Review of the Trigger Offline Monitoring

Trigger Offline Monitoring
Review aims and procedure
Review Questions and answers
Last Comments

Szymon Gadomski and Ricardo Gonçalo Trigger Open Meeting, 21/1/2009

Trigger Offline Monitoring

The offline monitoring area covers two parts of the Trigger Operation:

- Processing or reprocessing of jobs for:
 - 1. Testing new software and menus
 - Producing HLT data when this was not in the run (*)
 - 3. Produce ESD's/monitoring output from bytestream with or without HLT info
 - Special monitoring jobs that cannot run at Tier0
 - 5. Processing and classifying data from the debug stream

(*) i.e. running the HLT on data selected by Level 1 only (and with a minimal HLT menu for streaming)

- Monitoring and DQ of the Trigger
 - 1. Analyze the histograms from Tier0
 - 2. Correlate them with the online histograms written after the run
 - 3. Produce an assessment of the DQ from the Trigger
- People involved:
 - 1. Trigger offline expert
 - 2. Trigger offline shifter
 - 3. Expert(s) providing support for monitoring infrastructure
 - 4. Trigger slice on-call experts

Review Aims

- Find any necessary improvements in the organisation of the offline monitoring shifts, including documentation and flow of information
- Determine the need for new functionality in the monitoring infrastructure
- Help to formalize roles and responsabilities of the trigger offline monitoring shifter and expert
- Establish a tentative operational schedule for each role
- Estimate the use of computing resources and find any additional needs

Starting questions:

- How to submit jobs? It is automatic enough?
- What tools exist and what are still needed?
- Where and how the log files and other data is stored?
- How the DB of what was run is stored?
- How results are published and documented?
- Is the infrastructure for testing fast/ prepared enough?
- How should the histograms checking work?
- What should be the interaction with the slice experts? (I believe this will improve when we are in beam)
- How the report of the shifter per run should be given?
- What other tools/system do we need?

Review Procedure

A few complementary procedures were followed:

- 1. Analyze the software infrastructure and see what is still missing
- 2. Analyze the hardware available and explore what may be needed
- 3. Build a view on how things will work when we are in running
 - Can the shifter be remote?
 - What is still needed to make sure the communication expert/shifter is efficient even in this case?
 - Can the expert be remote?
 - How tasks are assigned and resolved?
 - Could we describe a "working day" for a shifter and an expert?
- 4. Consult with the people who have been experts and shifters
- 5. Consult with people responsible for the software infrastructure
- 6. Take into account that the system was still in building phase and some comment might not be relevant
- 7. Extrapolate to the future to see what the week points will be
- Input from shifters/experts: Olya, Iwona, Aart, Anna, Hegoi, Attila, so far (also Szymon, Ricardo)
- Some partial conclusions already possible, but another week or two would help refine things

- How to submit jobs? It is automatic enough?
- What tools exist and what are still needed?
- Where and how the log files and other data is stored?
- Is the infrastructure for testing fast/prepared enough?

Trigger Tasks in CAF

CAF was used in 2008 run for 3 main purposes:

- 1. Run High Level Trigger on Level 1-selected bytestream data
 - Test new Super Master Keys before online deployment
 - Classify High Level Trigger errors, crashes, etc.
- 2. Run trigger offline monitoring on bytestream data from step 1
- Produce ESDs with trigger information from step 1 bytestream data for analysis
- 4. Estimate trigger rates for new menus (occasional and lower priority)

Plans for the CAF in 2009:

- Initial running will be pretty much the same as 2008 (running HLT on L1-only data, etc)
- Plans for steady-state data taking :
 - 1. Run error analysis/classification/recovery on all debug stream events
 - 2. Run Data Quality monitoring jobs on some/all express stream data
 - 3. Run online/offline trigger result comparison on some/all express stream data
 - 4. Continue to test new menus and code offline in the CAF before deploying them

Task Management

- Initial system written and developed for 2008 run:
 - HDEBUG framework Hegoi Garitaonandia
 - Error analysis scripts Anna Sfyrla
 - Offline monitoring, BS->ESD Aart Heijboer
- Job submission for step 1 used HDEBUG, based on GANGA, and publishes results to web server
- Monitoring jobs run trigger monitoring tools in CAF/Tier0
- Monitoring and ESD (steps 2. and 3.) used simple queue submission scripts (bsub)
- Small library of useful scripts for error classification, etc

Recommendations for 2009:

- Automate job submission in HDEBUG framework eliminate manual submission of jobs on debug and express stream
- Complete merger of error classification scripts into HDEBUG
- Ongoing development of analysis algorithms for online/offline comparison – to be managed by HDEBUG
- Continue to use CAF for testing new SMKs before online deployment of menu
 - Simplify submission of test jobs and make it more robust

Proposal for centralizing task management?

