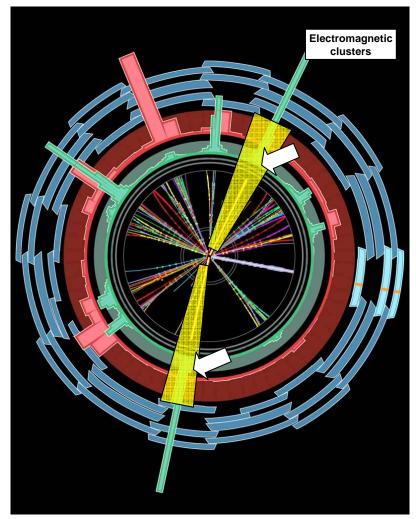
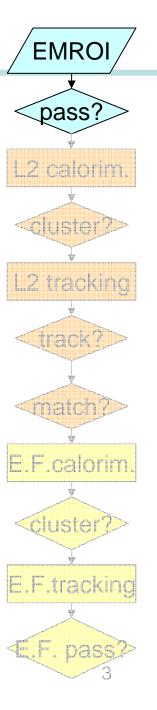

Status and outlook of HLT software


- High Level Trigger algorithms for e/γ
- How to analyse HLT data?
- Trigger information in ESD/AOD

Ricardo Gonçalo (RHUL) reporting on work by several people

- I'll try to give an overview of the HLT software
- Will not discuss the steering, RegionSelector or configuration much
- Will sometimes focus on level 2 classes, as these are probably not as well known in this audience
- Will try to give a good idea of the current status and of when more should become available

Introduction


Chain can be abandoned at each step

Level1 **Region of Interest** is found with **coarse granularity** and position in EM calorimeter is passed to Level 2

Level 2 seeded by Level 1 Fast reconstruction algorithms Full granularity Reconstruction within Rol

Ev.Filter seeded by Level 2 Offline reconstruction algorithms Refined alignment and calibration

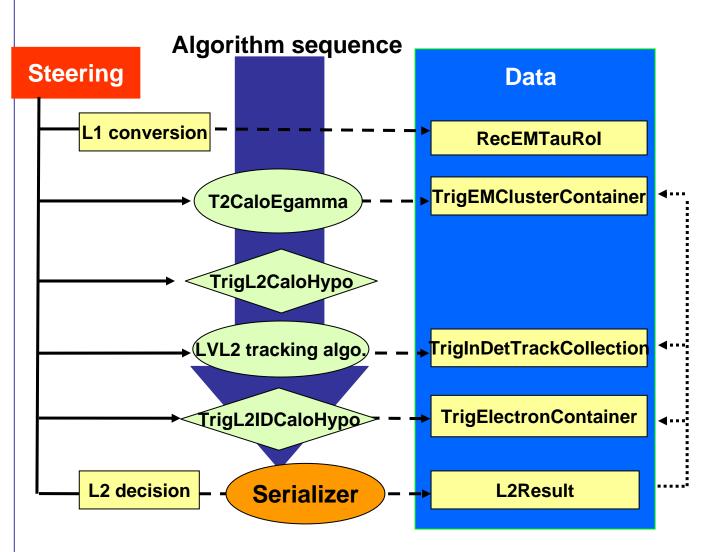
Ricardo Goncalo

T&P Week - e/gamma 30/5/06

Concrete example: L2 electron chain

Level 1:

•Trigger Tower deposits are stored at digitization time


•Level 1, emulated by software, produces EM region of interest

HLT:

•Feature Extraction (FEX) algorithms interspersed with Hypothesis (Hypo) algorithms,to achieve early hypothesis rejection

