Review of the Trigger Offline
Monitoring

Trigger Offline Monitoring

The offline monitoring area covers two parts of the Trigger Operation:

* Processing or reprocessing of jobs for:

1. Testing new software and menus

2. Producing HLT data when this was not in the run (*)

3. Produce ESD’s/monitoring output from bytestream with or without HLT info
4, Special monitoring jobs that cannot run at TierO

5. Processing and classifying data from the debug stream

(*) i.e. running the HLT on data selected by Level 1 only (and with a minimal HLT menu for streaming)

* Monitoring and DQ of the Trigger

1. Analyze the histograms from TierQ
2. Correlate them with the online histograms written after the run
3. Produce an assessment of the DQ from the Trigger
. People involved:
1. Trigger offline expert
2. Trigger offline shifter
3. Expert(s) providing support for monitoring infrastructure
4. Trigger slice on-call experts

Review Aims

Starting questions:

Find any necessary improvements in
the organisation of the offline
monitoring shifts, including
documentation and flow of
information

Determine the need for new
functionality in the monitoring
infrastructure

Help to formalize roles and
responsabilities of the trigger offline
monitoring shifter and expert

Establish a tentative operational
schedule for each role

Estimate the use of computing
resources and find any additional
needs

How to submit jobs? It is automatic
enough?

What tools exist and what are still
needed?

Where and how the log files and
other data is stored?

How the DB of what was run is
stored?

How results are published and
documented?

Is the infrastructure for testing fast/
prepared enough?

How should the histograms checking
work?
What should be the interaction with

the slice experts? (I believe this will
improve when we are in beam)

How the report of the shifter per run
should be given?

What other tools/system do we
need?

Review Procedure

A few complementary procedures were followed:

1. Analyze the software infrastructure and see what is still missing
2. Analyze the hardware available and explore what may be needed
3. Build a view on how things will work when we are in running

— Can the shifter be remote?

— What is still needed to make sure the communication expert/shifter is efficient even in this case?
— Can the expert be remote?

— How tasks are assigned and resolved?

— Could we describe a "working day" for a shifter and an expert?

4. Consult with the people who have been experts and shifters

5. Consult with people responsible for the software infrastructure
Take into account that the system was still in building phase and some comment might not be
relevant

7. Extrapolate to the future to see what the week points will be

* Input from shifters/experts: Olya, Iwona, Aart, Anna, Hegoi, Attila, so far (also Szymon, Ricardo)

 Some partial conclusions already possible, but another week or two would help refine things

How to submit jobs? It is automatic enough?
What tools exist and what are still needed?

Where and how the log files and other data is
stored?

Is the infrastructure for testing fast/prepared
enough?

Trigger Tasks in CAF

CAF was used in 2008 run for 3 main purposes:

1.

Run High Level Trigger on Level 1-selected bytestream data

— Test new Super Master Keys before online deployment
— Classify High Level Trigger errors, crashes, etc

2.
3.

4.

Run trigger offline monitoring on bytestream data from step 1

Produce ESDs with trigger information from step 1 bytestream data for
analysis

Estimate trigger rates for new menus (occasional and lower priority)

Plans for the CAF in 2009:

LY e

Initial running will be pretty much the same as 2008 (running HLT on L1-only
data, etc)

Plans for steady-state data taking :

Run error analysis/classification/recovery on all debug stream events

Run Data Quality monitoring jobs on some/all express stream data

Run online/offline trigger result comparison on some/all express stream data
Continue to test new menus and code offline in the CAF before deploying them

Task Management

* Initial system written and developed for 2008 run:
— HDEBUG framework - Hegoi Garitaonandia
— Error analysis scripts - Anna Sfyrla
— Offline monitoring, BS->ESD - Aart Heijboer
* Job submission for step 1 used HDEBUG, based on
GANGA, and publishes results to web server

