EF may append a small amount of data to the raw event
This is used to pass RoI seeding information from LVL2 to EF
It could also be used (within constraints) to extract information for
debugging, monitoring and calibration
Simple, generic serializer turns objects into vector<int>

Class design
Serializer limits class design

E.g. only support float, double, int, pointer
Do not intend to support full offline EDM e.g. ElementLinks
Complex inheritance structures would cause problems

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 7

LVL1 classes in AOD/ESD (already in Rome)
RoI classes (in ESD and AOD)

EMTau_ROI, JetET_ROI, JETET_ROI, EnergySum_ROI, MUON_ROI
‘Hardware like’
Contain bit pattern of which threshold passed, eta/phi
Small objects: few uint32, double

Reconstruction objects (only in ESD: also in AOD from rel.11.0.0)
L1EMTauObject, L1EMJetObject, L1ETmissObject
‘Software like’
Contain energies, isolation, eta/phi quantities which are used for
optimisations
Small objects: 4-8 doubles per class

Future plans:
MUON_ROI fine, no further plans
Need single consolidated Calo class, which contains cluster/isolation
sums + thresholds passed

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 8

LVL1 classes only in AOD/ESD

CTPDecision (already in Rome ESD&AOD)
‘Hardware like’
Contains word with trigger decisions
Contains just few words
Final hardware not yet decided upon (should be very soon),
thus might need revision

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 9

LVL1 classes only in ESD (New from rel.11.0.0)
TriggerTower (available in release 11)

‘Hardware like’
contains for towers above threshold (in total ~7200 tower, typically only
100-200 after zero-suppression)

EM and had energies (final calibrated 8-bit ET values) per tower
Raw energy, digits, filter output per tower
eta/phi

Currently contains more data than actually read-out
Hardware will only give digits and final energies + eta/phi

Future plans:
further re-writing/re-design:
separate raw tower for internal use + stripped down calibrated
tower for persistency.

JetElement (same as TriggerTower – rel.11.0.0)
‘Hardware like’
Similar to TT but coarser granularity for jet trigger (~1k tower in total,
again zero-suppressed)
Contains EM/had energy, eta/phi

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 10

What was available for Rome from LVL2/EF
EMShowerMinimal (ESD only):

Output from T2Calo
Contains relevant shower shapes and pointer to CaloCluster (also
stored in ESD)

TrackParticle (ESD and AOD…by accident)
Output from several LVL2 tracking algorithms
Obtained by conversion from TrigInDetTracks
Contains a few doubles, an ElementLink to Trk::Track, and
pointers to RecVertex, MeasuredPerigee, TrackSummary,
FitQuality…

No L2Result!
CaloCluster (only in ESD)

Produced by TrigCaloRec
No other Event Filter reconstruction, so objects from offline
reconstruction used instead (in ESD, AOD)
No EFResult!

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 11

Planned LVL2 classes in AOD/ESD - I
TrigInDetTrack

Inner detector track
quantities
21 doubles and 5 int
per track
Plan to optionally
include space points
for special trigger
studies

MuonFeature
Muon track quantities
1 int, 7 float

Calorimeter classes

Discussed last LArg week
Classes to be implemented
very soon after rel. 11,
change algorithms to use
new classes in 2nd step

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 12

Planned LVL2 classes in AOD/ESD - II

TrigParticle
TrigElectron, TrigMuon, TrigTau, TrigJet…
Summary data to use for seeding and analysis
Example: TrigElectron data members:

Roi_Id
eta, phi
Z vertex
pT, ET
pointer to track
Pointer to cluster

Variables filled by hypothesis algo
with “best values”
Pointers can be 0 when track &
cluster not needed
Small object
Aim to have prototype in release 11

Other classes will be added as required
Reflect hypothesis algorithms in the trigger
E.g. J/Psi, Z, di-muon

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 13

Planned EF classes

EF reconstruction is independent from offline
reconstruction

Same output classes but produced under different conditions
Algorithms run from seeds and run typically in a ‘simpler’
mode

Therefore need to save both EF and offline reconstruction
objects
Store information per RoI

less space than full offline reconstruction
Space requirements have to be investigated

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 14

Trigger Decision
Planned for inclusion in ESD/AOD
LVL2 and EF Result

decision: bit for each signature
navigation & steering 'state',
e.g. needed to re-run hypothesis.

Bit pattern interpreted through MenuTable
(conditions data)
Plan to provide a Tool to give L1, L2, EF
results and signature results by interpreting bit
patterns in AOD

See PAT discussion on accessing MenuTable

Short term implementation: while there are only one or two signatures
First tool implementation to use this instead of MenuTable and bit pattern
Store map in AOD: map<string label, bool accept>

Derive trigger decisions from ESD
Only a few signatures - wasted AOD space by repeating labels each event is negligable
Aim to have prototype in release 11

To use tool, could add map to personal AOD’s made from Rome data
Map and bit patterns need to be included automatically in AOD in future productions

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 15

How to use trigger decision today on Rome data

The software described on the previous slides is not yet
available. What is possible today?
We currently offer 3 options to access the trigger decision
when analysing Rome data:

Analyse ESDs
Create customised AODs
Use CBNTs and AODs

For more information on each of the methods, look at the
wiki

https://uimon.cern.ch/twiki/bin/view/Atlas/PesaEgamma

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 16

Analyse physics data on ESDs
Run the HLT steering

Feature extraction algorithms (those that
reconstruct objects, like tracks or clusters) are
substituted by other algorithms that just read
those objects from AOD
Run the real hypothesis algorithms so you can
change cuts
Since there is no actual reconstruction,
running is very fast and the job options are
rather simple.