•Navigation provided by steering using TriggerElements

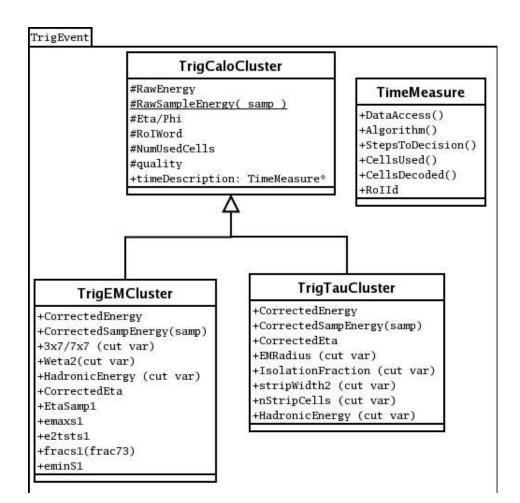
•Steering also produces L2/EFResult

T&P Week - e/gamma 30/5/06

Overview of software

Ricardo Goncalo

Trigger requirements


- These are some requirements that many algorithms and data classes should satisfy
- Algorithms must be:
 - Fast
 - Able to run **several times** per event (once or more per Rol)
 - Inherit from HLTAlgo
 - Called by the Steering
- Different instances of FEX algorithms can be run with different properties, depending on the type of RoI (EM, muon, jet, etc) to maximize efficiency
- Data classes must:
 - Be **small** (limited space for adding info to event)
 - Minimize access time overheads
 - Be serializable into L2/EFResult if they should ever be part of the monitoring or debug info from HLT
 - The L2Result and EFResult are the only way to bring online information to the offline domain, no AOD are produced in online running

Level 2 algorithms

- Access to full detector granularity
- Constrained by short execution time
- Alignment and calibration probably not optimal
- Feature Extraction (FEX) algorithms relevant for e/γ :
 - Calorimetry: T2CaloEgamma
 - Produces **TrigEMCluster** (since 11.0.5)
 - Currently being reviewed (review started last TDAQ week)
 - Tracking: SiTrack, IDScan, TRTxK, TRT extension tool
 - Produce collections of TrigInDetTrack
- Mostly mature software; well adapted to online running environment
- Hypothesis algorithms:
 - TrigL2CaloHypo, TrigL2IDCaloHypo since 11.0.x
 - Produce collections of TrigElectron
 - Photon hypothesis algorithm should be available soon, at least as first iteration
 - Will produce **TrigPhoton**

TrigEMCluster

- •TrigEMCluster
- •Base class in common with TrigTauCluster
- •Cluster and shower shape definition variables
- •Persistifiable in POOL
- •Will be serializable, for (awaiting functionality in Serializer)

TrigInDetTrack

- Produced by all tracking algorithms at level 2
- One TrigInDetTrack points to one or two sets of fit parameters (at least perigee)
- Is persistifiable in POOL and serializable in L2Result
- Total size is about 20 doubles and a few pointers which are not stored

TriginDetTrackFitPar	
- m_a0	Trigint
- m_phi0	- m_algid
- m_z0	- m_para
- m_eta	-m_endF
- m_pT	- m_chi2
-m_ea0	- m_NStra
-m_ephi0	- m_NStra
- m_ez0	- m_NStra
-m_eeta	- m_NTRI
- m_ep⊤	-m_siSpa
- m_cov	- m_trtDrif
 TrigInDetTrackFitPar() 	+ TrigInDe
 TrigInDetTrackFitPar() 	+ TrigInD@
TrigInDetTrackFitPar()	+ TrigInDe
t ∼TrigInDetTrackFitPar()	+ TrigInDe
a0()	+ ~TrigIn(
+ z0()	+ algorith
Phi00	t param(
eta()	+ endPar
- pT()	+ chi2()
cov()	+ StrawHi
+ a0()	+ Straw()
+ z0()	+ StrawTi
+ phi0()	+ TRHits()
+ eta()	+ siSpace
+ pT()	+ algorith
t ea0() + ez0()	+ param(
	+ endPar
rephi0() reeta()	+ chi2() + siSpace
epT()	+ NStraw
+ cov()	+ NStraw
<u> </u>	t NStraw
۸.	+ NTRHits
m_endParam	+ trtDriftCi
m_param	+ trtDriftCi
param	

aram wHits cePoints Circles (Track() Track() (Track*i*) Track() etTrack() nld() am() ts() me() Points() mid() am() Points() lits() ime() les()