* Monitoring jobs run trigger monitoring tools in
CAF/Tier0

* Monitoring and ESD (steps 2. and 3.) used simple
gueue submission scripts (bsub)

* Small library of useful scripts for error
classification, etc

Recommendations for 2009:

* Automate job submission in HDEBUG framework —
eliminate manual submission of jobs on debug
and express stream

* Complete merger of error classification scripts
into HDEBUG

* Ongoing development of analysis algorithms for

online/offline comparison — to be managed by
HDEBUG

* Continue to use CAF for testing new SMKs before
online deployment of menu

— Simplify submission of test jobs and make it
more robust

®0o summary for run 80963
(«]>]
summary for run 80963
A Completed 68

Failed 0
Total Finished|68
Running 2
Submitted 0

Good Jobs

68

Bad Jobs

0

Step

L2 Processing Session

Events In

277

Events Out

277

Events Crash

0

Files In (kB)

954396

Files Out (kB)

954404

Step

EF Processing Session

Events In

277

Events Out

216

Events Crash

61

Files In (kB)

954404

Files Out (kB)

747112

® Run Summary
¢ Configuration
® Input Files
® Output Files
® PerEvent Timing
® Crashes / Timeouts
® Online Histogramming
® All Summaries

® Python Object Summaries (Only for validation)

® Help (Atlas Twiki

this page is maintained by Hegoi Garitaonandia@SPAMNOTcern ch

Search this site

Proposal for centralizing task management?

Submission of jobs on DEBUG and EXPRESS streams:
— Initial data: run by hand, possibly different menu and release than was used online
— Steady state: run same release and menu as used online

— Hegoi and Attila working on system to automatically send jobs to all new data from these
streams — perhaps also useful elsewhere

Testing new menus: need to specify data set, menu, release (possibly nightly)

— Need tool to un-stream data before running — avoid mixing streams after new HLT version
runs on data

— Open guestion: do we need to be able to test nightly+extra tag? — initial answer is no

Log files for debug stream/test jobs and reference files should be stored in web server
and periodically archived to castor (in automatic way if possible)
— Must be accessible to shifter

Other constraints:
— DQ, debug stream and test jobs need to publish results in web-accessible way for remote DQ
— Need to run this asynchronously from (before) offline reconstruction
— Farm/queue load varies mostly depending on demand for testing new menus (time critical)
* Total farm load should be quantified and monitored

* How the DB of what was run is stored?
* How results are published and documented?

Data Quality Flags

Conditions DB is the place to store all DQ flags for the whole collaboration
To complement this, add elog category for use by offline monitoring expert/shifter

Old flags: red, green, yellow, grey, AND undefined (before any value is set)

New proposal: red (bad), green (good), (partially bad, some channels
missing, hole in calo, etc), black (disabled, not in partition), (in partition),
grey (or blue, undefined, tried to check quality but couldn't)

Comments: can be added for each flag per lumi block,
— But not in DB folder which is seen by athena
— Flags and comments are stored only when something changes

Evolution with time: flags are redone for each reprocessing (yearly...)
There will be several good-run lists: DQ provides tools to query DB

Should be possible to check if a detector is in the partition and include this in the
logic for deciding on data quality flags
— e.g. don't use some histo for checks if some detector is not in the partition

Offline DQ Monitoring

PVss|—[cooL

filled by DQ shifters verformance experts
SHIETONL — DCSOFL SHIFTOFL
RUNLE : RUNLB RUNLE
filled automatically by filled automatically by
DOMEF online : DOMF offline
DAOMEONL DOMEOFL
1\ RUNLE
Status loyerides any
: Caleulatar Y (manualy running seriol %%@gﬁ
7 yellow boxes : . and online flags)
* manual and automatic decisions : DQQ AL-QQJ: L

« online and offline

« = . RLNLE
* one ‘summary” for offline use

» Cool allows versions, the status (’I'&&w%&
can evolve with reprocessing senin)

final status used
by Athena

LBSUMM

RUNLE

online : offline

Status Flags - PQ Workshop Michae! Hauschild. 14:Noy-2008. page 2

How should the histograms checking work?
What should be the interaction with the slice
experts?