Note: only the recolum01 Rome data contains the
trigger information
Instructions based on 10.0.1 can be found in

https://uimon.cern.ch/twiki/bin/view/Atlas/Trig
ChainOnESDs

How to run the e/γ slice
How to derive trigger efficiency
Solutions to known problems

Recipe will be updated once release 11 is out

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 17

Analyse data using AODs
2nd method: create customised AODs

Make your own AOD from ESD
Add trigger classes in addition to ‘default’ classes into your AOD
Then one can run the trigger chain in the same way on the AODs as just
described for the ESDs

3rd method: Bricolage
Not recommended - but we thought we should admit what we had
to resort to, to get some of our results
Run the Root e/γ analysis program on CBNTs
Write out the event numbers that pass the trigger to a text file.
Read back text file during AOD analysis to get trigger decision
See Wiki page for details and limitations

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 18

Current size of trigger objects in ESD/AOD
Average size per event using Z→ee files from Rome data at low
luminosity (250 events)

Of course this is physics/sample dependant.

~2.5 kBytesTrigInDetTracks from all 4
L2 track algorithms

~800 BytesEMShowerMinimal +
CaloCluster

~5 kBytesL1 Trigger tower and
JetElements

~65 BytesL1 RoI+reco objects

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 19

Persistency technologies 1/2
Offline

POOL/ROOT is the obvious choice when running trigger software
offline, so objects can be included in ESD and AOD

Online
Only raw event format (“byte stream”)
LVL2 and EF may append a small amount of data to the raw event
This is used to pass RoI seeding information from LVL2 to EF
It could also be used (within constraints) to extract information for
debugging, monitoring and calibration

Technically
The steering must pass all data to be written out to the DataFlow layer
in a single vector<int>. This is then packed into the raw event with the
correct formatting.
So any classes to be written out online must be “serialized” as a
vector of integers.

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 20

Persistency technologies 2/2
Where does this leave EF output?

Simple data from steering (decision) is same as LVL2 and therefore easily
serialized
No byte stream converters or serializers for offline reconstruction EDM so
they will not be written out
Simple objects for monitoring and calibration could be serialized if suitably
designed
Note that only use case for EF output is debugging.

Can re-run EF offline to emulate it (O(1s)/event)
Open question

Wrap serialised event data in POOL?
This is the easiest solution for the steering state and navigation data
(Trigger Elements, navigation)
Extending this approach to the all HLT data is the easiest way to get all
we need to satisfy the use case
“Trigger performance tuning or more detailed physics analysis:
re-run HLT hypotheses & decision on AOD.”
Storing reconstructed objects directly in POOL poses the challenge of how
to restore pointers from steering state to this data when reading back

E.g. Trigger element to TrigIndetTrack, TrigElectron, etc.

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 21

Generic serializer
In previous releases, any instances of classes which inherit from ISerializable
are written out.

Classes deriving from ISerializable must implement serialize & deserialize
methods
Works (CTB’04) but concerned about having to write a lot of similar code and
practicality of requiring inheritance for all EDM

In release 11 we are trying a new generic serializer
Uses SEAL Reflection

Same dictionaries as offline persistency
We are not reinventing POOL & ROOT i/o; keep it simple
Constraints on classes that can be serialized

E.g. only support float, double, int, pointers
Do not intend to support full offline EDM e.g. ElementLinks
Unlikely that complex inheritance will work
Select objects by following pointers
Select classes by class id – others will be ignored

Short term
Timing study underway, initial indications are promising
Test with new LVL2 EDM
Try to support all that is needed, e.g. STL containers

Longer term
Reflex migration; Schema evolution

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 22

HLT decision and associated configuration

Decision is a bit pattern to indicate
which signatures an event fulfils
Needs configuration data to
understand which signature each bit
corresponds to
Decision is created during simulation
(LVL1) or reconstruction (LVL2, EF)
At this time, configuration is read from
XML files and turned into a few
objects in the detector store
Data could potentially change from
run to run, by editing XML file
Need a mechanism to access the
exact same configuration when using
the Decision from ESD/AOD
Configuration becomes conditions

Algorithm:
TriggerConfig

HLTsignatures.xml HLTsequences.xml

TDS
Configuration data:
MenuTable SequenceTable

Read via XercesC

Write to detector store

ATLAS Software Week 26-30Sep05 S.George, R.Goncalo, M.Wielers 23

Trigger configuration persistency options
Long term: XML files will be replaced by Trigger configuration DB

Any used configuration automatically referenced in conditions DB
Accessible through IoV mechanism
Assume trigger config database replicated on Grid.

Short term: interim solution needed
Two options have been discussed:

1) Save config data in POOL file, then manage by hand or with IoV Svc
Either keep this POOL file with the corresponding AOD file by hand, and read back in
using CondProxyProviderSvc
Disadvantage: no IoV Svc, only works when running over AOD file(s) which use the
same config data file
Or reference POOL file for corresponding run(s) in conditions DB
Either way, problem of replicating or accessing POOL files on the Grid
Advantage: config data is pre-computed so no time penalty when running over AOD.

2) Save XML as string in conditions DB
modify code to take XML as string instead of file
re-produce config data in TDS
disadvantage: time to reproduce config data from XML every run change, could
significantly slow down running on AOD

Thanks to Richard H, RD, David M, and A-Team for input.
I hope I summarised it correctly.