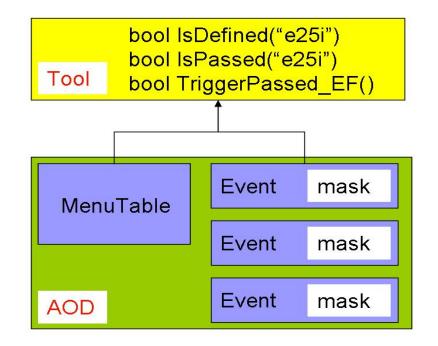
DetTrack

TrigParticle

- To store the candidate object that was accepted by a signature
- Should be light and small, with no ElementLinks or heavy inheritance, to ease persistency
- Example:
 - TrigElectron
 - Summary data to use for debugging and analysis
 - TrigElectron data members:
 - Roi_Id // set by LVL2 steering
 - eta, phi
 - Z vertex
 - p_T, E_T
 - valid // set by hypo algorithm
 - **pointer** to track
 - **pointer** to cluster ("best estimate" values from HLTHypoAlg)

class TrigElectron { public: TrigElectron(); . . . TrigTrack* track(); TrigCluster* cluster(); int RoI(); bool isValid(); private: **int** m_roilD; float m_eta, m_err_eta; float m_phi, m_err_phi; **float** m_Zvtx, m_err_Zvtx; float m_Pt, m_err_Pt; **bool** m valid; **const** TrigEMCluster* m_cluster; **const** TrigInDetTrack* m_track;

Ricardo Goncalo


};

Event Filter algorithms

- Running offline software in seeded mode (wrapped by trigger algorithms)
- EDM is common between trigger and offline, but is impossible to serialize, and so cannot be used for offline debugging of trigger
- A workaround has been found: "serializing" references to objects in POOL
- The separation between transient and persistent EDM could help!
- Feature Extraction (FEX) algorithms relevant for e/γ :
 - Calorimetry: TrigCaloRec wraps CaloRec
 - Tracking: EF ID new tracking used by trigger
 - e/gamma reconstruction: TrigEgammaRec wraps egammaRec (see Teresa's talk)
 - Produce CaloCluster, Trk::Track, TrackParticle, egamma, etc
- Hypothesis algorithms: cannot be re-run on ESD (see below), more expected in 12.0.x

TriggerDecision

- Signatures passed/failed/prescaled encoded in a bit pattern stored once per event
- The bit pattern will change and must be interpreted through a MenuTable (in Conditions Database)

- A Tool would provide the user interface to L1/L2/EF and individual signature results by interpreting bit patterns in AOD. It would give:
 - Decision bit for each signature
 - Access to configuration through methods like isDefined()

TriggerDecision

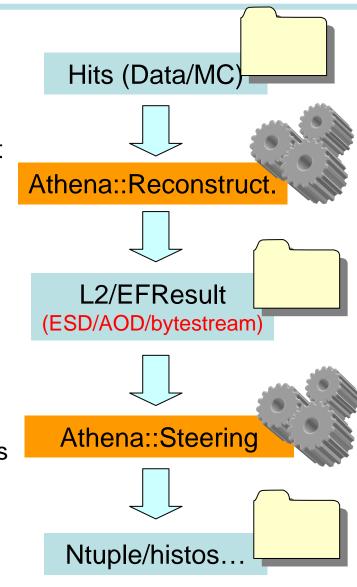
- Short term implementation: while there are only a few signatures and no database
 - Store object in AOD consisting basically of a map:

