

The ATLAS trigger

Ricardo Gonçalo Royal Holloway University of London

ATLAS and the LHC

- 2 proton beams of 7 TeV/proton
- ...roughly as much kinetic energy as the french TGV traveling at 200km/h
- colliding at 25ns interval... 25ns x c = 7.5m ... not much longer than this room!

Large Hadron Collider at CERN

Circumference 26.7 km (16.6 miles)

http://atlas.ch/multimedia/html-nc/animation_wedge.html⁷

LHC physics

Challenges faced by the ATLAS trigger

- Much of ATLAS physics means cross sections at least ~10⁶ times smaller than total cross section
- 25ns bunch crossing interval (40 MHz)
- Offline storing/processing: ~200 Hz
 - ~5 events per million crossings!
- In one second at design luminosity:
 - 40 000 000 bunch crossings
 - ~2000 W events
 - ~500 Z events
 - ~10 top events
 - ~0.1 Higgs events?
 - 200 events written out
- The right 200 events should be written out!

The ATLAS trigger

Finally...the trigger

High-Level Trigger

The ATLAS trigger

Three trigger levels:

- Level 1:
 - Hardware based (FPGA/ASIC)
 - Coarse granularity detector data
 - Calorimeter and muons only
 - 2.5 μs latency (buffer size)
- Level 2:
 - Software based
 - Only detector sub-regions (Regions of Interest) processed; seeded by level 1
 - Full detector granularity in Rols
 - Fast tracking and calorimetry
 - Average execution time ~40 ms
 - Output rate ~1 kHz
- - Seeded by level 2
 - Full detector granularity
 - Potential full event access
 - Offline algorithms
 - Average execution time ~1 s
 - Output rate ~200 Hz

Level 1

LVL1 - Muons & Calorimetry

Muon Trigger looking for coincidences in muon trigger chambers 3 out of 4 (low- p_T ; >6 GeV) and 3 out of 4 + 1/2 (Barrel) or 2/3 (Endcap)

(high- p_T ; >20 GeV)

High Level Trigger

Example: level 2 e/ γ calorimeter reconstruction

- Full granularity but short time and only rough calibration
- Reconstruction steps:
 - 1. LAr sample 2; cluster position and size (E in 3x3 cells/E in 7x7 cells)
 - 2. LAr sample 1; look for second maxima in strip couples (most likely from $\pi^0 \rightarrow \gamma \gamma$, etc)
 - 3. Total cluster energy measured in all samplings; include calibration
 - 4. Longitudinal isolation (leakage into hadronic calorimeter)
- Produce a level 2 EM cluster object (note EDM different from offline)

HLT Selection

Event rejection possible at each step

Level1 **Region of Interest** is found and position in EM calorimeter is passed to Level 2

Level 2 seeded by Level 1
Fast reconstruction
algorithms
Reconstruction within Rol

Ev.Filter seeded by Level 2
Offline reconstruction
algorithms
Refined alignment and
calibration

Example Menu

Object	Example physics coverage
Electrons	Higgs (SM, MSSM), new gauge bosons, extra dimensions, SUSY, W, Z, top
Photons	Higgs (SM, MSSM), extra dimensions, SUSY
Muons	Higgs (SM, MSSM), new gauge bosons, extra dimensions, SUSY, W, top
	Rare b-decays (B $\rightarrow \mu\mu X$, B $\rightarrow J/\psi X$)
Tau+missing E _T	Extended Higgs models (e.g. MSSM), SUSY
Jets	SUSY, compositeness, resonances
Jet+missing E _T	SUSY, leptoquarks
Others	Prescaled, calibration, monitoring

Hmm...The ATLAS Experiment will provide some answers.

Level 1 architecture

- Level 1 uses calorimeter and muon systems only
- Muon spectrometer:
 - Dedicated trigger chambers
 - Thin Gap Chambers TGC
 - Cathode Strip Chambers CSC
- Calorimeter:
 - Trigger towers group calorimeter cells in coarse granularity: $\Delta\eta \times \Delta\phi = 0.1 \times 0.1$ (EM/Tau); $\Delta\eta \times \Delta\phi = 0.2 \times 0.2$ (Jets)
- Identify regions of interest (Rol) and classify them as MU, EM/Tau, Jet
- Information passed to level 2:
 - Rol type
 - E_⊤ threshold passed
 - Multiplicity
 - Location

The response of the level 1 hardware is emulated in Athena.

Example: level 2 tracking algorithm

- - extrapolate inwards to find Z_{vtx} from a 1D histogram
- 2. Using Z_{vtx}, make 2D histogram of hits in η-φ plane;
 - remove bins with hits in too few layers
- 3. Do 2D histogram using space point triplets in $1/p_T$ - ϕ plane;
 - Form tracks from bins with hits in >4 layers
- Use Kalman technique on the space points obtained in previous steps
 - Start from already estimated parameters: Z_{vtx}, 1/p_T, η, φ

- Full granularity but short time
- •Algorithms optimised for execution speed, including data access time
- Produce level 2 tracks