How the report of the shifter per run should
be given?

What other tools/system do we need?

Trigger Offline Monitoring Expert Role

The expert should at any moment be aware of the ongoing operational

issues

He/she must provide the link between the shifter and the trigger operations
— The shifter needs clear information on the day’s priorities and instructions on

what to do outside the routine tasks

Must be at CERN, at least during first year or so

The expert has several tasks assigned:

1.
2.
3.

4.

o

Attend the 09:00 trigger meeting, before the daily run meeting
If needed, attend the run meeting

Attend the meeting with trigger slice experts in the afternoon to be prepared
for the DQ meeting

Report on the Data Quality meeting
Reassign Savannah bugs coming from TierO
Assist the trigger offline monitoring shifter

Trigger Offline Monitoring Shifter Role

It should be possible to do the offline monitoring shift remotely

The shifter should be expected to:

1. Verify the daily monitoring histograms for each run
2. Provide the expert with an accurate view of the data quality:

. Agreement between monitoring histograms and references

. Fraction of failed jobs, error classification

. General quantities such as which triggers are running, stream overlaps, trigger rates, nr events processed, etc
3. Be able to launch monitoring jobs on recent data and analyze output

. Essential, and time critical, for testing new menus

Good communication is essential between the shifter and the expert

— The shifter needs clear information on the day’s priorities and instructions on what to do outside the
routine tasks

Slice experts must be accessible to shifter to help interpret monitoring histograms which fall
outside the norm
— Reference histograms should be made available as soon as possible, and maintained by slice experts

— Even before that, essential that experts supply clear description of each monitoring histogram to be
checked — should be obvious when data is bad

Shifter report might benefit from a shift checklist which writes to eLog

Other comments/conclusions on 2008 run

Other comments/conclusions on 2008 run

* Expert and shifter: clearly cannot be same person, work load too much
— Expert:

* 40% of time talking to people to understand problems and how to process data

* rest looking at data quality and in meetings:
— 1/2 hour Data Quality
— 1/2 hour slice expert
— 1/2 hour monitoring meeting

* Expert sometimes needed to know how to run jobs

Shifter:

* 70-80% debugging and coping with problems in the machinery or interacting with tool
maintainer

* Running jobs took a lot of babysitting

— Whiteboard a very useful feature — needs to be kept lean and clean and up to date

(expert responsibility?)

* Monitoring Tools:

Changes to standard procedure required a lot of manual intervention and cleanups
* E.g. keeping log files required change of framework

Robustness needs to be improved: e.g. number of failed jobs in web site not always
corresponded to trigger errors (monitoring thread fragile)

BS conversion, memory leaks, etc not done

e Documentation:

— Reasonable documentation available, but still lots of interaction with tool
experts essential

— No description of monitoring histograms

— Sometimes “too much to do to [thoroughly] read documentation” (cannot
happen)

* TierO:
— Should have the same histograms in TierO and online
— Should have a comparison between online and offline trigger results

— Needed reference histograms and up to date histo boundaries - most offline
histos are empty

— Differences between online and offline went unnoticed

* CAF usage:
— Perception was that farm load was excessive, but in practice lots of idle time
— This should be investigated and optimised
— Should improve with automatic job submission
— Seems very difficult to avoid using a single (trigcomm) account

Conclusions

Initial system worked acceptably but needed much manual intervention
There is now opportunity to be better prepared

Short term plans are:
— Improve error analysis and integrate with HDEBUG
— Automatise HDEBUG job submission
— Produce online/offline comparison

Should also think of shifter training

Proposal from offline DQ to have common infrastructure for CAF — will
know more soon

| feel 1-2 more weeks needed to conclude this review