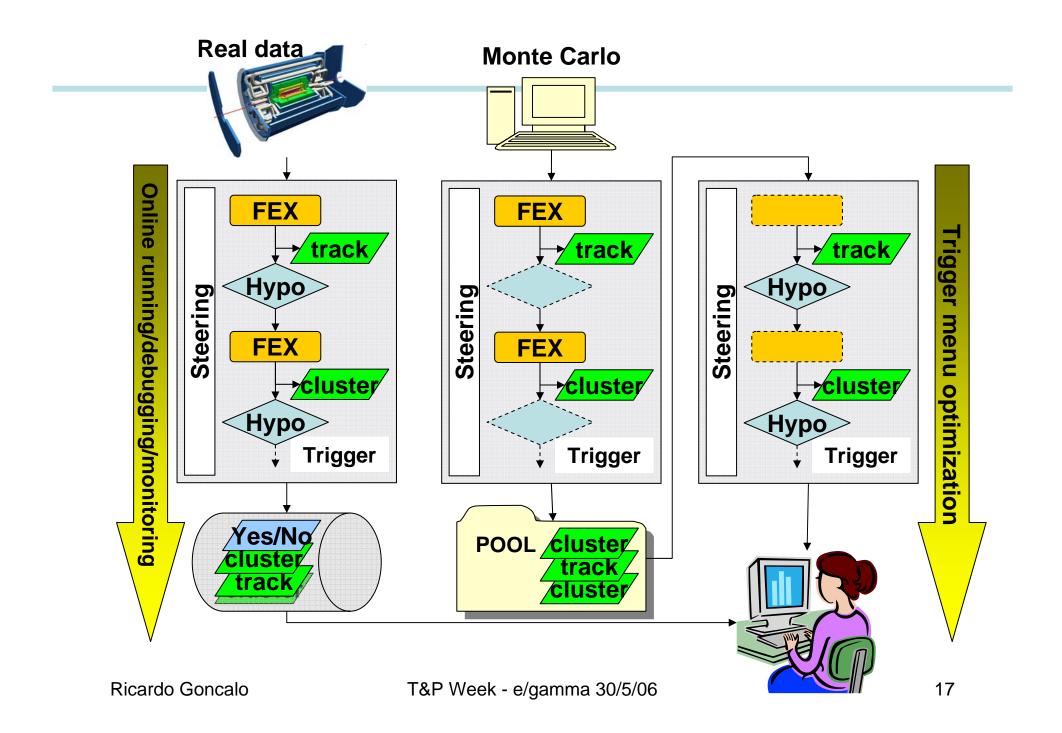
map<string label, bool accept> and little else

- Derive trigger decisions from Hypothesis algorithms and L2/EFResult
- Only a few signatures wasted AOD space by repeating labels each event is negligible
- This gives the "user" a similar look and feel as the real thing when doing analysis
- To use:
 - For each event, retrieve the **TriggerDecision** object from StoreGate
 - Then use TriggerDecision methods to determine if the event passed signature XYZ, etc
- Algorithm (TriggerDecisionMaker) to fill TriggerDecision being tested; expected in 12.0.1

The Serializer

- Part of Steering
- Uses Reflex library to serialize classes into L2Result and EFResult in bytestream or POOL
- Works with:
 - Simple native types (int, double, float)
 - Pointers (and NULL pointers)
 - Follows (non-NULL) pointers
 - Classes need to have SEAL dictionaries (same requirement for POOL)
 - All unsupported class data members should be declared
 transient (in selection.xml)
 - Store references to POOL objects (e.g. to write EFResult, where objects are not serializable)
- To do:
 - STL containers (std::vector<>, DataVector<>)
 - Schema evolution


T&P Week - e/gamma 30/5/06


Trigger analysis & optimisation

Ricardo Goncalo

How to analyse ESD/AOD/BS

- To produce ESD/AOD:
 - 1. Just set doTrigger = True
 - 2. The Steering serializes all relevant data objects into L2/EFResult (ok for L2Result at present)
 - 3. TriggerDecision object filled after Steering has run and put in ESD/AOD
- To analyse ESD/AOD:
 - A. Either:
 - 1. Set doTrigger = False
 - 2. Retrieve TriggerDecision and find result
 - B. Or
 - 1. Set doTrigger = True (& etc)
 - 2. The Steering de-serializes all data objects
 - 3. Run hypothesis algorithms only on reconstructed features
 - 4. Retrieve new TriggerDecision at the end
- Note: the cuts can only be tightened with respect to the original cuts

