Jet Slice – use of TopoClusters

Ricardo Gonçalo (LIP) and David Miller (Chicago)
For the Jet Trigger Group
Trigger General Meeting – 20 August 2014

Use of TopoClusters

- TopoClusters:
 - Essential to have performance close to offline
 - Good resolution wrt offline paramount to control rates
- Additionally:
 - TriggerTower full scan (L1.5)
 - Runs Anti-kT jet reco on 0.1x0.1 TriggerTowers
 - Avoids bias from close-by jets
 - Current plan is to run L1.5 to seed HLT reconstruction
- Could not test with L1.5 yet
 - But see Run I cost and performance in next slide

L1.5 cost

- From Run I tests (see ATL-COM-DAQ-2012-015):
 - L1Calo ROSes (3 for TT, 1 for JE) read out at up to 7kHz
 - Expect up to 15kHz with upgraded ROSes
- Total time around 12ms
 - Readout time around 9ms
 - Jet finding (anti-kT 0.4) around 1-2ms

L1.5 performance

- The TriggerTower full scan recovers L1 inefficiency for close-by jets
 - See <u>ATL-COM-DAQ-2012-009</u>
- Reasonable spacial resolution
- Energy resolution same as L1
 - See <u>ATL-COM-DAQ-2012-009</u>

20/08/14

TopoCluster making and Partial vs Full Scan

- L1.5 code not working at present: partial results only
 - Partial scan seeded directly by L1 for now
- Latest numbers comparing partial scan vs full-scan of calorimeter cells, both using TopoClusters
 - Full-scan should have performance close to offline
 - Again, this is essential cannot show direct comparisons now, but studies are ongoing
- Details:
 - MC sample: mc12 14TeV JZ2W: akT0.6 (truth); E_{τ} =80-200 GeV; < μ >= 80
 - L1_J20 seed shown here L1_J50 also studied
 - Opening sRol's of 1x1 or 1.5x1.5 around L1 Rols, 0.8x0.8 also studied

TopoCluster performance

- Comparing PS to FS
- Assumes FS
 performance is
 closer to offline

TopoCluster making cost

Cell Maker total processing time

Conclusions... so far

TopoClusters essential for the jet trigger

- The cost is high, but we believe the gains will be measured in physics
- PS, L1.5, and the menu provide tunable parameters to minimize impact of processing time

To-do (many things...):

- Direct comparison with offline jets
- Study performance of different calibration methods both time and energy/position important
- Using L1.5 to seed TopoCluster and jet finding
- Optimisation of PS parameters: sRoI size, L1 seed although reasonable values are now clear
- Establishing menu after/in parallel with reconstruction options
- Development: fixing some geometrical effects coming from RegionSelector, etc

Backup

Additional costs: Jet Calibration

Jet energy scale

		rel_o
1. Clustering	Clustering	39 ms
	Splitting	42 ms
	Moment computation	34 ms
2. Calibration	Apply calibration	44 ms
TOTAL		159 ms

Calibrate trigger jets as EM+JES or LC+JES?

- both used in Run 1 analyses
 - perfectly fine to use EM+JES jets with LC-based E^{miss}
- both calibrations will be available in 2015

Choose one calibration or double number of jet chains?

- EM+JES currently yields better resolution at high μ for low p_T jets
- local calibration (and topoclusters) under investigation
 ⇒ expect improvements for 2015 including increased forward jet rate
- dropping LC reduces topocluster time by 50% but affects Tau and E_T^{miss} trigger performance ⇒ needs further study
- not much extra unique rate if we keep both; but maybe too many chains?

Also, does L1calo calibration need to change from EM for jets?