- Submission of jobs on DEBUG and EXPRESS streams:
 - Initial data: run by hand, possibly different menu and release than was used online
 - Steady state: run same release and menu as used online
 - Hegoi and Attila working on system to automatically send jobs to all new data from these streams – perhaps also useful elsewhere
- Testing new menus: need to specify data set, menu, release (possibly nightly)
 - Need tool to un-stream data before running avoid mixing streams after new HLT version runs on data
 - Open question: do we need to be able to test nightly+extra tag? initial answer is no
- Log files for debug stream/test jobs and reference files should be stored in web server and periodically archived to castor (in automatic way if possible)
 - Must be accessible to shifter
- Other constraints:
 - DQ, debug stream and test jobs need to publish results in web-accessible way for remote DQ
 - Need to run this asynchronously from (before) offline reconstruction
 - Farm/queue load varies mostly depending on demand for testing new menus (time critical)
 - Total farm load should be quantified and monitored

- How the DB of what was run is stored?
- How results are published and documented?

Data Quality Flags

- Conditions DB is the place to store all DQ flags for the whole collaboration
- To complement this, add eLog category for use by offline monitoring expert/shifter
- Old flags: red, green, yellow, grey, AND undefined (before any value is set)
- New proposal: **red** (bad), **green** (good), **yellow** (partially bad, some channels missing, hole in calo, etc), **black** (disabled, not in partition), white (in partition), **grey** (or blue, undefined, tried to check quality but couldn't)
- Comments: can be added for each flag per lumi block,
 - But not in DB folder which is seen by athena
 - Flags and comments are stored only when something changes
- Evolution with time: flags are redone for each reprocessing (yearly...)
- There will be several good-run lists: DQ provides tools to query DB
- Should be possible to check if a detector is in the partition and include this in the logic for deciding on data quality flags
 - e.g. don't use some histo for checks if some detector is not in the partition

Offline DQ Monitoring

- How should the histograms checking work?
- What should be the interaction with the slice experts?
- How the report of the shifter per run should be given?
- What other tools/system do we need?

Trigger Offline Monitoring Expert Role

- The expert should at any moment be aware of the ongoing operational issues
- He/she must provide the link between the shifter and the trigger operations
 - The shifter needs clear information on the day's priorities and instructions on what to do outside the routine tasks
- Must be at CERN, at least during first year or so
- The expert has several tasks assigned:
 - 1. Attend the 09:00 trigger meeting, before the daily run meeting
 - 2. If needed, attend the run meeting
 - 3. Attend the meeting with trigger slice experts in the afternoon to be prepared for the DQ meeting
 - 4. Report on the Data Quality meeting
 - 5. Reassign Savannah bugs coming from Tier0
 - 6. Assist the trigger offline monitoring shifter

Trigger Offline Monitoring Shifter Role

- It should be possible to do the offline monitoring shift remotely
- The shifter should be expected to:
 - 1. Verify the daily monitoring histograms for each run
 - 2. Provide the expert with an accurate view of the data quality:
 - Agreement between monitoring histograms and references
 - Fraction of failed jobs, error classification
 - General quantities such as which triggers are running, stream overlaps, trigger rates, nr events processed, etc.
 - 3. Be able to launch monitoring jobs on recent data and analyze output
 - Essential, and time critical, for testing new menus
- Good communication is essential between the shifter and the expert
 - The shifter needs clear information on the day's priorities and instructions on what to do outside the routine tasks
- Slice experts must be accessible to shifter to help interpret monitoring histograms which fall outside the norm
 - Reference histograms should be made available as soon as possible, and maintained by slice experts
 - Even before that, essential that experts supply clear description of each monitoring histogram to be checked – should be obvious when data is bad
- Shifter report might benefit from a shift checklist which writes to eLog

Other comments/conclusions on 2008 run

Other comments/conclusions on 2008 run

- Expert and shifter: clearly cannot be same person, work load too much
 - Expert:
 - 40% of time talking to people to understand problems and how to process data
 - rest looking at data quality and in meetings:
 - 1/2 hour Data Quality
 - 1/2 hour slice expert
 - 1/2 hour monitoring meeting
 - Expert sometimes needed to know how to run jobs
 - Shifter:
 - 70-80% debugging and coping with problems in the machinery or interacting with tool maintainer
 - Running jobs took a lot of babysitting
 - Whiteboard a very useful feature needs to be kept lean and clean and up to date (expert responsibility?)
- Monitoring Tools:
 - Changes to standard procedure required a lot of manual intervention and cleanups
 - E.g. keeping log files required change of framework
 - Robustness needs to be improved: e.g. number of failed jobs in web site not always corresponded to trigger errors (monitoring thread fragile)
 - BS conversion, memory leaks, etc not done

Documentation:

- Reasonable documentation available, but still lots of interaction with tool experts essential
- No description of monitoring histograms
- Sometimes "too much to do to [thoroughly] read documentation" (cannot happen)

Tier0:

- Should have the same histograms in Tier0 and online
- Should have a comparison between online and offline trigger results
- Needed reference histograms and up to date histo boundaries most offline histos are empty
- Differences between online and offline went unnoticed

CAF usage:

- Perception was that farm load was excessive, but in practice lots of idle time
- This should be investigated and optimised
- Should improve with automatic job submission
- Seems very difficult to avoid using a single (trigcomm) account

Conclusions

- Initial system worked acceptably but needed much manual intervention
- There is now opportunity to be better prepared
- Short term plans are:
 - Improve error analysis and integrate with HDEBUG
 - Automatise HDEBUG job submission
 - Produce online/offline comparison
- Should also think of shifter training
- Proposal from offline DQ to have common infrastructure for CAF will know more soon
- I feel 1-2 more weeks needed to conclude this review