More information

- See Monika's tutorial in Japan for more information http://agenda.cern.ch/fullAgenda.php?ida=a062235
- More on HLT persistency

https://uimon.cern.ch/twiki/bin/view/Atlas/HLTPersistencyRecipe

- List of available information in AOD/ESD https://uimon.cern.ch/twiki/bin/view/Atlas/TriggerEDM
- See e/gamma analysis Wiki for example analysis job: https://uimon.cern.ch/twiki/bin/view/Atlas/EgammaTriggerAnalysis

Software status and outlook

Ricardo Goncalo

Software status for level 2 e/ γ

- FEX algorithms mostly in good shape thanks to the work of many people
- TrigInDetTrack Truth association not in good shape: prototype exists but needs to be finished and tested
 - Urgent! Expected for 12.0.x
- Hypothesis algorithms exist in 11.0.5 and have been tried
 - Tried for electron chain only
 - Must be tuned
 - Different signatures can use instances of same hypo algorithms created with different cuts
 - TrigElectrons produced by last hypo in chain:
 - AcceptAll property means all TrigEMClusters accepted and one TrigElectron produced for each track-cluster combination
 - Hypothesis decision still kept (see isValid() class method)
 - Photon hypothesis expected soon (12.0.1? Prototype exists but not tested yet)
 - Will produce **TrigPhoton**, similar to TrigElectron

Software status for Event Filter e/γ

- TrigCaloRec: in place since 11.0.x
 - CaloCluster (offline class) produced: persistifiable in POOL
- EF ID algorithms available since release 11.0.0 (under InnerDetector/InDetTrigRecAlgs)
 - Under review
 - Most work is in performance studies and improvements
 - Was successfully run using electron settings (split from default)
- Hypothesis algorithms cannot be re-run on ESD/AOD due to technical problems
 - Expected early in 12.0.x
- TrigEgammaRec: available in 11.5.0; can be run in 11.0.5 with tag TrigEgammaRec-00-00-04
 - Difference found between offline and wrapped algorithm: under investigation

Status of global trigger software

- Steering: being redesigned to add missing functionality (e.g. topological triggers) expected late in 12.0.x?
 - A record of the Steering navigation should be available offline, to connect L2/EF electron candidates with L1 Rols: planned
- Serializer: need to handle STL containers; coupled with persistent/transient EDM
- TriggerDecisionMaker expect in 12.0.1
- Analysis tools:
 - Would be very good to be able to use offline Analysis Tools machinery in trigger analysis
 - Discussion started on how to proceed
 - One option would be to make TrigElectron inherit from INavigable4Momentum, but this may impact on serialization
 - Expect this after more urgent functionality in place

Level	Class/Algorithm	11.0.5	12.0.x
L2	TrigEMCluster	✓	✓
L2	TrigInDetTrack	✓	✓
L2	TrigInDetTrackTruth	×	12.0.3
L2	TrigElectron	✓	Inherit INav4Mom: 12.0.3
L2	TrigPhoton	×	12.0.1
L2	Electron Hypothesis	✓	✓
L2	Photon Hypothesis	×	12.0.1
L2	FEX algorithms	✓	✓
EF	EDM classes	✓	✓
EF	New Tracking FEX	✓	✓
EF	Track-truth association	✓	New version in 12.0.x
EF	TrigCaloRec	✓	✓
EF	TrigEgammaRec	With TrigEgammaRec-00-00-04	12.0.3
EF	Hypothesis algorithms	×	12.0.x
All	TriggerDecision	✓	✓
All	TriggerDecisionMaker	×	12.0.1
All	Serializer	✓	New functionality needed

Ricardo Goncalo

T&P Week - e/gamma 30/5/06

 Comparison CBNT vs AOD for 25GeV single electrons (8500 events)

	η <2.5 i	ncl crack	η <2.5 excl crack		
IDScan	Eff %	Eff %	Eff %	Eff %	
IDScan	AOD	CBNT	AOD	CBNT	
L1	92.9	92.9	96.2	96.2	
L2 Calo	91.1	91.1	95.1	95.1	
L2 Match	86.0	86.5	89.8	90.6	
EF	75.2	76.2	79.5	80.1	

