

Combination Discussion

<u>Aaron Armbruster</u>, Ricardo Goncalo ttH Workshop

June 26, 2013

Topics

- Motivation
- Combination: Why? What?
- Orthogonality
- Nuisance parameter over-constraints
- B-Tagging systematics

Motivation

- Goal is a paper with combined ttH results from Run I data
 - Increase sensitivity to Higgs by combining multiple channels
 - Study features in ttH specific channels before putting them in full Higgs combination
 - Analysis provides direct constraint on ttH vertex that is otherwise only present in loops in other analyses in combination: increase sensitivity to new physics tests in couplings combination
- Essential to prepare roadmap and avoid potential pitfalls
 - Orthogonal selections for signal and control regions
 - Understand correlated systematics
 - Understand signal contributions in each channel

 M_i

Combination: What?

Royal Holloway University of London

- Start with the individual likelihoods $\mathcal{L}_i(\mu, \theta_i) = \mathcal{L}_i^0(\mu, \theta_i) \times \prod \mathcal{A}(\theta_{ij})$
 - θ_i are the set of nuisance parameters used in channel i
 - \mathcal{L}_{i}^{0} is the "body" of the likelihood (eg $P(N_{obs}|\lambda(\mu,\theta_{i}))$)

UNIVERSITY OF MICHIGAN

- $\mathcal{A}(\theta_{ij})$ are prior constraints for each θ_{ij} (commonly unit gaussian)
- Build a combined likelihood $\mathcal{L}(\mu, \theta) = (\prod^{N} \mathcal{L}_{i}^{0}(\mu, \theta_{i})) \times (\prod^{M} \mathcal{A}(\theta_{j}))$
 - $\theta = \theta_1 \cup \theta_2 \cup ... \cup \theta_M$ is now the set of all *unique* nuisance parameters
 - Some θ_{ij} are shared (correlated) between channels
- Combination requires orthogonality: \mathcal{L}_i^0 should be independent
 - Includes overlap between control regions (commonly ignored), and between CRs and SRs (some analyses SR is subsets of another's CR)
 - Overlap between data would artificially enhance sensitivity

Orthogonality

Lepton multiplicity	$H \rightarrow b \bar{b}$	$H \to WW$	$H \to \gamma \gamma$
$\ell^\pm\ell^\mp$ (OS)	Х	$x (t\bar{t} \rightarrow \ell \nu \ell \nu + H \rightarrow WW \rightarrow jets \text{ or } t\bar{t} \rightarrow jets + H \rightarrow WW \rightarrow \ell \nu \ell \nu)$	Х
1ℓ	х		Х
0ℓ	Х		
$\ell^\pm\ell^\pm$ (SS)		Х	
$3\ell/4\ell$		Х	

- Given smart lepton ID, orthogonality can be achieved through lepton decay mode
 - Different lepton ID can lead to overlap
 - Exception is OS $\ell\ell$, though jet multiplicity is different
- Lepton / jet overlap removal may be important if jet defs are different
 - Electrons no problem (electrons prioritized), but muon removal in OL cases may be an issue
- $\gamma\gamma$ discussed earlier, but not sure if strictly defined to be orthogonal
 - Veto on diphoton events to be strict?

Object ID

Lepton Definitions

	bb	WW
Electron	Muon	Electron Muon
	$p_T > 25 \text{ GeV}$	$p_T > 20 \mathrm{GeV}$
-	$p_T{}^\mu > 20~{\rm GeV}$ for 7 TeV	
Tight++, author 1 c	r 3 Combined mulD, author 12	Tight++ Combined STACO
Absolu	te track and calo iso	Relative isolation
		$ d_0/\sigma(d_0) < 3, z_0\sin\theta < 0.5$ mm

- Differences in p_T cut, isolation, muon algorithm, vertexing
- WW also looks at looser leptons for third lepton veto to reject WZ
- Jet definitions could affect lepton orthogonality given overlap removal
 - bb jets: anti-kt R=0.4, LCW, JVF > 0.5
 - WW jets: anti-kt R=0.4, EM, (JVF > $0.5|||\eta| > 2.5||p_T > 50$ GeV

OS $\ell\ell$ orthogonality

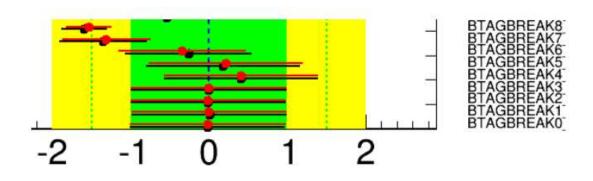
Royal Holloway University of London

- Final states
 - bb: 4j, 4b, 2ℓ
 - WW: 6j, 2b, 2ℓ
- bb includes 2-tag, \geq 4-jet CR which will include 6-jet WW final state
- W \rightarrow c+jet will have $\sim 20\%$ tag rate, so potential overlap with bb's 3-tag \geq 4-jet SR

Signal cross-talk

Royal Holloway University of London

- Important to mention how to handle signal contamination between analyses
- $H \rightarrow WW$ signal can enter $H \rightarrow b\bar{b}$ analysis and vice-versa
 - Not the same as the issue with orthogonality
 - It's fine as long as the contamination is taken into account
- For coupling combination this should be dealt with by including corresponding (constant) parameters in front of appropriate signal contribution