 Shows some differences which need to be understood/fixed

Ricardo Goncalo

T&P Week - e/gamma 30/5/06

Conclusions

- With release 12 (most likely 12.0.3) there will be a significant amount of trigger information in the AODs
- This together with the possibility of re-running the trigger will generate enough information to tune signatures
- Together with other slices, we should manage to have first attempt at a menu later this year. In time for third Trigger & Physics week

Backup slides

Size of AOD/ESD L1/L2 objects (DS 4022: top)

L1EMTauObjectContainer	0.09 kB	
		_
L1JetObjectContainer	0.05 kB	
L1EtmissObject	~0 kB	
LVL1_ROI	0.12 kB	-
CTP_Decision	0.004 kB	
LVL1::JetElement	1.91 kB	\neg f
LVL1::TriggerTower	6.18 kB	_
L2Result	1.44 kB	
TrigElectron	4.32 kB	
TrigEMCluster	0.16 kB	
TrigInDetTrackCollection	5.33 kB	
TrigTauClusterContainer	1.05 kB	
TrigT2JetClusterContainer	0.09 kB	
MuonFeature	~0 kB	
	- e/gamma 30/5/06	

<10% of AOD contents few% of ESD contents

What do we have at present?

From: https://uimon.cern.ch/twiki/bin/view/Atlas/TriggerEDM
HLT

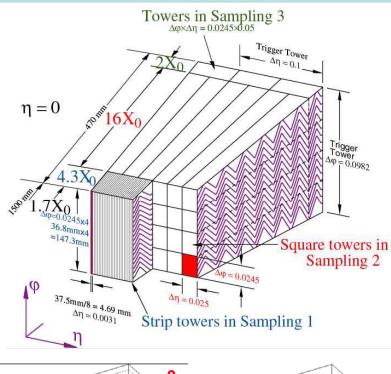
	Class	level	Status	per	sistency	Document	ation
Class		level Status		POOL?	Serializer?	in 11.0	.5
	L2Result	LVL2	ok	yes	n/a	Doxygen	
	TriggerElement	LVL2+EF	ok	no	n/a*	<u>Doxygen</u>	
	RoIDescriptor	LVL2+EF	ok	no	n/a*	<u>Doxygen</u>	Steering
	LVL1::RecEMTauRoI	LVL2	ok	no	n/a*	<u>Doxygen</u>	objects
	LVL1::RecEnergyRoI	LVL2	ok	no	n/a*	<u>Doxyegn</u>	Accessible
	LVL1::RecJetEtRoI	LVL2	ok	no	n/a*	<u>Doxygen</u>	from both
	LVL1::RecJetRoI	LVL2	ok	no	n/a*	<u>Doxygen</u>	BS and POOL
	LVL1::RecMuonRoI	LVL2	ok	no	n/a*	Doxygen	1002
	TriggerDecision	LVL1 + LVL2 + EF	in development, planned for 11.0.5/11.4.0	Yes	n/a	<u>Doxygen</u>	Algorithm to fill it in 12.0.1

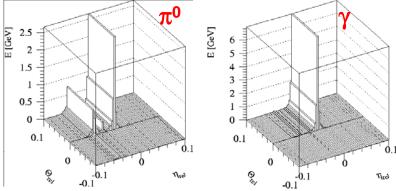
* TriggerElement, RoIDescriptor and the various RecRoIs are included in the L2Result but this is done with special code, not the serializer.

Ricardo Goncalo

T&P Week - e/gamma 30/5/06

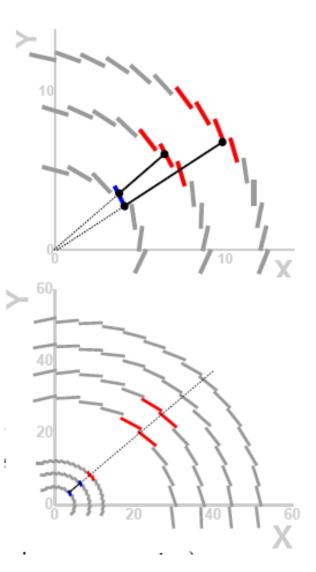
MuonFeature	LVL2	ok	yes	yes	Doxygen	
CombinedMuonFeature	e LVL2	from 11.4.0	?	yes	Doxygen	
TrigDiMuon	LVL2	?	?		Doxygen	
TrigCaloCluster	LVL2	used from 11.0.5	yes	no (container)	<u>Doxygen</u>	
TrigEMCluster	LVL2	used from 11.0.5	yes	no (array)	<u>Doxygen</u>	New Calo EDM from
TrigTauCluster	LVL2	used from 11.0.5	yes	no (arrays)	<u>Doxygen</u>	11.0.5
TrigT2Jet	LVL2	used from 11.0.5	yes	yes	Doxygen	
TrigMissingET	LVL2 & EF	new	probably	y probably	Doxygen	