-
$$\lambda_{tot} = \mu \mu_{pp \to ttH} \times \sum_{signal} \mu_{H \to XX} \lambda_{H \to XX} + \sum_{background} \lambda_i$$

- Parameters $\mu_{pp \to ttH}$ and $\mu_{H \to XX}(XX = bb, WW, \gamma\gamma, etc...)$ are constant and allow for technical reparametrization in terms of coupling ratios

Nuisance parameter over-constraints

Royal Holloway University of Lo<u>ndon</u>

- Many nuisance parameters (esp b-tagging) pulled / over constrained by control regions
 - Need to understand if they are real and reliable (how often do we see such pulls / constraints in pseudo-data?)
 - How to deal with them in combination (should the constraint propagate to other analyses?)

What are over-constraints?

- Suppose we have two control regions with a free normalization μ_B and a systematic θ with a prior $G(0|\theta, 1)$ $\mathcal{L}_A(\mu_B, \theta) = P(B_1|\mu_B B_1(1 + \epsilon_1 \theta)) \times P(B_2|\mu_B B_2(1 + \epsilon_2 \theta)) \times G(0|\theta, 1)$
- Constraint on θ can be quantified with log likelihood ratio $-2\ln \frac{\mathcal{L}(\hat{\mu}_B, \theta)}{\mathcal{L}(\hat{\mu}_B, \hat{\theta})} \sim \theta^2 (1 + \frac{B_1 B_2 (\epsilon_1 - \epsilon_2)^2}{B_1 + B_2})$
- Nominal constraint is just from the gaussian: $-2 \ln \frac{\mathcal{L}(\theta)}{\mathcal{L}(\hat{\theta})} \sim \theta^2$
- Additional term $\theta^2 \times \frac{B_1 B_2 (\epsilon_1 \epsilon_2)^2}{B_1 + B_2}$ comes from information added by control regions gives the over-constraint
 - Control regions with anticorrelated systematics (ϵ_1 different sign than ϵ_2), such as CRs with different b-tag multiplicities, and large rates B_1, B_2 lead to large over constraints

B-Tagging systematics

Validation

0 b-tag

 H_{T}

H_T

m_{bb}

1 b-tag

 H_{T}

HT

m_{bb}

Le	nto	n+i	et	۰.
20	ριο		υu	э.

- H_{Thad} in signal-depleted channels and NN in signal-rich channels.
- Always compare with H_{Thad}-only analysis.

(not used in fit)						
	0 b-tag	1 b-tag	2 b-tags	3 b-tags	3 b-tags ≥ 4 b-tags	
4 jets	H _{Thad}	H_{Thad}	H _{Thad}			
5 jets	H _{Thad}	H_{Thad}	H _{Thad}	NN	NN	
≥ 6 jets	H _{Thad}	H_{Thad}	H _{Thad}	NN	NN	

2 b-tags

H_τ

H_τ

m_{bb}

3 b-tags

Η_T

m_{bb}

≥4 b-tags

m_{bb}

9

lantar	
leptor	IS.

 m_{bb} (from kinematic fit) in ≥4 jets channels and H_T (sum of H_{Thad} and lepton p_Ts) elsewhere.

Check consistency between lepton+jets and dilepton analyses whenever possible

- (slide stolen from Aurelio Juste)
- Such control regions exist in bb analysis (1, 2, 3 b-tagged CRs) and will give the over-constraint on b-tagging sys

2 jets

3 jets

≥ 4 jets

Royal Holloway University of London

B-Tagging cancellation

- H \rightarrow WW (not ttH) recently implemented method to cancel b-tagging sys using 2-jet CR
 - Introduce b-tagging normalization parameter $\mu_{b-tag} = \frac{\epsilon_{b-tag}^{ata}}{\epsilon_{b-tag}^{MC}}$ (ratio of b-tagging efficiency in data and MC) and measure this using CRs
 - Impact of b-tagging systematic on analysis reduced to ~ 0
- Method is rather generic and could be applied to ttH analyses
 - Over-constraints would be \sim gone, systematic due to b-tagging efficiency replaced by statistical uncertainty from CR measurement of $\mu_{\rm b-tag}$

Sensitivity

bb		$\gamma\gamma$		WW				
ll+lj	≥8j	7j	leptonic	hadronic	SS 2I	31	41	
2.8	13.3	14.2	6.91	13.7	6.8	4.5	13.4	
Individual Combinations								
2.69 (Naive) 5		5.	42	3.61 (Naive)		ve)		
Full naive combination: 1.86								

•
$$\mu_{up}^{cb} \sim 1.84 \sigma^{cb} \sim 1.84 / \sqrt{\sum_{i} 1/\sigma_i^2} \sim 1 / \sqrt{\sum_{i} 1/\mu_{up,i}^2}$$

- Very rough: assumes fully uncorrelated systematics

• Still missing sensitivities from several channels

Summary

- A few issues must be dealt with before combination possible, though these may be straight forward to solve
 - Primarily orthogonality
 - Other issues can be solved along the way (NP correlations / constraints)
- Naive sensitivity is 1.86×SM given channels that have listed expected limits
 - Several channels missing, a lot of room for improvement...