TrigElectron	LVL2	used from 11.0.5	yes	yes	Doxygen Only electron
TrigTau	LVL2	used from 11.0.5	yes	yes	Doxygen and tau for now
CaloCluster	EF	ok	yes	no	Doxygen
Rec::TrackParticle	EF	ok	yes	no	Doxygen From
tauObject	EF	ok	yes	no	Doxygen > Offline
egamma	EF	ok	yes	no	Doxygen EDM: not serial.
Jet	EF	ok	yes	no	Doxygen

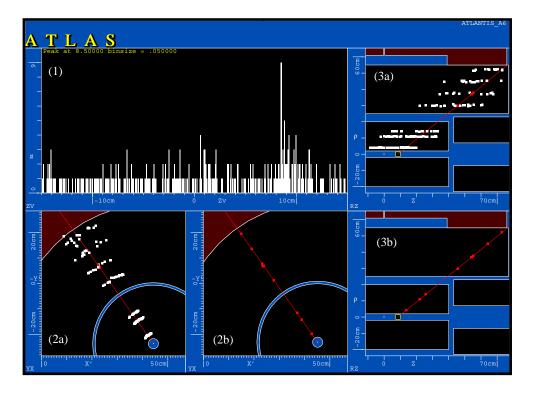

What's missing?

- •Truth-association classes
- •New functionality in Serializer (STL container serialization)
- •Having all objects in L2/EFResult (EF "persistent" EDM? Review started.)
- •Some steering functionality: "accept all" mode
- •What else?

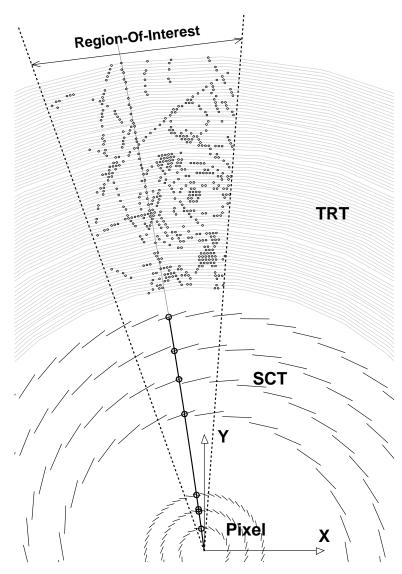
Level 2: T2CaloEgamma


- Full granularity but short time and perhaps incomplete calibration & alignment
- Extends T2CaloCommon
- Data access factorized from algorithmic part
- T2CaloEgamma calls AlgTools:
 - 1. EgammaSamp2Fex: LAr sample 2; cluster position and size
 - 2. EgammaSamp1Fex: LAr sample 1; look for second maxima in strips
 - 3. EgammaEmEnFex: total cluster energy; include calibration
 - 4. EgammaHadEnFex: longitudinal isolation (leakage)
- Each calculates shower-shape variables with discrimination power
- Produced TrigEMCluster (since 11.0.5)
- Well developed code; important progress in time performance
- Review started last TDAQ week Ricardo Goncalo T&P Week - e/gamma 30/5/06

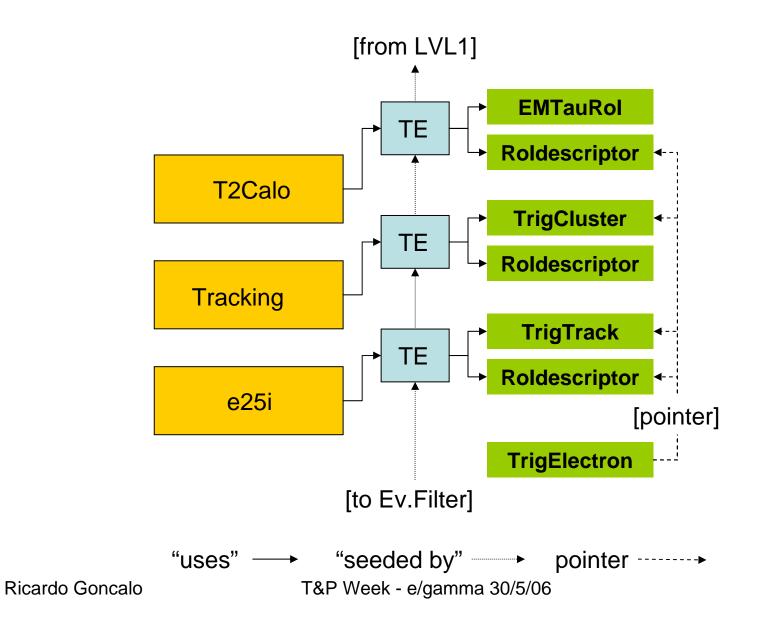
Level 2 tracking: SiTrack


- SiTrack:
 - 1. Sorting: retrieve SpacePoints in ROI and sort them to speed up algorithm
 - 2. Seeding: look for pairs (seeds) of SpacePoints with one in b-layer
 - 3. Extension: extend outwards to find third point
 - 4. Merging triplets according to common hits
 - 5. Track fit: linear fit (analytic least squares) in r-Z; circle in $r-\phi$
- Heavy use of lookup tables to achieve fast algorithm

Level 2 tracking: IDScan

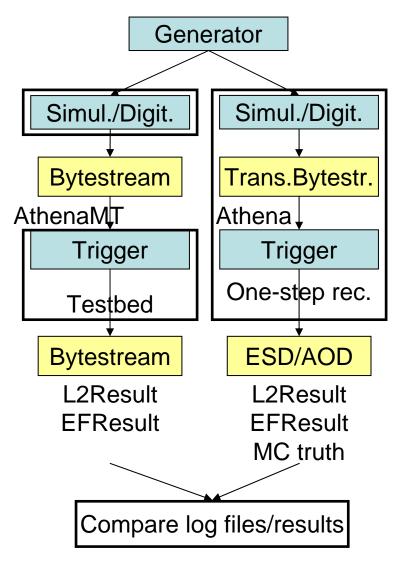

IDScan:

- 1. ZFinder: form pairs of hits in thin ϕ slices; extrapolate inwards to find Z_{vtx} at beamline from histogram
- 2. HitFilter: using Z_{vtx} , make 2D histogram of hits in η - ϕ plane; remove bins with hits from few layers
- GroupCleaner: do 2D histogram using SpacePoint triplets in 1/p_T-φ plane; tracks from bins with hits in 4/7 layers
- 4. Fitter: use Kalman technique on selected SpacePoints starting from already estimated Z_{vtx} , $1/p_T$, η , ϕ



Level 2 tracking: TRT

- TRTxK
 - Wrapper for offline xKalman to be used in seeded mode
 - May be used to do standalone TRT tracking or using all ID detectors
- TRT extension tool
 - Extends tracks outwards to TRT by associating hits to the track according to the Probabilistic Data Association Filter (PDAF, com-daq-2005-022)
 - Tracking algorithms may be configured to use TRT extension


Navigation

35

Trigger operation debugging

- Statistical: monitoring histograms
 - No need to store any data offline
 - Probably not useful if we're looking for small effects or unusual occurrences
- Event by event:
 - Only way to make HLT event data available is through L2/EFResult ⇒ <u>Serializer</u>
 - Regression-type test, running on bytestream data and comparing to ESD: in both cases, retrieve data from L2/EFResult and run hypothesis algorithms on it
 - MC truth information also available in ESD/AOD: compare reconstruction and truth

